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Abstract

Bisphenol A (BPA) has become a target of intense public scrutiny since concerns about its 

association with human diseases such as obesity, diabetes, reproductive disorders, and cancer have 

emerged. BPA is a highly prevalent chemical in consumer products, and human exposure is 

thought to be ubiquitous. Numerous studies have demonstrated its endocrine disrupting properties 

and attributed exposure with cytotoxic, genotoxic, and carcinogenic effects; however, the results of 

these studies are still highly debated and a consensus about BPA's safety and its role in human 

disease has not been reached. One of the contributing factors is a lack of molecular mechanisms or 

modes of action that explain the diverse and pleiotropic effects observed after BPA exposure. The 

increase in BPA research seen over the last ten years has resulted in more studies that examine 

molecular mechanisms and revealed links between BPA-induced oxidative stress and human 

disease.

Here, a review of the current literature examining BPA exposure and the induction of reactive 

oxygen species (ROS) or oxidative stress will be provided to examine the landscape of the current 

BPA literature and provide a framework for understanding how induction of oxidative stress by 

BPA may contribute to the pleiotropic effects observed after exposure.
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1. Introduction

Bisphenol A (BPA) is a precursor industrial chemical that is widely used in the production 

of consumer products, including polycarbonate plastics, epoxy resins, and thermal paper 

[Vandenberg et al., 2007]. World-wide production of BPA has grown steadily over the past 

several decades, with greater than 10 billion pounds produced each year [Vandenberg et al., 

2010, Vom Saal et al., 2012]. This growth in production has contributed to the ubiquity of 

BPA in consumer products and in the air, soil and water [Vandenberg et al., 2010]. As a 
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result, human exposure through inhalation, ingestion, and/or absorption has resulted in 

circulating levels of BPA in the 10–100 nM range [LaKind and Naiman, 2015, Welshons et 

al., 2006].

The presence of free circulating BPA in biological samples is concerning, since BPA is 

structurally similar to diethylstilbestrol (DES) and has estrogenic character, though 

substantially weaker than DES or estradiol [Fang et al., 2000, Rochester, 2013]. This weak 

estrogenic character, coupled with initial predictions that BPA would be quickly metabolized 

into bisphenol A glucuronide (BPAG) or bisphenol A sulfate, (BPAS) and eliminated 

through urination, led to the belief that harmful endocrine disrupting effects from exposure 

would be minimized [Domoradzki et al., 2004, Volkel et al., 2002]. However, growing 

evidence demonstrates that free BPA circulates throughout the body [Vandenberg et al., 

2012a, Vandenberg et al., 2013], and even at low doses can act as a potent endocrine 

disrupting chemical (EDC) (for reviews see [Kitraki, 2014, Mathieu-Denoncourt et al., 2015, 

Mileva et al., 2014, Rezg et al., 2014, Rochester, 2013]).

BPA binding and activation of estrogen receptors α and β (ERα and ERβ) is one of its most 

frequently implicated molecular mechanisms [Marino et al., 2012, Welshons et al., 2006, 

Wetherill et al., 2007]. BPA has been demonstrated to bind these receptors altering their 

localization and modulating transcription activities, despite have a lower affinity for these 

receptors than estradiol or other environmental xenoestrogens [Acconcia et al., 2015, 

Ascenzi et al., 2006, Bolli et al., 2010, Bolli et al., 2008, Marino et al., 2012, Singleton et 

al., 2006, Wetherill et al., 2007]. This lower potency makes it unlikely that BPA exerts is 

effects solely through interactions with these receptors. BPA has been also been 

demonstrated to be a potent activator of non-classical estrogen receptors, like G-coupled 

protein receptors (GPER) and estrogen-related receptor γ (ERRγ), as well as an activator 

for thyroid hormone receptor and androgen receptor [Alonso-Magdalena et al., 2012, 

Rochester, 2013]. The estrogenic character of BPA has been the focus of numerous studies, 

and there is growing evidence that BPA alters reproduction, development, metabolism, 

immune response, and neurobehaviors (reviewed in [Kitraki, 2014, Mathieu-Denoncourt et 

al., 2015, Mileva et al., 2014, Rezg et al., 2014, Rochester, 2013]). Further, population 

studies have associated BPA exposure with the development and progression of diseases, 

including asthma, diabetes, cardiovascular disease, obesity, and more recently cancer 

[Rochester, 2013, Seachrist et al., 2016].

Despite this weight of evidence, the health risks associated with the chronic, low dose BPA 

exposure the population experiences are still controversial [Kovacic, 2010, Trasande et al., 

2016, Vandenberg and Prins, 2016]. One of the contributing issues to the controversy is the 

lack of molecular mechanisms describing the diverse and pleiotropic effects observed after 

BPA exposure. However, the increased demand for and focus on BPA research over the past 

ten years has resulted in more studies examining the underlying mechanisms of BPA 

exposure [Schug et al., 2013], and there is growing evidence that the induction of reactive 

oxygen species (ROS) by BPA may contribute significantly to its toxicity and carcinogenic 

potential [Gassman and Wilson, 2016, Rochester, 2013, Seachrist et al., 2016].
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A cell’s ability to maintain a balance in reduction and oxidation (redox) of chemicals plays 

an essential role in all aspects of cellular development, growth, and survival. Normal cellular 

metabolism generates ROS, such as superoxide anions, peroxides, and hydroxyl radicals, 

and cells have developed highly tuned pathways to utilize low levels of these species for 

gene regulation and to scavenge any excess ROS to prevent deleterious effects. This 

important redox balance is maintained by numerous components in the cell and is highly 

regulated and coordinated. However, when this balance is disrupted by environmental 

toxicants, like heavy metals, polycyclic aromatic hydrocarbons, or EDCs, the same ROS that 

were once beneficial to the cell can now cause mutations, unchecked cell growth, and 

insensitivity to cell death signals, including those induced by therapeutic agents [Liou and 

Storz, 2010]. Additionally, increased levels of oxidative stress have been implicated in 

aging, cardiovascular disease, neuronal degeneration, and the development and progression 

of cancer [Liou and Storz, 2010, Rahal et al., 2014].

As with other aspects of BPA research, investigations into the induction of oxidative stress 

by BPA have generated numerous conflicting reports about prooxidant/antioxidant behavior 

[Babu et al., 2013, Chepelev et al., 2013], antioxidant depletion [Ge et al., 2014a, Huc et al., 

2012], mitochondrial dysfunction [Kalb et al., 2016, Moon et al., 2012], alteration in cell 

signaling pathways [Chevalier et al., 2015, Ge et al., 2014b, Ge and Wang, 2016, Watson et 

al., 2005], and induction of cell death [Gassman et al., 2015, Huc et al., 2012, Leem et al., 

2016, Ooe et al., 2005]. Here, a review of the current literature examining BPA exposure and 

the induction of ROS or oxidative stress will be provided to assess the landscape of the 

current BPA literature and potentially provide a framework for evaluating how induction of 

oxidative stress by BPA may influence the pleotropic and tissue-specific effects of BPA 

exposure.

2. Dosing

Contradictory in vivo and in vitro data has made evaluating the adverse health effects of 

BPA difficult for regulatory agencies and has fueled scientific and public controversy about 

the chemical. While there are a variety of factors that contribute to the generation of 

conflicting or contradictory data in the BPA field, including study designs, endpoints, and 

model systems, a significant contributor is the wide range of BPA doses utilized in the 

literature [Chapin et al., 2008]. BPA, like other estrogenic compounds and hormones, shows 

a non-monotonic dose-response [Vandenberg et al., 2012b], and the incomplete data on the 

dose-response effects of BPA in various model systems, make evaluating the health 

consequences of persistent BPA exposure more difficult [Chapin et al., 2008, NTP, 2008]. 

While a number of research efforts are focusing on developing an improved understanding 

of the toxicokinetics of BPA exposure [Schug et al., 2013, Vandenberg et al., 2013], studies 

into the adverse health effects of BPA continue to emerge, and the effects noted in these 

studies may provide important insight into the molecular mechanisms of BPA. So an 

important caveat to any review of the current literature is dosing.

The lowest observable adverse effect level (LOAEL) for in vivo studies has been defined as 

50 µg/kg per day [EPA, 1993], while the in vitro LOAEL has been defined as 50 ng/ml or 

2.19 × 10−7 M BPA [Welshons et al., 2006, Wetherill et al., 2007]. Examination of published 
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in vivo and vitro studies show that experimental BPA doses range from 0.2 to 50 µg/kg/bw 

in animal studies and from 10−15 to 10−4 M in cell studies (Tables I and II). Some 

researchers have attempted to address the non-monotonic dose-response by evaluating a 

number of BPA doses from low to high, while others have focused on a single dose, most 

often a low dose.

Human exposures to BPA have been estimated from 10–100 nM [LaKind and Naiman, 

2015, Welshons et al., 2006], and studies frequently dose in this range in order to examine 

physiologically relevant effects. However, BPA contamination is ubiquitous, with the air, 

soil, and water revealing higher than expected levels of free BPA [Corrales et al., 2015, Fu 

and Kawamura, 2010]. This contamination can also extend to laboratory materials, and a 

report by Cao et. al in 2010 noted that laboratory plastics, while made of polystyrene or 

polypropylene rather polycarbonate, can be contaminated with low nanomolar 

concentrations of BPA (0.25–1.1 nM) [Cao et al., 2010]. They also reported this 

contamination extends to cell culture medium and fetal bovine serum, including charcoal 

stripped serum [Cao et al., 2010].

It is unclear how wide-spread this contamination may be since extremely low levels of 

detection are required by GC-MS instruments, and these contamination levels have not been 

confirmed by others in the field. However, these findings do suggests that low nanomolar 

dosing may be problematic due to contamination from laboratory materials and the inherent 

inaccuracies of achieving extremely low doses experimentally. These unknowns may be 

contributing to conflicting results and irreproducible data at low, but physiologically relevant 

doses. Higher doses might overcome background contamination, but it is unclear how these 

doses translate to human exposures.

Overall BPA dosing is still highly controversial. Here, dose and duration are noted in the text 

and in Tables I and II to assist in the evaluation of findings. Differences in dosing may 

significantly contribute to inconsistencies in the BPA literature, yet as highlighted here, a 

wide variety of BPA doses induce oxidative stress and adverse effects. Further research 

efforts in these areas should explore broad dose ranges and avoid extremely low doses to 

better evaluate the human health consequences of these effects.

3. Induction of free radicals and oxidative stress by BPA exposure

While a majority of BPA is converted into less toxic BPAG and BPAS, the remaining free 

BPA induces ROS through the enzymatic (H2O2/peroxidase and NADPH/CYP450) and non-

enzymatic (peroxynitrite/CO2 and −OCl/HOCl) formation of phenoxyl radicals (described in 

[Atkinson and Roy, 1995a, Babu et al., 2013, Sakuma et al., 2010, Yoshida et al., 2001]). 

Subsequent reactions of these radicals with NADPH or intracellular glutathione (GSH) 

along with further enzymatic processing produce a variety of radical species, including 

superoxides, peroxides, and hydroxyl radicals [Babu et al., 2013, Sakuma et al., 2010]. 

Fluorescent reporters, such as dichlorodihydrofluorescein diacetate (DCFDA) and 

dihydroethidium (DHE) are frequently utilized to indirectly measure the generation of 

intracellular peroxides or superoxide after exposure to BPA in cells. These reporters have 

significant shortcomings in measuring reactive oxygen species and cannot be used to 
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identify specific radical species; however, they are frequently used to measure relative 

changes in oxidative stress [Kalyanaraman et al., 2012]. Most of the in vitro BPA studies 

utilize these probes, so general oxidative stress changes will be summarized and discussed 

here, and further work to identify radical species generated is needed in the field.

The generation of ROS by BPA has been examined using these fluorescent reporters in a 

large number of cell types and with doses ranging from 10−12 to 10−4 M (Table I) [Babu et 

al., 2013, Gassman et al., 2015, Ge et al., 2014a, Huc et al., 2012, Koong and Watson, 2015, 

Leem et al., 2016, Moon et al., 2012, Ooe et al., 2005, Pfeifer et al., 2015, Porreca et al., 

2016, Xin et al., 2014]. Nanomolar BPA exposures can display short, transient bursts of ROS 

[Koong and Watson, 2015, Pfeifer et al., 2015], though longer sustained levels of oxidative 

stress were also reported [Huc et al., 2012, Porreca et al., 2016]. Differences in ROS 

generation and lifetime at these doses may be related to difference in cellular backgrounds, 

fluorescent reagents, or could result from concentration differences induced by background 

contamination [Cao et al., 2010].

Micromolar doses of BPA have been shown to increase oxidative stress levels 1–4 h after 

exposure [Babu et al., 2013, Gassman et al., 2015, Ge et al., 2014a, Huc et al., 2012, Leem 

et al., 2016, Ooe et al., 2005], and these levels may be maintained for up to 72 h [Huc et al., 

2012, Xin et al., 2014]. Depending on cell type, some of the reported high micromolar 

doses, typically 10−4 M range, do result in cytotoxicity, likely mediated through ROS-

induced DNA damage [Huc et al., 2012, Leem et al., 2016, Ooe et al., 2005]. However, a 

majority of BPA studies use doses that are not cytotoxic and significant generation of ROS 

has still been observed [Babu et al., 2013, Gassman et al., 2015, Ge et al., 2014a, Huc et al., 

2012, Koong and Watson, 2015, Pfeifer et al., 2015, Porreca et al., 2016].

Given the wide range of cell types, doses, and endpoints measured, it is unclear if there are 

dose-dependent increases in ROS, despite suggestions of this effect by some authors. It is 

clear that levels of ROS vary significantly depending on the cell type and the hormone 

receptor status of the cells. A clear example of these effects were demonstrated by Koong 

and Watson using androgen-dependent and -independent prostate cell lines (LAPC-4 and 

PC3, respectively), where the same dose of BPA generated less ROS in the androgen-

independent cells [Koong and Watson, 2015]. ERα status is also frequently examined in 

literature, with most studies reporting the induction of ROS, independent of ERα after 

exposure to BPA [Pfeifer et al., 2015]. Whether non-classical estrogen receptors 

significantly influence the production of ROS in cells has not been significantly addressed in 

the current literature, though some downstream effects (discussed in later sections) suggest 

they may play a role.

In human and animal studies, reactive species are also measured indirectly by examining 

damage induced to cellular macromolecules and DNA bases. Strong correlations between 

high urinary concentrations of BPA and increases in the levels of biomarkers for lipid 

peroxidation, malondialdehyde (MDA), and oxidatively-induced DNA damage, 8-

hydroxydeoxyguanosine (8-OHdG), have been reported in a number of population studies 

[Asimakopoulos et al., 2015, Watkins et al., 2015, Yang et al., 2009, Yi et al., 2011, Zhang et 

al., 2016]. Increased levels of 8-OHdG and MDA are also observed in a number of animal 
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models with doses > 5 mg/kg/bw per day showing the most consistent and sustained 

generation of oxidative stress, though some low dose studies utilizing µg/kg/bw per day have 

reported increased levels of MDA and 8-OHdG as well (Table II) [Bindhumol et al., 2003, 

Chitra et al., 2003, Jain et al., 2011, Kabuto et al., 2004, Tiwari et al., 2012, Wu et al., 2013].

Taken together these data strongly support the prooxidant role of BPA. However, 

examination of the structure of BPA also illustrates its potential to act as a weak antioxidant 

via electron loss through the O-H bond [Chepelev et al., 2013, Kabuto et al., 2003, Kadoma 

and Fujisawa, 2000]. Several reports have noted a reduction in ROS after BPA exposure and 

indicated the potential for ROS scavenging by BPA [Chepelev et al., 2013, Ge et al., 2014a, 

Kabuto et al., 2003, Ponniah et al., 2015]. While the mechanisms underlying this effect have 

not been determined, contributing factors such as cellular microenvironment changes, cell 

type, and cell signaling responses could significantly contribute to the observed reduction in 

oxidative stress, as could differences in ROS measurement methods and time points 

[Chepelev et al., 2013, Ge et al., 2014a, Kabuto et al., 2003, Ponniah et al., 2015]. However, 

it is interesting to note that like other polyphenolic compounds, BPA may maintain weak 

antioxidant activities. While the overall energetics and competition of stronger antioxidants 

in the cellular milieu may not normally favor these activities, cell which experience high 

level of oxidative stress from their environments or functions, like trophoblasts, may have 

microenvironments that promote BPA’s antioxidant activities [Chepelev et al., 2013, 

Ponniah et al., 2015].

These conflicting findings for prooxidant and antioxidant roles highlight the difficulty in 

assessing BPA effects, and the controversy that can result. Fluorescent reporters may cloud 

this issue further, and there are key differences in the doses, durations, and cellular 

microenvironments used in these reports that may be influencing the prooxidant/antioxidant 

role of BPA. The prooxidant actions of BPA are supported by numerous in vivo and in vitro 
studies, while the antioxidant role has only been reported in vitro. Together, this evidence 

suggests that BPA induces oxidative stress over a range of doses, and further work is needed 

to identify radical species generated.

4. Depletion of cellular enzymatic and non-enzymatic antioxidants

The ROS generated by the metabolic processing of BPA may exceed the capacity of the 

intracellular antioxidant system. These enzymatic and non-enzymatic antioxidant systems 

play a critical role in maintaining redox homeostasis, addressing the reactive species 

generated by the mitochondrial electron transport, NADPH oxidases, xanthine oxidases, or 

cytochrome P450s [Valko et al., 2007]. Free radical scavengers, such as reduced glutathione, 

ascorbic acid, thioredoxins, and α-tocopherol, and enzymes, like superoxide dismutase 

(SOD), catalase (CAT), and glutathione peroxidase (GPx), play critical roles in redox 

reactions in the cell. Concentrations of these small molecules and expression levels of these 

enzymes determine the antioxidant capacity of cells, and several endpoints have been 

assayed after BPA exposure to determine its effect on antioxidant capacity.

The most common assays determine gene expression levels and activities of key enzymes 

(SOD, CAT, and GPx), determine the ratios of reduced and oxidized glutathione 
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(GSH:GSSG), or examine both enzymatic and non-enzymatic contributions at once by 

measuring the total antioxidant capacity (TAC) of a cell or tissue lysates. Exposure to high 

micromolar doses of BPA showed slight depletion of GSH (~10–30%) in INS-1, Sertoli, and 

mouse embryonic fibroblast cells, which correlated with observed increases in ROS 

[Gassman et al., 2015, Ge et al., 2014a, Xin et al., 2014]. While several studies have 

confirmed the induction of ROS with nanomolar doses of BPA, measurements of antioxidant 

capacities were not included in a majority of these studies [Huc et al., 2012, Koong and 

Watson, 2015, Moon et al., 2012, Pfeifer et al., 2015, Porreca et al., 2016]. GSH levels were 

examined after nanomolar dosing of Sertoli cells, and a 35% increase in GSH was observed, 

which was consistent with the lack of ROS detected at that dose [Ge et al., 2014a].

In animal studies, a range of BPA doses from µg/kg/bw to mg/kg/bw per day were shown to 

significantly reduce the TAC of a number of tissues and organs, including liver, pancreas, 

and testes [Hassan et al., 2012, Kalb et al., 2016, Moghaddam et al., 2015], and decreased 

activities of SOD, CAT, and/or GPx were also reported in brain, epididymal sperm, liver, 

kidney, pancreas, testes, and germ cells [Aydogan et al., 2008, Bindhumol et al., 2003, 

Chitra et al., 2003, Hassan et al., 2012, Jain et al., 2011, Kabuto et al., 2004, Kabuto et al., 

2003, Kalb et al., 2016, Moghaddam et al., 2015, Moon et al., 2012, Tiwari et al., 2012, Wu 

et al., 2013]. Levels of thiobarbituric acid reactive substances (TBARS) were also increased 

in the liver and testes after BPA exposure [Bindhumol et al., 2003, Kabuto et al., 2003, Kalb 

et al., 2016, Wu et al., 2013]. However, studies of ovarian tissue from newborn mice dosed 

with 0.1, 1, 5, and 10 µg/ml or mice dosed in utero with 0.5, 20, or 50 µg/kg/bw per day 

showed no significant changes in antioxidant enzymes, though transgenerational increases in 

SOD, CAT, and GPx were observed from the in utero BPA exposure [Berger et al., 2016, 

Zhou et al., 2015].

While it appears that the observed reduction in antioxidant activities correlates well with the 

induction of ROS by BPA over a variety of doses, as noted for ROS induction, alterations in 

the enzymatic and non-enzymatic antioxidant schemes appear to be highly cell, tissue, and 

organ specific. To further evaluate this effect and its dose-dependence, there is a significant 

need for more systematic inclusion of these endpoints in cell and animal studies.

5. Induction of DNA damage and cytotoxicity

ROS-induced cytotoxicity is a well-studied mechanism of action for drugs, toxins, and 

toxicants and is often mediated by the induction of reactive species and the depletion of 

antioxidant activities in cells [Deavall et al., 2012, Orrenius et al., 2011]. Generated ROS 

can damage cellular macromolecules, induce DNA strand breaks, base lesions, and DNA 

proteins cross-links, and these effects are further enhanced through the depletion of 

antioxidant pathways. In addition to producing ROS, the enzymatic processing of BPA by 

cytochrome P450 also generates the DNA-reactive quinone form of BPA, by a mechanism 

similar to how natural estrogens are metabolized into to catechol estrogen-3,4-quinones 

[Cavalieri and Rogan, 2010]. BPA-DNA adducts have been observed in vivo and in vitro 
after high dose exposure of BPA [Atkinson and Roy, 1995a, Atkinson and Roy, 1995b, 

Izzotti et al., 2009].
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High micromolar and millimolar doses of BPA have been reported to induce ROS, DNA 

damage and cytotoxicity in bone mesenchymal stem cells (hBMSC), hepatocytes, 

hepatocellular carcinoma (HepG2), neuronal cells (Neuro2a), and spermatogonia (GC-1) 

[Audebert et al., 2011, Leem et al., 2016, Nakagawa and Tayama, 2000, Ooe et al., 2005]. 

Induction of DNA strand breaks have also been observed in some studies at low nanomolar 

and micromolar doses of BPA, which are not cytotoxic [Fic et al., 2013, Gassman et al., 

2015, Pfeifer et al., 2015, Xin et al., 2014]. The induction of DNA strand breaks by BPA has 

been linked to the induction of ROS in several studies with the addition of antioxidants or 

specific protein inhibitors that reduce the generation of ROS, reducing the strand break 

signaling observed [Pfeifer et al., 2015, Xin et al., 2014]. However, induction of strand 

breaks by non-toxic doses of BPA is not observed in all cell lines, with Audebert et al. report 

that BPA exposure did not induce γH2AX signaling in HepG2 cells being frequently cited 

[Audebert et al., 2011]. While there are several possible explanations, including 

biotransformation difference, for the observed differences in strand break generation or 

signaling after BPA exposure, another possible explanation may be that BPA induces 

alterations in chromatin structure and/or DNA damage response and repair that effect the 

generation and signaling of breaks [Allard and Colaiácovo, 2010, Fernandez et al., 2012, 

Gassman et al., 2015, Porreca et al., 2016].

We recently reported that high micromolar doses of BPA promoted the transient compaction 

of chromatin and the down-regulation of key DNA repair proteins involved in the 

recognition and excision of oxidatively-induced DNA damage [Gassman et al., 2016]. 

Compaction was observed within 4 h of exposure and was resolved within 24 h [Gassman et 

al., 2016]. Other studies have also noted changes in chromatin methylation after BPA 

exposure [Doherty et al., 2010, Warita et al., 2013], and a number of studies have 

determined that BPA exposure can alter the expression levels of DNA damage response and 

repair proteins [Acharya et al., 1996, Allard and Colaiácovo, 2010, Betancourt et al., 2010, 

Fernandez et al., 2012, Naciff et al., 2002, Naciff et al., 2010, Porreca et al., 2016, Yin et al., 

2014]. Given that increases in ROS have been observed within 15 min of BPA exposure 

[Koong and Watson, 2015], rapid changes in chromatin compaction and methylation state 

may be occurring but have not been observed by the current literature. Examining changes in 

the chromatin state within 1–2 h of exposure and after longer exposure may help to reveal 

how epigenetic changes are induce by BPA.

Together these data suggest that the cytotoxicity and genotoxicity observed after BPA 

exposure may be linked to the generation of phenoxyl radicals and ROS [Babu et al., 2013, 

Fic et al., 2013, Gassman et al., 2015, Pfeifer et al., 2015, Sakuma et al., 2010]. Further, 

there is compelling evidence that BPA exposure may alter the recognition and repair of DNA 

damage, particularly oxidatively-induced DNA damage, through chromatin structure or 

modulation of DNA damage response and repair proteins [Gassman et al., 2016]. More 

studies are required to determine doses and durations that induce these effects and the 

consequences of these effects, since they could significantly contribute to the mutagenicity 

and genotoxicity of BPA.
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6. Mitochondrial dysfunction

Early work on BPA indicated that its cytotoxic mechanism may be mediated through 

inhibition of mitochondrial energy production [Nakagawa and Tayama, 2000]. Millimolar 

doses of BPA were shown to deplete intracellular ATP by inhibiting both NAD- and FAD-

linked respiration and uncoupling oxidative phosphorylation [Nakagawa and Tayama, 2000]. 

There is also growing evidence that nanomolar and micromolar doses of BPA accumulate in 

the mitochondria of cells and induces mitochondrial dysfunction [Chepelev et al., 2013, Ooe 

et al., 2005, Pfeifer et al., 2015]. The lipophilic nature of BPA may drive its accumulation 

into the mitochondrial membrane, though further work is required to validate the 

localization and potential interactions of BPA accumulated in mitochondria.

Several groups have specifically examined mitochondrial ROS and membrane potential after 

exposure. High micromolar doses were shown to increase mitochondrial ROS, particularly 

superoxide, in hBMSC, HepG2, Neuro2a, and GC-1 [Huc et al., 2012, Leem et al., 2016, 

Ooe et al., 2005]. Nanomolar doses of BPA also showed increased generation of ROS in 

mitochondria in HepG2, breast epithelial cells (184A1, ERα negative), and breast cancer 

cells (MCF7, ERα positive) [Huc et al., 2012, Pfeifer et al., 2015]. The increased ROS was 

typically observed for 24 h, though in the HepG2 study elevated mitochondria ROS was 

observed 48 and 72 h after exposure to extremely low nanomolar and picomolar doses of 

BPA [Huc et al., 2012], though these doses many be significantly higher than reported due to 

background contamination by BPA [Cao et al., 2010]. Further, superoxide production by the 

mitochondria was found to increase, contributing to cytosolic levels of ROS and driving lipid 

peroxidation [Huc et al., 2012].

Hyperpolarization of mitochondria was also observed over a range of BPA doses in HepG2 

cells [Huc et al., 2012] and at 10 nM dosing of Sertoli cells [Ge et al., 2014a]. Micromolar 

dosing of Sertoli cells with BPA resulted in less dense mitochondria with significant loss in 

membrane potential [Ge et al., 2014a]. Proteomic profiling, along with increased levels of 

ATP, in the Sertoli cells dosed with 10 nM BPA indicate that an increase in energy 

metabolism is promoted by BPA exposure [Ge et al., 2014a], which was hypothesized by 

Huc et al. to explain their observations in the HepG2 cells [Huc et al., 2012]. Proteomic 

profiling of colorectal cancer cells dosed with 10 nM BPA also support large scale changes 

in energy metabolism, though mitochondrial function was not specifically examined [Chen 

et al., 2015].

Mitochondrial outcomes have not been well investigated in animal models, though two 

reports indicate BPA exposure may alter mitochondrial function. Spermatozoa from male 

mice exposed to BPA via breast milk from dams receiving 3000 µg/kg bw per day BPA were 

found to have lower mitochondrial functionality [Kalb et al., 2016]. While mice exposed to 

0.05 and 1.2 mg/kg bw per day were shown to have reduced mitochondrial function, alter 

energy metabolism and impair autophagy in the liver [Moon et al., 2012].

BPA exposure has been implicated in cardiovascular disease, obesity, metabolic disorders, 

and diabetes [Gore et al., 2015, Kirkley and Sargis, 2014]. Given the evidence that low doses 

of BPA can alter superoxide production and mitochondrial integrity, further investigation 
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into the impact BPA exposure has on mitochondria is warranted. Particularly since 

mitochondria do not have the full suite of DNA repair pathways contained in the nucleus, 

mitochondria DNA damage, induced by ROS or BPA-DNA adducts, may induce mutations 

impacting mitochondria functions in exposed individuals or their offspring [Cline, 2012].

7. Cell signaling effects on ROS induction

While a comprehensive review of all the cell signaling changes that have been attributed to 

BPA exposure is beyond the scope of this review, it should be briefly noted that BPA 

exposure has been shown to alter cell signaling pathways that can be induced by ROS, 

contribute to the generation of ROS, or promote cell proliferation and pro-survival 

[Rochester, 2013, Watson et al., 2005]. In particular, activation of the mitogen-activated 

protein kinase (MAPKs), PI3K/AKT, and NF-κB pathways have been implicated in BPA-

induction of oxidative stress and inflammation response and are proposed to be mediated 

through the nuclear or membrane ER signaling mechanisms [Ge et al., 2014b, Vinas and 

Watson, 2013, Zhu et al., 2015]. Overactivation of these pathways has been linked to 

increased cell proliferation, up-regulation of pro-survival proteins, and increased migration 

and invasion in a number of cells, including breast, colorectal, ovarian, and prostate [Chen et 

al., 2015, Koong and Watson, 2015, Ptak et al., 2014, Rubin, 2011, Song et al., 2015, Tohme 

et al., 2014]. Additionally, gene expression changes in several important oncogenes, such as 

Myc and Stat3, have also been reported [Dairkee et al., 2013, Goodson et al., 2011, Pfeifer et 

al., 2015, Ptak et al., 2014, Weinhouse et al., 2015, Zhu et al., 2015], and knockdown of c-

Myc during BPA exposure was shown to reverse the induction of ROS and DNA damage 

[Pfeifer et al., 2015]. Conversely, studies that noted a reduction of ROS after BPA exposure 

observed an increase in Nrf proteins [Chepelev et al., 2013, Ponniah et al., 2015], and 

mRNA levels of heme oxygenase-1 (ho-1) and NAD(P)H Quinone Dehydrogenase 1 (nqo1) 

[Chepelev et al., 2013]. These changes indicated that BPA, when acting as an antioxidant, 

stimulated antioxidant response elements in the genome to protect cells from oxidative stress 

[Chepelev et al., 2013].

Further investigation of these cell signaling responses are required to better understand the 

balance between prooxidant and antioxidant roles of BPA, and the cell signaling changes 

that they produce. However, the strong pro-survival effects observed when BPA is co-dosed 

with other cytotoxic agents, like cisplatin, doxorubicin, X-rays, and KBrO3, may indicate 

that BPA can promote adaptive responses, using both its prooxidant and antioxidant 

properties, to ensure cell survival [Dobrzyńska and Radzikowska, 2013, Gassman et al., 

2016, Gassman et al., 2015, Lapensee et al., 2009].

8. Conclusions

A significant impediment for regulatory agency in evaluating BPA induced exposure effects 

is inconsistencies or contradictory findings. These may arise from issues with dosing, 

background contamination, the wide variety of cell culture or animal models used, or the 

various endpoints used. However, these inconsistencies or contradictory findings might also 

arise from the complexity and pleiotropic actions of BPA.

Gassman Page 10

Environ Mol Mutagen. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As illustrated here, BPA can induce complex oxidative stress effects in cells related to the 

estrogen receptor status [LaPensee et al., 2010, Yin et al., 2014], the presence of non-

classical estrogen receptors like ERRγ [Ge et al., 2014a, Ge et al., 2014b], and even in 

absence androgen receptors [Koong and Watson, 2015]. Additionally, cellular 

microenvironment appears to play a key role in BPA’s actions as well, with cells already 

experiencing stress from serum starvation or co-exposed to other genotoxic agents showing 

pro-survival [Dobrzyńska and Radzikowska, 2013, Gassman et al., 2016, Gassman et al., 

2015, Lapensee et al., 2009] and even antioxidant roles for BPA [Chepelev et al., 2013, 

Ponniah et al., 2015], which have not been observed in other cells lines or animal models.

While there still needs to be further and more rigorous study to establish the free radicals, 

key metabolites, and cellular conditions that induce oxidative stress from BPA exposure or 

even tip the balance toward a potential antioxidant role. Examination of the existing BPA 

literature, with a critical eye on dose, duration, and model system, reveals that there is 

growing and compelling evidence that a wide variety of BPA doses promote the generation 

of ROS, alter the antioxidant balance, induce mitochondrial dysfunction, and promote 

changes in a number of cell signaling pathways related to oxidative stress.

This clearly indicates that active, unconjugated BPA and its numerous metabolites have 

more significant exposure effects than originally considered. It further demonstrates that 

BPA’s induction of oxidative stress, whether it acts in concert with or independent of its 

endocrine disrupting properties, may produce a number of pleiotropic effects that may 

profoundly influence disease development, reproductive toxicology, and cancer.
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Abbreviations

8-OHdG 8-hydroxydeoxyguanosine

BPA bisphenol A

BPAG bisphenol A glucuronide

BPAS bisphenol A sulfate

CAT catalase

DCFDA dichlorodihydrofluorescein diacetate

DES diethylstilbestrol

DHE dihydroethidium

EDC endocrine disrupting chemical

ERα estrogen receptor α
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ERRγ estrogen-related receptor γ

GPER G-coupled protein receptors

GSH glutathione

GPx glutathione peroxidase

ho-1 heme oxygenase-1

LOAEL lowest-observed-adverse-effect level

MDA malondialdehyde

MAPK mitogen-activated protein kinase

nqo1 NAD(P)H Quinone Dehydrogenase 1

ROS reactive oxygen species

redox reduction and oxidation

SOD superoxide dismutase

TAC total antioxidant capacity

TBARS thiobarbituric acid reactive substances
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