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Abstract

Introduction—Preeclampsia is a leading cause of maternal and fetal mortality worldwide, yet its 

exact pathogenesis remains elusive.

Objectives—This study, nested within the Vitamin D Antenatal Asthma Reduction Trial 

(VDAART), aimed to develop integrated omics models of preeclampsia that have utility in both 

prediction and in the elucidation of underlying biological mechanisms.

Methods—Metabolomic profiling was performed on first trimester plasma samples of 47 

pregnant women from VDAART who subsequently developed preeclampsia and 62 controls with 

healthy pregnancies, using liquid-chromatography tandem mass-spectrometry. Metabolomic 

profiles were generated based on logistic regression models and assessed using Received Operator 
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Characteristic Curve analysis. These profiles were compared to profiles from generated using third 

trimester samples. The first trimester metabolite profile was then integrated with a pre-existing 

transcriptomic profile using network methods.

Results—In total, 72 (0.9%) metabolite features were associated (p<0.01) with preeclampsia 

after adjustment for maternal age, race, and gestational age. These features had moderate to good 

discriminatory ability; in ROC curve analyses a summary score based on these features displayed 

an area under the curve (AUC) of 0.794 (95%CI 0.700, 0.888). This profile retained the ability to 

distinguish preeclamptic from healthy pregnancies in the third trimester (AUC:0.762 (95% CI 

0.663, 0.860)). Additionally, metabolite set enrichment analysis identified common pathways, 

including glycerophospholipid metabolism, at the two time-points. Integration with the 

transcriptomic signature refined these results suggesting a particular role for lipid imbalance, 

immune function and the circulatory system.

Conclusions—These findings suggest it is possible to develop a predictive metabolomic profile 

of preeclampsia. This profile is characterized by changes in lipid and amino acid metabolism and 

dysregulation of immune response and can be refined through interaction with transcriptomic data. 

However validation in larger and more diverse populations is required.
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INTRODUCTION

Preeclampsia is a severe, pregnancy specific disorder characterized by new-onset 

hypertension and urinary protein after 20 weeks’ gestation. In the United States between 3–

7% of all pregnancies are affected, and worldwide, it remains a leading cause of maternal 

and fetal morbidity and mortality (Kuklina et al., 2009b, Kuklina et al., 2009a, Duley, 2009, 

Berg et al., 2009). Left untreated, preeclampsia can lead to maternal seizures, multi-organ 

failure, and death. It cannot be predicted and delivery is the only cure, yet the exact 

pathogenesis of preeclampsia remains elusive and no early-stage screening tests are 

available (Ahn et al., 2011).

Advancement of high-throughput technologies has enabled the investigation of the 

epigenetic, genomic, transcriptomic, proteomic and metabolomic variability underlying 

complex diseases and represents a novel opportunity for elucidating the biological 

underpinnings of preeclampsia. However, metabolomics is a largely untapped resource in 

this area (Allsworth et al., 2013). To date, metabolomic studies of preeclampsia have been 

limited in scope and size (Austdal et al., 2014, Bahado-Singh et al., 2013, Kenny et al., 

2010, Kuc et al., 2014, Odibo et al., 2011, Turner et al., 2008, Schott et al., 2012, Austdal et 

al., 2015, Bahado-Singh et al., 2015), and clinically translatable biomarkers remain elusive. 

Metabolomics provides perhaps the most integrated profile of biological status, as it reflects 

all of the preceding ‘omes’ and is indicative of phenotype and disease state (Bictash et al., 

2010). Therefore the metabolic profile of individuals who will develop preeclampsia is 

likely to have utility both in the identification of early preeclampsia biomarkers, and in 

furthering understanding of the early pathogenesis of the condition.
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Although individual omics platforms are powerful tools, a more global view of the multi-

stage disease process is available through integration of multiple ‘omics’, which are 

intrinsically hierarchical, from the genome to the metabolome. This integrative strategy has 

already successfully led to the discovery of novel disease pathways and biomarkers for 

complex diseases that would not have been identified through investigation of a single 

‘omics’ platform (Rhee and Gerszten, 2012, Wang et al., 2011, Rhee and Thadhani, 2011).

The aim of this study, nested within the Vitamin D Antenatal Asthma Reduction Trial 

(VDAART), was to develop predictive models of preeclampsia through metabolic profiling 

of prospectively-collected blood samples from early pregnancy in order to 1) identify 

women at risk of developing the preeclampsia prior to any clinical manifestations of the 

disease and 2) elucidate the biological mechanisms and pathways underlying preeclampsia 

development. The predictive profiles were tested in third trimester blood samples. They were 

then refined through integrating transcriptomic preeclampsia profiles with the metabolomic 

profiles to further explore pathogenesis. To the best of our knowledge this is the first study to 

integrate both metabolomics and transcriptomics in the study of preeclampsia, providing a 

novel systems biology perspective on this disorder.

MATERIALS AND METHODS

Study Population

VDAART is a multicenter, randomized, double-blind, placebo-controlled clinical trial 

examining whether vitamin D supplementation in pregnant women could prevent the 

development of pregnancy complications, such as preeclampsia, and diseases in their 

offspring (Litonjua et al., 2016). Briefly, women aged 18–40 years in their first trimester of 

pregnancy (10–18 weeks pregnant) were recruited from obstetric clinics from three centers 

in the United States: Boston University Medical Center in Boston, MA, Washington 

University in St. Louis, MO, and Kaiser Permanente Southern Region in San Diego, CA. 

Selection criteria included personal history of asthma and/or allergies or a partner with a 

history of asthma/allergies. The trial was approved by the Institutional Review Boards of the 

participating institutions and at Brigham and Women’s Hospital and is registered with 

ClinicalTrials.gov (NCT00920621). Written informed consent was obtained from all women 

at recruitment.

In total, 882 women were recruited and randomized to either the treatment arm (4000 IU/day 

of vitamin D3 plus a 400 IU vitamin D3 multivitamin) or to the placebo arm (multivitamin 

only). At trial entry baseline pre-supplementation vitamin D levels were measured, and 

blood serum, plasma, and RNA were obtained. The women were then followed throughout 

pregnancy for the development of complications. Preeclampsia was defined according to 

ACOG guidelines (ACOG, 2013) followed by an independent review. Controls were chosen 

from VDAART subjects matched on age (optimally within 5 years), gestational age at 

entrance into the study (optimally within 2 weeks), race, and center such that each case had 

1 or 2 matched controls; additional controls that were similar to the case population with 

respect to the matching factors were incorporated to enhance the range of vitamin D 

concentrations. Detailed data on possible confounding variables were also available.

Kelly et al. Page 3

Metabolomics. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Metabolomic Profiling

Profiling methods are described in detail in Online Resource 1. Briefly, profiling of 

metabolites was conducted at the Broad Institute (Massachusetts Institute of Technology, 

Cambridge, MA, USA) using four liquid chromatography-tandem mass spectrometry (LC-

MS) methods to measure complementary sets of metabolite classes: (1) HILIC-positive 

platform: Amines and polar metabolites that ionize in the positive ion mode using 

hydrophilic interaction liquid chromatography (HILIC) and MS analyses; (2) HILIC-

negative platform: Central metabolites (i.e. metabolites directly involved in the maintenance 

of the essential normal physiological processes of a biological system) and polar metabolites 

that ionize in the negative ion mode using HILIC chromatography with an amine column 

and targeted MS; (3) C8-positive platform: Polar and non-polar lipids using reversed phase 

chromatography and full scan MS; (4) C18-negative platform: Free fatty acids, bile acids, 

and metabolites of intermediate polarity using reversed chromatography with a T3 UPLC 

column (C18 chromatography) and MS analyses in the negative ion mode.

LC-MS system sensitivity and chromatography quality were checked prior to analysis by 

analyzing reference samples. Internal standard peak areas were monitored for quality control 

during the analyses. A pooled reference sample was analyzed throughout the analytical run 

as an additional quality control measure and to serve as reference for scaling raw LC–MS 

peak areas across sample batches.

Features were indexed by their mass-to-charge ratio (m/z) and retention time (rt) and 

metabolite identities were confirmed using known standards. Metabolite features with a 

signal-to-noise ratio <10 were considered unquantifiable and excluded, as were features with 

undetectable/missing levels for >10% of the samples. All remaining missing values were 

imputed with the median peak intensity for that feature. Features with a coefficient of 

variance in the quality-control samples greater than 25% across all batches were excluded to 

ensure good technical reproducibility.

Data Analysis

Metabolite features were analyzed as measured LC-MS peak areas, which are proportional 

to feature concentration. All features were log transformed to normalize them and pareto-

scaled to reduce the variation in fold-change differences between the features, and to make 

the effect estimates for each feature comparable. Independent unconditional logistic 

regression models adjusting for maternal age and race, study site, and gestational age 

(weeks) were run for each feature using the blood samples extracted at 10–18 weeks’ 

gestation. Additional models including pre-pregnancy body mass index (BMI) as a further 

covariate were also explored.

The ability of the significant metabolite features from each platform to prospectively 

distinguish women who developed preeclampsia from those who did not was assessed using 

a Receiver Operator Characteristic (ROC) curve. The area under the curve (AUC) of a 

baseline model including the confounding variables was compared to models additionally 

including baseline serum vitamin D level and pre-pregnancy BMI, as suspected predictors of 
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preeclampsia, and those including a summary score based on principal component analysis 

of the selected features.

Metabolomic profiling was additionally performed on plasma samples taken at 32–38 weeks 

gestation to identify metabolites that distinguished pregnant women who developed 

preeclampsia from those who remained healthy in the third trimester. The crossover between 

the significant features at the two time-points was computed to determine whether those 

metabolites identified in the first trimester retained their predictive ability for preeclampsia 

in the third. Metabolite set enrichment analyses using the known metabolites and performed 

with MetaboAnalyst v.2.5 (Xia et al., 2015) was used to explore whether the same pathways 

were dysregulated at the two time-points. The hypergeometric test was specified for the 

over-representation analysis and relative-betweenness centrality for the pathway topology 

analysis.

Integrative Omics

A subset of the metabolomics population also had genome-wide gene expression profiles 

available. Previous analyses of these data identified 2232 probes corresponding to 1632 

genes that were differentially expressed in the first trimester blood samples of women who 

went on to develop preeclampsia compared to healthy controls (Mirzakhani et al., 2016) 

(Online Resource 1).. To better understand the biology underlying the predictive 

metabolomic profiles and to provide a more holistic view of the pathogenesis of 

preeclampsia, the significant genes and metabolite features were integrated using weighted 

gene correlation network analysis (WGCNA) (Langfelder and Horvath, 2008). WGCNA 

employs a systems biology approach to describe correlation patterns in high dimensional 

datasets and to generate modules based on these correlations. By interrogating the genes and 

metabolites comprising these modules, the interplay between the transcriptome and the 

metabolome in the development of preeclampsia can be explored. To account for fold-

differences between the genes and the metabolites, normalized but unscaled metabolomic 

intensity levels and normalized transcriptomic expression levels were pareto-scaled together 

to form the analytical dataset. Using hierarchical clustering based on topological overlap and 

applying a soft thresholding power of 2 (chosen to achieve a scale-free topology fitting index 

>0.9), the interconnectedness between the genes and metabolites was quantified (Online 

Resource 1).

RESULTS

Baseline Cohort Characteristics

During follow up of the VDAART trial, 67 eligible cases of preeclampsia were diagnosed 

and 110 matched controls selected. Of these, 47 cases (70%) and 62 controls (56%) had 

metabolomic profiling on plasma samples extracted at baseline (first trimester), and in the 

third trimester (five cases did not have a blood sample available at the third trimester). Five 

(11%) cases were classified as early onset preeclampsia (diagnosed <34 weeks gestation) 

and 42 (89%) as late onset preeclampsia (diagnosed ≥34 weeks gestation).
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Within this ‘metabolomics population’, 44 cases and 57 controls also had transcriptomic 

profiling performed. These 101 women were termed the ‘integrative omics population’. 

Baseline characteristics were compared between women who went on to develop 

preeclampsia and those with healthy pregnancies, in both the ‘metabolomics population’ and 

the ‘integrative omics’ population (Table 1). Women who developed preeclampsia had a 

higher BMI prior to pregnancy than controls (metabolomics population; p=0.01, integrative 

omics population; p=0.027); however there were no other significant differences between the 

preeclamptic and healthy pregnancies.

Metabolomic Profiling

Development of Predictive Models for Preeclampsia Using First Trimester 
Samples—Metabolic profiling yielded a total of 18,060 LC-MS peaks, distinguished by 

their m/z ratio and rt and hereafter referred to as metabolite features. After data processing 

and quality control filtering, 8099 metabolite features remained (Fig 1). In total, 484 features 

(6.0%) were significantly associated with the risk of preeclampsia at a nominal 95% 

confidence level adjusting for maternal age and race, study site, and gestational age (Table 

2). Of these, 377 were upregulated in preeclampsia cases and 107 were downregulated.

The C8-positive platform (polar and non-polar lipids), included the greatest percentage of 

features (n=215 (7.6%)) significantly associated with preeclampsia risk (Online Resource2: 

Table S1). The m/z ratio and retention time of all 484 features are shown in Online Resource 

3: Fig S1. Within the platforms, a number of features had almost identical m/z ratios and 

retention times, and it can be speculated that such features may in fact represent ions or 

adducts of the same metabolites. The top annotated features included Cohibin A (OR [p-

value]: 4.52 [6.7×10−4]), 16-alpha-Hydroxypregnenolone (OR [p-value]: 11.89 [9.5×10−4]), 

and a number of phosphocholines. Seventy-two features (0.9%) (58 upregulated, 14 

downregulated) retained significance at the more stringent threshold of p<0.01 (Online 

Resource2: Table S2) and were used to create a predictive model for preeclampsia, which 

was assessed using ROC curve analyses (Table 2). The first principal component of these 72 

features explained 37% of the variance in the data. When this principal component was 

included as a model predictor, ROC analysis (model3 AUC: 0.752 (95%CI 0.658, 0.846)) 

showed that it significantly (p=0.006) outperformed a baseline model including mother’s 

age, race, site, and gestational age (model 1 AUC: 0.573 (95%CI 0.463, 0.682)) (Fig 2). Pre-

pregnancy BMI, which was significantly associated with risk in this population, and serum 

vitamin D levels have both previously been shown to predict preeclampsia risk (Achkar et 

al., 2015, Hyppönen et al., 2013, Bodnar et al., 2014, O’Brien et al., 2003). Therefore 

models that additionally included pre-pregnancy BMI and baseline serum vitamin D 

(deficient at <30ng/ml versus sufficient at ≥30ng/ml) (model 2 AUC: 0.731 (95%CI 0.624, 

0.838) were compared. Although the inclusion of these predictors increased the AUC 

relative to model1, it was to a lesser extent than the metabolite model3. The highest AUC for 

the prediction of preeclampsia was achieved when including pre-pregnancy BMI, baseline 

serum vitamin D levels and the metabolite principal component (model4): AUC: 0.794 (95% 

CI: 0.700, 0.888), and this model had a significantly higher AUC than both model1 (p 

difference=0.006) and model2 (p difference=0.048)..
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Pre-pregnancy BMI adjusted models: When pre-pregnancy BMI was additionally 

included in the logistic regression model a total of 265 features (3.3%) were significantly 

associated with the risk of preeclampsia at a nominal 95% confidence level; 179 were 

upregulated in preeclampsia cases and 86 were downregulated. The largest proportion of 

features (n=97 features) were from the C18-negative platform: free fatty acids, bile acids, 

and metabolites of intermediate polarity. In total 178 of the 484 features from the initial 

analyses were robust to additional adjustment for pre-pregnancy BMI. Those that did not 

retain significance included a large number of mono-, di- and tri- acylglycerols. Crucially, 

among the 72 most significant features from the initial model, 58 (81%) were robust to 

additional adjustment, including Cohibin A, 16-alpha-Hydroxypregnenolone, 

phosphocholines, tocopherols and amines (Online Resource2: Table S2). A predictive model 

based on these 58 metabolites displayed similar predictive power to the 72-metabolite 

model. It outperformed the baseline model and had a higher AUC than the model including 

pre-pregnancy BMI and serum vitamin D (Online Resource2: Table S3).

The results were also similar when baseline vitamin D status (<30ng/ml versus ≥30 ng/ml) 

and the study arm (intervention or placebo) were included as covariates in the logistic 

regression model (results not shown).

Preeclampsia Signatures in the Third Trimester Samples—Matched metabolite 

profiling of blood samples in the same women, taken during the third trimester of pregnancy 

(32–38 weeks gestation), identified 502 metabolite features with differential intensity levels 

by preeclampsia status (p<0.05); 85 of these retained significance at a p<0.01 threshold 

(Online Resource2: Table S4). At the time of third trimester sampling, one woman had been 

diagnosed with preeclampsia; the remaining cases were diagnosed subsequently and prior to 

delivery. Seventy-four (15%) of these 502 features were among those identified in the 

analysis of the first trimester samples, including 31 annotated metabolites. When a summary 

score was computed using the 72 metabolite features most strongly associated with 

subsequent preeclampsia (p<0.01) in the first trimester of pregnancy, there was a significant 

relationship between the metabolite principal component and preeclampsia status in the third 

trimester, after adjustment for maternal age, race, gestational age, site and pre-pregnancy 

BMI (OR: 0.89 95%CI 0.790.99 (p=0.033)). Furthermore, the same metabolites included in 

the model from the first time-point remained predictive at the later pregnancy time-point. 

When compared to a baseline model (maternal age, race, site and gestational age - model 1: 

AUC 0.578 [0.468–0.692]), the inclusion of current vitamin D status and pre-pregnancy 

BMI increased discriminatory ability (model 2: AUC 0.715 [0.605, 0.825]). But this increase 

only reached statistical significance when the first trimester metabolite signature was also 

included (model 4: AUC 0.762 [0.663, 0.860]), p=0.018. (Online Resource 3: Fig S2). These 

results indicated that a prediagnostic predictive preeclampsia metabolomic signature was 

present at 10–18 weeks gestation and was also able to distinguish preeclamptic from healthy 

pregnancies at 32–38 weeks gestation. This provides both some measure of replication as 

well as helping to elucidate a temporal pattern of the pathogenic changes associated with 

preeclampsia.
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Pathway Analysis of Metabolite Profiles From First and Third Trimesters—To 

elucidate the biological context and significance of the metabolites, the pathways enriched at 

10–18 weeks and those at 32–38 weeks were compared. Only 174 of the 484 significant 

(p<0.05) features from the first trimester and 53 of the 502 from the third could be annotated 

to known metabolites, and were available for metabolite set enrichment analysis. Enrichment 

was determined using Metaboanalyst defaults, all pathways with a nominal p-value<0.5 are 

reported (Table 3). Twelve pathways were common to metabolite profiles from both first and 

third trimesters including ‘glycerophospholipid metabolism’, ‘alanine, aspartate and 

glutamate metabolism’, ‘beta-alanine metabolism’, ‘butanoate metabolism’ and ‘arginine 

and proline metabolism’.

Integrated Omics

A dataset containing 484 significant metabolites and 1632 significant genes was created. 

WGCNA of this dataset resulted in five gene-metabolite modules; the seven genes and 

metabolite features that could not be assigned to any of these co-regulated modules were 

excluded (grey module). The five modules were summarized by their eigenvalues (i.e., the 

first principal component of variability among all module members) and four (black, brown, 

green, yellow) were significantly associated with preeclampsia after adjustment for maternal 

age and race, study site, and gestational age. (Online Resource 2: Table S5).

Co-regulated modules are often enriched for disease-relevant biological functions (Allen et 

al., 2012); therefore, within each module the genes whose expression levels were 

significantly correlated (p<0.05) with the intensity levels of the known metabolites were 

identified (Supplemental Table S6). The significant genes were submitted for GeneOntology 

(GO) analysis (http://geneontology.org/page/go-enrichment-analysis) to identify related 

biological processes (Table 4). These analyses implicated distinct biological processes 

within the modules all of which contribute to the pathophysiology of preeclampsia; 

including immune processes (brown and green), amino acid metabolism (black), and 

processes relating to the circulatory system and homeostasis (yellow). These results 

provided further biological context for the pathways identified in the metabolomics profiling 

analyses.

DISCUSSION

In this study a predictive metabolite signature of preeclampsia based on first trimester blood 

samples was generated. This signature had moderate-to-good discriminatory ability, and 

retained the ability to discriminate between preeclamptic and normal pregnancies in the third 

trimester. The integration with transcriptomic data provided a deeper understanding of the 

biology underlying this signature. To date, the pathophysiology of preeclampsia and its 

temporal pattern of manifestation in pregnancy are largely unknown, and there are currently 

no predictive biomarkers or screening tests. The findings from this study will help to address 

these challenges and to minimize the public health burden of this condition.

Metabolomic profiling is an underused resource in the study of preeclampsia. Nevertheless, 

there is great promise for metabolomics in preeclampsia investigations. Metabolites that 

differ between preeclamptic and healthy pregnancies and between late- and early-onset 
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preeclampsia have been identified in blood and urine (Austdal et al., 2014, Bahado-Singh et 

al., 2013, Kenny et al., 2008, Koster et al., 2015, Kuc et al., 2014, Turner et al., 2008, Schott 

et al., 2012). Furthermore, predictive metabolite profiles of preeclampsia with high 

sensitivity, specificity (Kenny et al., 2005, Bahado-Singh et al., 2012) and predictive power 

(Koster et al., 2015, Odibo et al., 2011, Kenny et al., 2010), have been reported.

In this study, plasma levels of 72 measured metabolite features in first trimester blood 

samples were observed to differ significantly between women who remained healthy and 

those who went on to develop preeclampsia. Previously reported associations between 

preeclampsia with phosphatidylcholine (Schott et al., 2012), sphingosine-1-phosphate, 

glycerides (Kenny et al., 2010) and phenylalanine derivatives (Odibo et al., 2011) were 

validated in this study (with at least nominal significance). Other significant metabolite 

associations from the literature, including carnitines (Odibo et al., 2011, Koster et al., 2015), 

taurine (Kuc et al., 2014), arginine (Bahado-Singh et al., 2015) and histidine (Turner et al., 

2008) were not replicated. Further previously reported metabolites such as xylitol and 2-

hydroxy-3-methy-butanoic acid (Kenny et al., 2008) could not be neither confirmed nor 

refuted as it is unknown whether they are represented among the significant but unannotated 

features. The majority of significant features were polar and non-polar lipids (based on 

platform) however only 40% could be annotated to known metabolites. Pathway analysis 

was therefore limited but did identify a number of enriched metabolic pathways, which both 

strengthened the evidence for previously implicated pathways, such as sphingolipid 

(Melland-Smith et al., 2015) and linoleic acid (Robinson et al., 2009) metabolism, while 

suggesting novel pathways with biological plausibility.

Overall, the findings implicated altered lipid metabolism in the pathology of preeclampsia; 

glycerophospholipid, arachidonic acid and glycerolipid metabolism as well as fatty acid 

biosynthesis were among the top enriched pathways. Abnormalities of lipid metabolism are 

a recognized feature of preeclampsia and are thought to contribute through endothelial 

dysfunction leading to vascular remodeling and atherosclerosis (Demir et al., 2011, 

Robinson et al., 2009). Sphingolipid metabolism may play a particularly important role 

throughout preeclampsia development, as sphingolipids are the primary components of cell 

membranes and act as signaling molecules that regulate a diverse range of cellular processes 

central to immunity and inflammation. They are major components of lipoproteins, which 

when disrupted have been shown to cause the endothelial dysfunction that can result in 

hypertension and proteinuria – two of the hallmarks of preeclampsia (Winkler et al., 2003). 

Lipoproteins were not measured in this study – but these findings suggesting more targeted 

analysis of the metabolites involved in lipoprotein and specifically sphingolipid metabolism 

may provide a deeper understanding of preeclampsia pathogenesis. Pathways of 

carbohydrate metabolism including Glycolysis/Gluconeogenesis, pentose phosphate and 

butanoate metabolism were also enriched in the first trimester blood samples, suggesting a 

potential role for these processes in early preeclampsia development. Furthermore, pathways 

of alanine, aspartate and glutamate metabolism were enriched, which is concordant with 

previous studies reporting an association of glutamate and alanine (Kenny et al., 2008, 

Odibo et al., 2011) with preeclampsia. Glutamate and alanine may be released by immune 

cells, while ischemia (a feature of preeclampsia) results in an increase in glutamate uptake 

and alanine release. The enrichment of galactose metabolism in these results may relate to 
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the altered metabolic and nutritional status which occurs during pregnancy. Additional 

studies are needed to further elucidate the roles of all the specific metabolites and pathways 

identified in this study in the pathogenesis of preeclampsia.

The identified features were found to have the ability to distinguish between women who 

develop preeclampsia and those who remained healthy, by developing a metabolomic profile 

based on a summary score. Although an independent replication population was not 

available to test the validity of this profile, it did retain predictive power to distinguish 

preeclampsia cases in their third trimester of pregnancy. This could be interpreted to 

demonstrate that during the multistage evolution of preeclampsia, a number of key 

metabolites retain their importance. Further, the pathway level replication between the two 

time-points may provide evidence that, although the exact metabolites differ, key pathways 

are dysregulated and their downstream products may be identified in the later stages of 

preeclamptic pregnancies. A number of the metabolites and pathways identified at this later 

time-point are also among those currently reported in the literature, which likely reflects the 

fact that many of the existing studies are case-control in design and therefore may be 

capturing metabolites downstream of the predictive signature identified in this study. 

However, it must be noted that the two set of blood samples were extracted from the same 

individuals, therefore similarities in their profiles are to be expected and these results must 

be interpreted with caution.

The summary score based on these features outperformed serum vitamin D. Vitamin D 

deficiency is thought to play an important role in the pathophysiology of preeclampsia due 

to its involvement in immunomodulation and placental development (Novakovic et al., 

2009), and has previously been shown to be a predictor of risk (Bodnar et al., 2014, 

Hyppönen et al., 2013, Achkar et al., 2015). The metabolite score also outperformed pre-

pregnancy BMI. In this population a higher BMI prior to pregnancy was associated with an 

increased risk of preeclampsia, in agreement with the current literature (Demir et al., 2011). 

However It is of interest that a number of the preeclampsia-metabolite associations observed 

in this study appeared to be driven by BMI; in particular, the associations with multiple 

forms of glycerols – the production of which have been shown to increase in obese 

individuals (Stunff and Bougnères, 1992).

WGCNA was performed to identify modules of genes and metabolites with highly 

correlated expression and concentration levels suggesting common regulation and 

biologically relevant associations. Only one of the preeclampsia WCNA modules; the black 

module, was associated with pre-pregnancy BMI, suggesting that the genes and metabolites 

of this module may be specifically involved in BMI mediated preeclampsia. mTORC1 
signaling, which regulates cellular responses and is implicated in obesity-related conditions, 

was enriched in this module. This module also contained multiple sphingomyelins, which 

are involved in both intra- and extracellular transport, one of the other processes enriched 

among the genes of this module. Further this module contained a number of amino acids, 

and genes enriched for amino acid transport and metabolism. This points to an additional 

potential utility of this network based analysis; identifying etiologically relevant associations 

with suspected preeclampsia risk factors, while disentangling the various mechanism 

through which preeclampsia may develop.
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The brown module identified co-regulation between genes involved in the immune response 

with triglycerides, diglycerides, phosphotidylcholines and myoinsitol. This is supported by a 

known link between glyceride levels and immune function (Barcia and Harris, 2005). In 

particular there is evidence for biologically important relationships between inositol, 

diacylglycerols and triacylglycerols with cytokines (Tsuchiya et al., 2015, Kiely et al., 2007, 

Smith et al., 2007) that may explain their role in preeclampsia. While phosphatidylcholine 

has been found to have anti-inflammatory effects in other disease systems (Treede et al., 

2007). Further support for a meaningful interaction between the genes and metabolites of 

this module comes from the fact that several of the identified genes, such as AOC3 and 

CDS2, have been shown to directly regulate triglyceride and phosphotidyl levels.

The yellow module included a single annotated metabolite; gamma-Aminobutyric acid 

(GABA). This neurotransmitter has been linked to a number of the key pathogenic processes 

in preeclampsia (Konijnenberg et al., 1997, Brown, 1995) including hemostasis, coagulation 

and platelet aggregation (Tyurenkov et al., 2014, Kaneez and Saeed, 2009), and homeostasis 

(Fregoneze, 2014). These processes were enriched among the identified genes. These 

findings again point to a mechanistically meaningful module with a biologically plausible 

link to preeclampsia risk.

Overall these findings suggest the importance of immune function, amino acid metabolism 

and the regulation and control of cardiovascular system in the pathology of preeclampsia. 

Crucially, the integration with transcriptomic data allowed the refinement of the set of 

significant metabolites, differentiating the mechanisms of preeclampsia pathogenesis into 

distinct modules. This provided a deeper understanding of the biology underlying the 

identified predictive signature than could be achieved with the metabolome alone. On a 

broader level, the identification of biologically meaningful and functionally relevant 

modules containing both genes and metabolites provides definitive evidence of a 

relationship between the metabolome and transcriptome that can be captured using systems 

biology approaches, and supports the utility of integrative omics in the study of complex 

disorders.

There were a number of limitations to these analyses. Due to sample size, findings were not 

stratified by parity or preeclampsia onset. As the ultimate aim of such analyses is to develop 

predictive clinically-translatable and minimally invasive biomarkers of preeclampsia; blood 

was chosen as the biological medium rather than placental tissue. The use of non-fasting 

plasma samples may have affected the measured metabolite features, and only a small 

proportion of these features could be annotated. However the ROC analyses including only 

the known metabolites demonstrated comparable discriminatory ability, and all pathway 

analyses were performed based on the known metabolites alone. Finally, a number of the 

reported results would not be robust to correction for multiple testing, rendering false 

positive findings a possibility. However, many FDR methods are considered too stringent for 

metabolomics analysis, due to the high correlation and redundancy between metabolite 

features, and there is a lack of agreed-upon standards in the field (Chadeau-Hyam et al., 

2010). In order to minimize the impact of false positive findings on the conclusions, 

differing nominal p-values and potential confounders were explored, and replication of the 

findings at two different pregnancy time-points was attempted. It should be noted that a large 
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number of the significant metabolites are likely to be related based on their mass-to-charge 

ratio and retention times, and given the biological relevance of the findings confidence can 

be placed in the results.

The generalizability of this population must also be taken into account. Subjects were 

recruited into VDAART on the basis of a maternal or paternal history of asthma or allergic 

rhinitis, and almost 60% of participants in this study reported a history of asthma. Maternal 

asthma has been reported to increase the risk of preeclampsia by more than 50% (Murphy et 

al., 2011). However there was no significant difference in the proportion of asthmatics 

between cases and controls, therefore this is unlikely to have induced spurious findings. 

Nevertheless a number of the metabolites and pathways identified in this study, and the 

dysregulation in amino acid metabolism, lipid metabolism and in immune processes 

implicated by these findings have also been observed in metabolomics studies of asthma 

(Kelly et al., 2016). Interrogation of metabolomics findings offers the potential to gain a 

better understanding of the common pathogenesis of these disorders. Nevertheless in such 

high dimensionality the possibility of false potivies and the generalizability of the findings 

requires further exploration. Ultimately, validation of the reported findings will only be 

possible through the use of a larger independent cohort.

CONCLUSIONS

The findings from this unique prospective cohort support the role of metabolomics and 

integrated omics in the study of preeclampsia. A metabolomic profile based on blood 

samples extracted in early pregnancy was able to predict the risk of subsequent 

preeclampsia. The interrogation of this signature identified biologically relevant pathways, 

particularly those involved in lipid imbalance. Through the integration of transcriptomic 

data, these results were further refined to suggest that the roles of lipids in immune function 

were among the biggest contributors to the pathogenesis of preeclampsia. The findings 

require independent replication to eliminate the impact of false positive findings, but those 

that can be validated have the potential to support clinical translation both through candidate 

biomarkers and candidate therapeutic targets. Results from transcriptomics both confirm and 

expand upon the results of the metabolomic analyses; fulfilling the fundamentally important 

knowledge gap between genetics, genomics and disease, and demonstrate that metabolomic 

and transcriptomic profiling can be integrated in a biologically meaningful way.
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Abbreviations

AUC Area Under the Curve

FDR False Discovery Rate

HILIC Hydrophilic Interaction Liquid Chromatography

LCMS Liquid Chromatography Mass Spectroscopy

UHPLC Ultra High Performance Liquid Chromatography

m/z mass-to-charge ratio

RT retention time

OR odds ratio

CI confidence interval
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Fig 1. 
Overview of metabolomic profiling quality control

QC – Quality control; CV – Coefficient of Variance
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Fig 2. 
Receiver operating characteristic curves evaluating metabolomic profiling models ability to 

distinguish preeclampsia cases and controls

AUC – Area under the Curve
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Table 2

Summary of the metabolomic profiling analyses of early pregnancy samples based on four profiling platforms

Analysis Metabolite features (n=8099)

Logistic regression modela n (%) significant features

 p<0.05 484 (6.0%)

 p<0.01 72 (0.9%)

 p<0.001 2 (0.02%)

ROC analysisb AUC Model 1 (95% CI) 0.573 (0.463, 0.682)

AUC Model 2 (95% CI) 0.731 (0.624, 0.838)¥

AUC Model 3 (95% CI) 0.752 (0.658, 0.846)¥

AUC Model 4 (95% CI) 0.794 (0.700, 0.888)¥

a
Logistic regression model adjusting for maternal age and race, study site, and gestational age (wks)

b
Model1– mother’s age, race, site, and gestational age

Model2 – model1+ serum vitamin D at baseline (<30ng/ml or ≥30ng/ml)+ pre-pregnancy BMI

Model3 – model1+ Principal component1

Model4 – model1+ serum vitamin D at baseline (<30ng/ml or ge;30ng/ml) + pre-pregnancy BMI+ Principal component1

¥
Significantly (p<0.05) different to model 1

∞ Significantly (p<0.05) different to model 2

Ω Significantly (p<0.05) different to model 3

ROC; Receiver Operator Characteristic; AUC – Area Under the Curve; CI – Confidence Interval
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Table 3

Metabolite set enrichment analysis of significant metabolite features identified in early and late gestation

Biological pathway 10–18 weeks gestation (p-value) 32–38 weeks gestation (p-value)

Glycerophospholipid metabolism* 0.002 0.024

Sphingolipid metabolism* 0.050 4.2×10−4

beta-Alanine metabolism* 0.061 0.012

Phenylalanine, tyrosine and tryptophan biosynthesis 0.156

Fatty acid biosynthesis 0.158

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 0.186

Linoleic acid metabolism* 0.198 0.090

Arachidonic acid metabolism* 0.227 0.325

Taurine and hypotaurine metabolism 0.255

Primary bile acid biosynthesis 0.257

Alanine, aspartate and glutamate metabolism* 0.298 0.009

Pantothenate and CoA biosynthesis* 0.328 0.156

alpha-Linolenic acid metabolism* 0.348 0.167

Glycolysis or Gluconeogenesis 0.367

Glycerolipid metabolism 0.376

Pentose phosphate pathway 0.376

Butanoate metabolism* 0.446 0.025

Galactose metabolism 0.454

Phenylalanine metabolism* 0.486 0.247

Lysine degradation 0.501

Glycine, serine and threonine metabolism* 0.508 0.261

Arginine and proline metabolism* 0.682 0.081

Aminoacyl-tRNA biosynthesis 0.379

Citrate cycle (TCA cycle) 0.118

Nicotinate and nicotinamide metabolism 0.029

Nitrogen metabolism 0.218

Tryptophan metabolism 0.395

Includes all pathways with a nominal p-value <0.5

*
Enriched at both time-points
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Table 4

Preeclampsia associated WGCNA modules: For each module the annotated metabolites, the number of within 

module genes they are associated with and the biological processes these genes are enriched for are shown

Module Metabolites Enriched Gene Ontology Processes

Black (+/−)-trans- and cis-4,8-Dimethyl-3,7-nonadien-2-ol; (ent-2b,4S,
9a)-2,4,9-Trihydroxy-10(14)-oplopen-3-one 2-(2-methylbutanoate) 9-(3-
methyl-2E-pentenoate); 1-Methyl-2-pyrrolecarboxaldehyde; 13-Carboxy-
gamma-tocopherol; 13-Hydroxy-gamma-tocopherol; 2-
Deoxycastasterone; 2-Phenylethyl octanoate; 2,4-Dimethylpyridine; 
5,8,11-Eicosatrienoate; 6-Deoxocastasterone; 6alpha-
Hydroxycastasterone; 9-POHSA; multiple Sphingomyelins; C38:8 PC; 
Ganoderiol C; Momordol; Notoginsenoside R10; Pelletierine; 
Prostaglandin E2; tetradecyl sulfate; Tetrahydrocortisol; 
Trihydroxycoprostanoate; Tyramine; Uracil; xi-4,5-Dihydro-2,4(5)-
dimethyl-1H-imidazole

n=99 genes
detection of chemical stimulus involved in sensory 
perception of taste
negative regulation of viral genome replication
benzene-containing compound metabolic process
regulation of viral genome replication
arginine catabolic process to proline
arginine catabolic process to proline via ornithine
extracellular amino acid transport
extracellular transport
TORC1 signaling
mitochondrial mRNA 3′-end processing

Green

Bergaptol

n=5 genes
regulation of complement activation, alternative 
pathway
negative regulation of complement activation, 
alternative pathway
regulation of complement activation, classical 
pathway
negative regulation of complement activation, 
classical pathway
protein C-linked glycosylation via 2′-alpha-
mannosyl-L-tryptophan
protein C-linked glycosylation via tryptophan
peptidyl-tryptophan modification
protein C-linked glycosylation
negative regulation of humoral immune response 
mediated by circulating immunoglobulin
regulation of humoral immune response mediated by 
circulating immunoglobulin

Yellow GABA n=43 genes
platelet degranulation
regulated exocytosis
exocytosis
secretion by cell
regulation of leukocyte migration
regulation of hemostasis
regulation of blood coagulation
regulation of coagulation
regulation of cell motility
secretion

Brown (2E,6E)-2,6-Nonadienal; (Z)-5-[(5-Methyl-2-thienyl)methylene]-2(5H)-
furanone; 1-(10-methylhexadecanyl)-2-(8-[3]-ladderane-octanyl)-sn-
glycerophosphocholine; 1-Octene; 1-Stearoylglycerophosphoglycerol; 13-
HOTE; 16-alpha-Hydroxypregnenolone; 2-Ethyl-4-methyloxazole; 2-
Keto-6-aminocaproate; 2-Keto-6-aminocaproate; 3-Hydroxy-10-apo-b,y-
carotenal; 35S-Methylokadaic acid 7-hexadecanoate; 4-oxo-Retinoic acid; 
5-(10-Nonadecenyl)-1,3-benzenediol; 5-Hydroxyisourate; 7-Ethoxy-4-
methyl-2H-1-benzopyran-2-one; 9-Carboxymethoxymethylguanine; 
Allitridin; Allodesmosine; Artemoin A; Biliverdin; multiple 
Lysophosphatidylcholines; multiple choline esters; multiple ceremides; 
multiple mono-, di- and tri-acylglycerols; multiple phosphatidylcholines; 
multiple phosphatidylinositol; multiple phosphatidylethanolamines; 
multiple phosphoserines; Caprate; Caprylic acid; Chloramphenicol; 
Chlormezanone; Cohibin A/C; Dimethamine; fructose/glucose/galactose; 
Furaneol; Isovalerylalanine; L-2-Amino-3-methylenehexanoic acid; 
Lutein; m-Chlorohippurate; Mabioside D; Montecristin; N-Nitroso-3-
hydroxypyrrolidine; N-Phenylacetylphenylalanine; PGP(18:0/22:5(4Z,7Z,
10Z,13Z,16Z)); Phenylethylamine; Quinoline; Saccharin; Sertaconazole; 
Sphingosine 1-phosphate (d16:1-P); Taurocyamine; Terpenyl isovalerate; 
Terpinolene oxide; Terpinyl isobutyrate; Triclosan

n=792 genes
defense response
immune response
inflammatory response
innate immune response
response to stress
immune system process
response to other organism
response to external biotic stimulus
response to biotic stimulus
cellular response to other organism

WGCNA – weighed gene co-expression correlation analysis
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