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e Background and Aims Morphological traits in combination with metabolite fingerprinting were used to investi-
gate inter- and intraspecies diversity within the model annual grasses Brachypodium distachyon, Brachypodium sta-
cei and Brachypodium hybridum.

e Methods Phenotypic variation of 15 morphological characters and 2219 nominal mass (m/z) signals generated
using flow infusion electrospray ionization—mass spectrometry (FIE-MS) were evaluated in individuals from a total
of 174 wild populations and six inbred lines, and 12 lines, of the three species, respectively. Basic statistics and
multivariate principal component analysis and discriminant analysis were used to differentiate inter- and intraspe-
cific variability of the two types of variable, and their association was assayed with the rcorr function.

e Key Results Basic statistics and analysis of variance detected eight phenotypic characters [(stomata) leaf guard cell
length, pollen grain length, (plant) height, second leaf width, inflorescence length, number of spikelets per inflores-
cence, lemma length, awn length] and 434 tentatively annotated metabolite signals that significantly discriminated the
three species. Three phenotypic traits (pollen grain length, spikelet length, number of flowers per inflorescence) might
be genetically fixed. The three species showed different metabolomic profiles. Discriminant analysis significantly dis-
criminated the three taxa with both morphometric and metabolome traits and the intraspecific phenotypic diversity
within B. distachyon and B. stacei. The populations of B. hybridum were considerably less differentiated.

e Conclusions Highly explanatory metabolite signals together with morphological characters revealed concordant
patterns of differentiation of the three taxa. Intraspecific phenotypic diversity was observed between northern and
southern Iberian populations of B. distachyon and between eastern Mediterranean/south-western Asian and western
Mediterranean populations of B. stacei. Significant association was found for pollen grain length and lemma length
and ten and six metabolomic signals, respectively. These results would guide the selection of new germplasm lines
of the three model grasses in ongoing genome-wide association studies.

Key words: Association studies, Brachypodium distachyon, Brachypodium stacei, Brachypodium hybridum, me-
tabolite fingerprinting, phenotypic traits, statistical analyses.
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INTRODUCTION

Wild plants and, to a lesser extent, cultivated crop species exhibit
large phenotypic and metabolomic diversity as a consequence
of their individual responses to developmental growth condi-
tions and adaptation to environmental factors (Fiehn, 2002).
Characterization of phenotypic and metabolomic traits, and their
biological dynamics, has become a major line of research in the
new era of ‘omics’ (Fiehn, 2001, 2002; Hall et al., 2002), due to
their importance for genome-wide association studies (GWAS;
Matsuda et al., 2015). Thus, phenomic and high-resolution
metabolomic approaches have been used in conjunction with gen-
omic, transcriptomic and proteomic data to detect and map genes,
regulatory sequences and epigenomic regulators in genomes, and
to unravel the plastic and biochemical variation of individuals
under different intrinsic and extrinsic scenarios. Phenotypic and
metabolomic responses of plants to different development stages

and biotic—abiotic conditions have been investigated in crop spe-
cies such as cereals (wheat, barley, rice), tomato and potato, and
in some model plants, such as the dicot Arabidopsis thaliana
(Allwood et al., 2006). However, these studies are less developed
in Brachypodium distachyon, the annual temperate grass selected
as a model plant for the monocots (Draper et al., 2001;
International Brachypodium Initiative, 2010).

Over the past decade, B. distachyon has emerged as one of
the preeminent model plant species, for which there are tremen-
dous genetic, molecular and genomic resources (International
Brachypodium Initiative, 2010; Mur et al., 2011; Catalan et al.,
2014; Gordon et al., 2014). Its flagship plant genome now
serves as an anchor for genomic studies across the temperate
Pooideae grasses and monocots (Lyons and Scholthof, 2015).
Its small genome size, compact genome (e.g. low levels of re-
petitive DNA), diverse ecological tolerances, ready propagation
under controlled growth conditions, and considerable existing
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molecular and genomic resources make this plant an excellent
candidate for addressing fundamental questions in comparative
genomics and ecological studies and for its transfer to cereal
and biofuel crops (Catalan er al., 2014). Analysis of intraspe-
cific diversity in B. distachyon is under way through the nuclear
and organellar resequencing of 54 diverse natural accessions
(Gordon et al., 2014; and S. P. Gordon, DOE Joint Genome
Institute(USA) et al., unpubl. res.). Phenotypic and metabolo-
mics studies conducted to date in B. distachyon have mostly
focused on relevant agricultural traits, such as plant height, bio-
mass, flowering time, seed size, seed production and vernaliza-
tion requirements (Draper et al., 2001; Opanowicz et al., 2008;
Filiz et al., 2009; Vogel et al., 2009), and metabolites related to
stress tolerance (Allwood et al., 2006; Parker et al., 2008, 2009;
Pasquet et al., 2014; Onda et al., 2015; Shi et al., 2015).
Recently, the demonstration that the model plant is not one
but three species (Catalan ef al., 2012) has opened the way to a
thorough comparative genomic study of this diploid—polyploid
complex, which includes the model grass plant B. distachyon
and its close allies Brachypodium stacei and Brachypodium
hybridum, which show, respectively, 2n = 10, 20 and 30 chromo-
somes (Catalan et al., 2012, 2014). These three cytotypes were
previously attributed to different ploidy levels of the same taxon,
B. distachyon s.. (Robertson, 1981); however, phylogenetic,
cytogenetic and phenotypic analyses demonstrated that they
should be treated as different species. They consist of two dip-
loids, each with a different chromosome base number [B. dis-
tachyon (x=15, 2n=10); B. stacei (x=10, 2n=20)], and their
derived allotetraploid, B. hybridum (x=5+ 10, 2n=30).
Phylogenetic analyses indicated that the more basally diverging
B. stacei and the more recently evolved B. distachyon emerged
from two independent lineages, confirming their contribution as
genome donors for B. hybridum (Catalan et al., 2012, 2014).
Regarding their broad phenotypic and ecological features, in-
dividuals of B. distachyon have overall small stature, require
vernalization and are distributed at higher elevations, those of
B. stacei are morphologically tall, do not require vernalization
and grow mostly in coastlands or at lower altitudes, and those
of B. hybridum tend to be physically large, generally lack ver-
nalization requirements and grow in places of intermediate
altitude (Opanowicz et al., 2008; Catalan er al., 2012; Lopez-
Alvarez et al., 2015). Statistical analysis of morphometric traits
showed that five characters (stomata leaf guard cell length, pol-
len grain length, upper glume length, lemma length and awn
length) significantly discriminated between the three species
when they were grown under controlled greenhouse conditions
(12 inbred lines) and showed stability in 24 additional wild
populations (Catalan er al., 2012). However, representation of
the three circum-Mediterranean species was biased towards the
more exhaustively sampled populations of the western
Mediterranean region. This was particularly critical for B. sta-
cei, a species that was only known from its type locality at the
time of its description (Catalan et al., 2012), and for which no
other statistically analysed phenotypic data have been provided
to date despite its known distribution in other native circum-
Mediterranean localities (Lopez-Alvarez et al., 2012, 2015).
Recently, Lopez-Alvarez et al. (2012) provided an alternative
and reliable genetic method to differentiate the individuals of
the three species with a DNA barcoding system using three loci,
the plastid #nLF region, the nuclear multicopy ribosomal
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internal transcribed spacer (ITS) and the low-copy Gigantea
(GI) gene, which successfully discriminated between the three
species. Interestingly, this study also demonstrated the existence
of different bidirectional crosses that likely gave rise to the allo-
tetraploid B. hybridum. This was confirmed through the analysis
of the maternally inherited plastid haplotypes in this species; the
majority of the surveyed B. hybridum individuals had inherited a
maternal B. stacei-like plastome but some of the accessions
showed a maternal B. distachyon-like plastome (Lopez-Alvarez
et al., 2012). The recurrent, polyphyletic and polytopic origin of
this allotetraploid species was supported by ITS and GI evolu-
tionary analyses, which revealed distinct relationships of the B.
hybridum sequences to different parental geographical haplo-
typic groups, though all the studied hybrids correspond to what
is considered to be the same allopolyploid species (Lopez-
Alvarez et al., 2012; Catalan et al., 2016b). Nonetheless, the po-
tential phenotypic differences between these two types of recip-
rocal hybrids have not been investigated to date.

Metabolomics is considered to represent the ultimate level of
‘omic’ analysis, facilitating the testing of many biological
hypotheses based on the statistical support obtained from high-
throughput processing of samples (Allwood ez al., 2006; Draper
et al., 2013 and references therein). Different metabolomics
studies have been used to identify different metabolic pathways,
wild-type and mutant accessions, and sensitive versus tolerant
lines to biotic and abiotic stresses in plants (Allwood et al.,
2006). In B. distachyon, metabolomic analyses have been
shown to be useful for identifying the main metabolites pro-
duced in response to fungal diseases (Allwood et al., 2006;
Pasquet et al., 2014) and to temperature—salinity (Onda et al.,
2015) and drought (Shi et al., 2015) stresses, and the dynamics
of host—pathogen interactions (Parker et al., 2008, 2009).

Non-targeted metabolite fingerprinting is a technique designed
to provide a relatively comprehensive view of the metabolome
that can be used to test competing hypotheses in organisms
(Draper et al., 2013), where prominent changes in the metabo-
lome are revealed without specifically identifying individual me-
tabolites. This method, originally based on Fourier transform
infrared (FT-IR) spectroscopy, was successfully applied to dis-
criminate between control and abiotically stressed lines (Johnson
et al., 2003) and responses between tolerant and sensitive lines to
fungal attack in plants (Allwood et al., 2006). An additional ad-
vantage of metabolite fingerprinting is that the robustness of re-
sults can be tested by validation of the analysis using different
biological replicates as training and test sets (Draper er al.,
2013). Nonetheless, the combined use of ‘first-pass’ metabolic
fingerprinting and ultra-high-accuracy mass metabolite profiling,
based on direct-injection electrospray ionization-mass spectrom-
etry (ESI-MS), which facilitates the identification of particular
metabolites, allows a deeper understanding of the biochemical
processes involved in the investigated case studies. Currently, the
increased accuracy of mass spectrometry (MS) actually promotes
ESI-MS from a merely fingerprinting technique to a metabolite
profiling tool that, combined with MS/MS capabilities, improves
structural information about the molecules (Draper et al., 2013).
A preliminary metabolic fingerprinting analysis conducted in dif-
ferent accessions of diploid B. distachyon found different meta-
bolic profiles related to geography (Opanowicz et al., 2008).
However, no metabolomic study has been performed to date in
B. stacei and B. hybridum.
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FiG. 1. Geographical distribution of B. distachyon (blue), B. stacei (red) and B.

hybridum (purple) samples used in the phenotypic and metabolomic study. Circles,

wild populations; squares, inbred lines; triangles, metabolomic samples.

The new evolutionary and genomic findings within the
B. distachyon s.1. complex taxa have set the stage for high-defin-
ition research of the unusual genomic diversity between and
within the species of this complex. The nuclear and organellar
genomes of B. stacei and B. hybridum are being sequenced and
will serve, together with B. distachyon, as a model system for
investigating the origins and consequences of speciation and pol-
yploidization events (Catalan ef al., 2014; and unpubl. res.) that
might parallel those of economically important cereals (e.g.
wheats; Marcussen et al., 2014). Despite these advances, the
phenotypic and metabolomic studies of the three species of the
complex are still incomplete or have not been performed yet.
Given the importance of these investigations for future GWAS
analysis, the objectives of this study were (1) to analyse the
phenotypic variation of a large representation of individuals (and
populations) of B. distachyon, B. stacei and B. hybridum col-
lected across their respective native distributions in the circum-
Mediterranean region and in some non-native sites; (2) to test the
value of potentially informative morphological traits to discrim-
inate between the three species and within geographical ranges
and biological origins (B. hybridum only) of each species; (3) to
comparatively analyse the metabolite profiles of native acces-
sions of B. distachyon, B. stacei and B. hybridum; (4) to test the
value of potentially informative metabolomic traits to discrimin-
ate between the three species; and (5) to analyse the potential

association of phenotypic and metabolomic variation between
the three species of the B. distachyon s.1. complex.

MATERIALS AND METHODS
Sampling

An enlarged sampling was performed in order to increase the
representation of populations and individuals of the three B. dis-
tachyon s.l. complex species in their respective native circum-
Mediterranean regions and in few non-native areas of B.
hybridum (Fig. 1, Supplementary Data Table S1). The aim was
to cover as much intraspecific phenetic and environmental vari-
ability as possible, considering that geographical distribution
and environmental variability might affect phenetic variability.
Infraspecific phenetic diversity for each of the three species
under study has been evidenced in previous studies (Vogel
et al., 2009; Catalan et al., 2016b). Additionally, an environ-
mental niche model study indicated that B. distachyon, B. stacei
and B. hybridum show overlapping but different environmental
niches in their native circum-Mediterranean region, where each
species presents a different range of variation for different sets
of environmental parameters (Lopez-Alvarez et al., 2015).
Also, intraspecific environmental variability has been recorded
in the three taxa (Manzaneda et al., 2012, 2015; Shiposha et al.,
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TaBLE 1. Statistics of 15 phenotypic traits and significance tests of their mean values analysed in individuals from 174 wild populations
of Brachypodium distachyon, B. stacei and B. hybridum. Underlined variables are those that significantly discriminate between the

three species. N, number of wild individuals analysed. ANOVA (F;

df. 2) or Kruskal-Wallis (%°; d.f. 2) tests of variables used for com-

parisons between species. Superscripts denote Tukey pairwise comparisons between species; means with the same letter do not differ
significantly (P<0.05). See text and Supplementary Data Table S2 for abbreviations of variables

Species LGCL PGL H NNTC SLL SLW IL NSI SLA SLB NFI UGL LL AL CL
(um)  (um) (cm) (cm)  (mm)  (cm) (cm) (cm) (mm) (mm) (mm) (mm)
B. distachyon
N 227 211 191 190 171 174 184 184 187 183 188 191 188 190 184
Minimum 17 21 5.5 1 11 05 092 1 092 05 4 22 52 63 3-8
Maximum 28 42 56 12 8.2 35 5 4 2.4 182 13 9.1 11 152 72
Mean 22.54 304% 198 4.0 3.0 1.7 2.3 2:1° 1-6* 118 7.9 600 7.2 10.7* 5.5
Standard deviation 2-2 3-8 119 24 15 05 0-8 0-8 03 0-2 21 15 09 1.9 07
Variance 5.0 144 1418 59 22 03 0-6 07 01 0-1 44 23 08 37 04
B. stacei
N 146 154 86 90 75 82 88 91 90 91 88 90 91 88 123
Minimum 16 22 61 1 1-6 11 23 2 13 061 4 29 61 75 5.4
Maximum 36 52 76 9 151 5 10 5 33 282 14 863 126 182 84
Mean 252° 339  43.6°  4.4° 74> 2.7° 5.3 3.3 2.2° 1-6° 85" 58" 9.4° 12445 6.9°
Standard deviation 4-4 5.9 174 17 33 09 15 0-8 04 0-4 23 12 13 27 07
Variance 195 352 3017 30 1.0 07 22 06 01 0-2 55 14 17 75 05
B. hybridum
N 497 518 330 340 320 327 347 350 343 340 343 352 349 349 413
Minimum 20 25 3.5 1 1 0-7 12 1 1 05 233 23 3 6 5
Maximum 37 57 78 11 152 43 8 6 41 296 16 9.8 129 189 89
Mean 293 38.7°  359° 57° 7.5° 2.4° 3.5° 2.7° 2.1° 1-5° 81*  5.9*  8.9° 116 67°
Standard deviation 3-3 5-6 15-3 2-4 3.3 0-7 1-2 1-1 0-5 0-4 2-8 1-5 1-8 27 0-8
Variance 108 312 2353 55 110 05 1-4 12 02 0-2 77 22 33 74 0-6
7 4116 3221 1645 821 2132 1272 2559 863 1946 1322 22:9
F 15 06 923 208-7
P <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 >0-05 >0-05 <0-001 <0-001 <0-001

2016). A total of 1050 individuals, of which 870 were newly
collected, from 174 wild populations of B. distachyon (227 in-
dividuals, 44 populations), B. stacei (146 individuals, 30
populations) and B. hybridum (497 individuals, 100 popula-
tions), plus 180 individual samples from the six inbred lines of
B. distachyon [Bd21 (type), ABR1], B. stacei [ABR114 (type)]
and B. hybridum [ABRI113 (type), ABR110, ABR117] em-
ployed in the study of Catalan er al. (2012), were used in the
phenotypic analysis. The new samples were collected in the
field or were obtained from herbaria and germplasm banks.
Seeds from the inbred lines (several generations of selfing) and
from new wild germplasm collections (first generation individ-
uals mostly derived from different mother plants) were germi-
nated and grown under standard greenhouse conditions
following Catalan et al. (2012). All the studied materials were
analysed phenotypically when they reached maturity (e.g. flow-
ering and fruiting stages). The geographical origins and nature
[wild (W), herbaria (H), seed bank (S) or inbred (I) plants] of
all the studied samples are indicated in Table S1. The taxo-
nomic identity of all the new samples was corroborated by
counting DAPI (4 ,6-diamidino-2-phenylindole)-stained
chromosomes and/or DNA barcoding following the procedures
indicated in Lopez-Alvarez et al. (2012). Herbarium vouchers
of the newly collected materials have been deposited in the
JACA and Unizar (University of Zaragoza) herbaria.

Phenotypic analysis

Phenotypic analysis was performed using the same 15 poten-
tially informative morphoanatomical characters that were

employed to separate and identify the three species of the B.
distachyon s.l. complex in a previous study (Catalan et al.,
2012). Twelve of the characters were quantitative [(plant)
height (H); second leaf length (SLL); second leaf width (SLW);
(stomata) leaf guard cell length (LGCL); inflorescence length
(IL); spikelet length (total, without awns; SLa); spikelet length
(from base to fourth lemma, without awns; SLb); upper glume
length (UGL); lemma length (LL); awn length (AL); caryopsis
length (CL); pollen grain length (PGL)], and three were discrete
characters [number of nodes of tallest culm (NNTC); number
of spikelets per inflorescence (NSI); number of flowers per in-
florescence (NFI)] (Table 1 and Table S2). Macromorphological
characters were measured with a hard ruler under a dissecting
microscope. Microanatomical characters (LGCL, PGL) were
measured under a microscope using an ocular micrometer. For
measurements of stomata LGCL, abaxial epidermises were
peeled off from dried leaves that had been pretreated in 90 %
lactic acid solution for 8 h. Up to ten individuals (specimens)
per population were used for assessment of morphological char-
acters. When possible, five measurements were taken for each
character in each individual and the corresponding averaged val-
ues were used in the analyses. Statistical analyses were per-
formed separately for wild versus inbred + wild individuals
(data from inbred individuals were retrieved from Catalan er al.,
2012). Discriminant analysis was also performed for wild versus
inbred + wild individuals (see below).

Simple statistic descriptors of intra- and interspecies phenetic
diversity (mean, range, standard deviation, box plots of median,
range and percentiles) were calculated from the data. The ana-
lysis of the interspecies response variables was performed by


Deleted Text:  ones
Deleted Text: .
Deleted Text: .) 
Deleted Text: ind., 
Deleted Text: pop.
Deleted Text: the 
Deleted Text: 6 
Deleted Text: ;
Deleted Text: ,
Deleted Text: ,
Deleted Text: Cata
Deleted Text: e. g.,
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw239/-/DC1
Deleted Text: through
Deleted Text: staining 
Deleted Text:  counting
Deleted Text: methods 
Deleted Text: to 
Deleted Text: s. l.
Deleted Text: 4th 
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw239/-/DC1
Deleted Text: ;
Deleted Text:  the
Deleted Text: leaf guard cell length
Deleted Text: which 
Deleted Text: were 
Deleted Text: -
Deleted Text: a 
Deleted Text: &hx0025;
Deleted Text: 8 
Deleted Text: ours
Deleted Text: vs
Deleted Text: as
Deleted Text: vs
Deleted Text: the 
Deleted Text: species
Deleted Text: -
Deleted Text: -
Deleted Text: estimated 
Deleted Text: through 
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw239/-/DC1

Lo’pez-AlvareZ et al. — Phenotypic and metabolomic study of annual Brachypodium species

one-way analysis of variance (ANOVA) > tests or non-para-
metric Kruskal-Wallis tests when the variables complied or
not, respectively, with requirements of normality (this was
tested with Kolmogorov—Smirnov tests; Table S2). Multiple
pairwise comparisons of means were based on Tukey’s tests for
groups with unequal samples sizes. Interspecies response vari-
ables were evaluated by multicollinearity analysis to determine
which characters were correlated with each other in the com-
mon data set and in each of the species data sets; a matrix of
Spearman correlation coefficients was obtained by averaging
the values from each individual in each case. Comparative ana-
lysis of variables from wild populations versus inbred lines was
performed using averaged values and pairwise Mann—Whitney
(U) tests. In all cases significant tests were performed for the
null hypothesis (HO) of ul=uW, where ul and yW are averaged
trait values of inbred lines and wild populations, respectively.
All the statistical analyses were conducted with the software
SPSSv. 15.

Multivariate analysis of phenotypic traits

Multivariate principal component analysis (PCA) of the 15
variables was performed to examine the structure of the taxa,
to assess whether the observed groupings were consistent with
the taxonomic circumscriptions proposed for the three species
of the B. distachyon s.l. complex, and to evaluate the level of
covariation in variables. Averaged values of the 15 morphoa-
natomical characters were estimated for the 174 wild popula-
tions and six inbred lines of B. distachyon, B. stacei and B.
hybridum. The contribution of each character to the coordinate
axes that accounted for the highest percentages of variance
was calculated using covariance and variance matrices of the
samples with respect to the new axes using PAST v. 2.17
(Hammer et al., 2001). Further PCAs were conducted in each
of the B. distachyon, B. stacei and B. hybridum subgroup sam-
ples following the procedure of the previous search. These in-
dependent analyses allowed estimation of the intraspecific
substructure of the taxa and calculation of the contribution of
different morphological characters to the separation of intra-
specific groups within each species.

A classification discriminant analysis (DA, cross-validation)
was conducted with all the variables (15) and samples (174
wild populations and six inbred lines) to determine the highest-
probability membership group of the samples (Legendre and
Legendre, 1998). The reference samples for each species’s
group were the respective type specimens (B. distachyon,
Bd21; B. stacei, ABR114; B. hybridum, ABR113). The more
discriminating variables were identified by means of Fisher’s
coefficient (Fisher, 1936; Anderson, 1996) at the significance
threshold value of 0-05. The posterior probability of classifica-
tion of each sample and the Wilks’s 4 value of each discrimin-
ant function were calculated. A Wilks’s 4 value closer to zero
indicated better discrimination between the predefined groups.
The DA was run in SPSS v. 15. Further DAs were also per-
formed following the same procedure as that indicated above
within each of the B. distachyon, B. stacei and B. hybridum
groups, aiming to classify the samples into intraspecific groups,
using as references for each subgroup flag samples from the
intraspecific PCA analyses (see the Results section).
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Metabolomic analysis

Sampling for metabolomic analysis was performed in a subset
of populations from the three studied species (Table S1).
Individuals from 12 populations or inbred lines (five of B. dis-
tachyon: 115F, 160F, 162F, 480F, 484F; three of B. stacei:
114F, 129F, 485F; and four of B. hybridum: 137F, 176F, 260F,
333F), representing 12 different ecotypes, were grown under
standard greenhouse conditions and used in the metabolomic
study. A hierarchical metabolomics approach was used to iden-
tify and annotate metabolites discriminating the three species.
Non-targeted nominal mass metabolite fingerprinting was fol-
lowed by in-depth data mining and ultra-high-accuracy mass me-
tabolite profiling of explanatory m/z bins. Database searches,
MS" fragmentation analysis and comparison with available
standards aided signal annotation at different Metabolomics
Standards Initiative (MSI) levels of identification (Sumner et al.,
2007).

Metabolite fingerprinting was performed using flow infusion
electrospray ionization—-MS (FIE-MS). For this, sample extrac-
tion and mass spectrometric analysis were done following
Parker et al. (2009) and Draper ef al. (2013). This process
involved the use of a single-phase extraction solvent (chloro-
form:methanol:water, 1:2.5:1, v:v:v) optimized for recovery of
a wide range of metabolites, offering relatively comprehensive
coverage of the metabolome. Nominal mass FIE-MS analysis
was performed using a linear trap quadrupole (LTQ) mass ana-
lyser (Finnigan LTQ; Thermo-Finnigan, San Jose, CA), which
generated metabolite fingerprints in both positive and negative
ionization mode. lon intensities were detected in the scan range
between m/z 50 and 1150, which was subdivided into four small
mass ranges for better signal acquisition (low range, m/z 15—
200; highl range, m/z 180-620; high2 range, m/z 600-880;
high3 range, m/z 860-1150), and raw data dimensionality was
reduced by electronically extracting signals with =0.1 Da mass
accuracy. Mass spectra were combined in a single intensity
matrix (runs x mj/z ratios) for each ion mode. Data from the in-
tensity matrix were log-transformed and normalized to the
total ion count (TIC) before further statistical analysis. Initially,
data mining and feature selection was performed using
randomForest in the R package FIEms-pro, as reported previ-
ously (Enot et al., 2008; RDC Team, 2010).

Ionization products (m/z) identified after data mining were
annotated by searching accurate m/z through the MZedDB
database (Aberystwyth University) (http://maltese.dbs.aber.ac.
uk:8888/hrmet/index.html) at<Sp.p.m. mass accuracy.
Accurate masses from species-representative extracted samples
were acquired using the Exactive LC-MS system (Thermo-
Scientific) operating in flow-infusion mode. As several overlap-
ping solutions predicting the presence of different metabolites
were often possible, the most likely combination of ions puta-
tively identifying a specific metabolite were confirmed by
comparing their MS” fragmentation patterns with available
standards. MS" fragmentation was carried out with a Finnigan
LTQ instrument (Thermo-Finnigan, San Jose, CA) using ion-
trap, full MS mode by using a normalized collision energy of
30.0 V. Samples were injected at a flow rate of 3-0 uLmin '
with activation (Q) of 0-250 and activation time 30-0 ms. Thirty
scans were used to acquire fragmentation data with an isolation
width of 1-0m/z.
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TABLE 2. Comparative Mann—-Whitney (U) test of mean values obtained from individuals of 174 wild populations (W) (see Table 1) ver-

sus six inbred lines (1) (data retrieved from Catalan et al., 2012) for the 15 analysed phenotypic characters in B. distachyon, B. stacei

and B. hybridum. Means with the same letter do not differ significantly (P < 0-05) between species after Tukey’s (wild populations)

and Mann-Whitney (inbred lines) pairwise comparison tests in each independent data set). Values that do not differ significantly

(P < 0-05) between the two compared data sets (W versus I) for each character and species are underlined. See text and Table S2 for
abbreviations of variables

LGCL PGL H NNTC  SLL SLW IL NSI SLA  SLB NFI UGL LL AL CL
B. distachyon
w 22.5° 30-4° 19-80 4.0 3-0° 1.7° 2.3% 21% 16 1.1° 7.9 6:0° 728 10-7° 5.5
I 23.26°  29-87°  26-13®  3.30° 6-68° 2.84° 3250 269 1.63° 1.27° 7-00° 723%  8.05¢ 1145*  6.75°
U 28205 30845 4255 910 79 465 5595 7915 1196 4415 832 5385 425 9185 110-5
P 007 061 0-03 0-82 0 0 0 003 092 0 012 0 0 012 0
B. stacei
w 25.2° 33.9° 43.6° 4.4 7.4° 2.7 5.3¢ 3.3¢ 2:2° 1-6° 85" 5.8° 9.4 12-4¢ 6-9°
I 2822°  32.58°  35.56° 2.94° 11-:06°  4-15° 612> 275 229" 1.61° 9.24* 624°  891°  727° 5.68"
U 3325 29035 2365 333 186 1715 423 380 901 897 8065 6915 758 129 165
P 0 0-94 006 0 0 0 013 007 074 045 0-36 0-06 008 0 0
B. hybridum
w 29.3¢ 38.7¢ 35.9° 5.7° 7.5° 2.4° 3.5° 2.7° 21> 1.5° 81% 5.9 8-9° 11-6° 6-7°
I 33.64*  3827°  33.09° 3.72° 10-30°  2.75° 3.93* 271 222 1.56° 815  7.92¢  10-49° 9-68° 7-02°
U 5090 14182 16365 15515 13775 20255 2528 3619 3321 24015 33105 9195 1452 1784.5 87815
P 0 078 0-58 0 001 0-06 004 09 081 003 079 0 0 0 001
Statistical and multivariate analysis of metabolomic traits RESULTS

Metabolomic data were subjected to simple statistical ana-
lysis of the interspecific diversity (mean, range, standard devi-
ation, box plots of median, range, intervals) and the response
variables were estimated with one-way ANOVA y? tests for
parametric variables and non-parametric Kruskal-Wallis tests,
to determine which metabolites were significantly different be-
tween the B. distachyon, B. stacei and B. hybridum ecotypes.
Only metabolites that were annotated at different MSI levels
of identification were used in the multivariate analysis.
Discriminant analysis was conducted with the metabolomic
data; this consisted of a supervised projection method in which
discrimination between groups was based on the spatial classifi-
cation of ecotypic samples in two-dimensional projections
using a priori knowledge of species projections. Fisher’s coeffi-
cient (P =0-05) was used to identify the more discriminating
variables, and the posterior probability of classification of
each sample and Wilks’s 4 value of each discriminant function
were also calculated. All statistical analyses were conducted in
SPSS v. 15.

Associated phenotypic and metabolomic variation

The potential association of phenotypic and metabolic vari-
ation between the three species of the B. distachyon s.1. com-
plex was estimated by correlation analysis using Pearson
coefficients. Class means (at ecotype level) of both the 15
phenotypic measurements and the 434 metabolic variables (m/z
intensity values) were used for correlation analysis as individual
phenotypic measurements could not be attributed to the metab-
olomic data. Correlation analysis was performed using rcorr in
the R package Hmisc and the resulting P values were corrected
using the Bonferroni method.

Interspecific phenotypic variation

Statistical descriptors and box and whisker plots (Table 1, Fig. 2)
summarize the inter- and intraspecific phenotypic diversity de-
tected by the 15 analysed morphological characters across the
studied wild populations of the three species. Significant differ-
ences (P < 0-001) were found in 13 variables for different com-
binations of species (Table 1): eight characters discriminate all
three species from each other (LGCL, PGL, H, SLW, IL, NSI,
LL, AL) (Fig. 2A), four characters discriminate between B. dis-
tachyon versus B. stacei and B. hybridum (SLL, SLa, SLb, CL)
(Fig. 2B) and one character discriminates B. hybridum from the
diploid species (NNTC) (Fig. 2C). Only two characters did not
significantly discriminate the species (NFI, UGL) (Table 1, Fig.
2D). Individuals of B. hybridum showed mean values signifi-
cantly higher for three characters (LGCL, X =29-3 = 3-3 um;
PGL, x =38-7 % 0-121um; NNTC, X =5-7 = 2-4) than individ-
uals from the diploid species (B. distachyon, x =225, x = 30-4,
X =4-0; B. stacei, x =252, x =339, X =4-4), while individuals
of B. stacei showed mean values significantly higher for six
characters (H, x=43-6+17-4; SLW, x=27%x09; IL,
xXx=53=*15; LL, x=94=*13; AL, x=124%2.7; NSI,
X =3-3 £ 0-8) than individuals of B. hybridum and B. distachyon
(Table 1, Fig. 2A—C). Individuals of B. distachyon were charac-
terized by smaller and shorter leaf, inflorescence, spikelet,
lemma, awn and caryopsis than those of the other species; they
also showed fewer nodes in the stem and fewer spikelets and
flowers per inflorescence (Table 1, Fig 2). Individuals of B.
hybridum showed dimensions intermediate between those of in-
dividuals of its parental species in seven characters (H, SLW, IL,
NSI, LL, AL, CL) (Table 1, Fig. 2).

When mean value data obtained from the analysis of wild in-
dividuals (W; wild versus wild) were compared with those ob-
tained from inbred individuals (I; inbred versus inbred) (Table
2; W-I Mann—Whitney test: wild versus inbred), three charac-
ters (PGL, SLA, NFI) did not show significant differences
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FiG. 3. Two-dimensional PCA plot of 46 wild populations of B. distachyon (blue), 31 of B. stacei (red) and 103 of B. hybridum (purple) based on averaged values
of individuals analysed for 15 phenotypic traits (see Table 1 and Table S2). The first and second PCA axes explain 79-2 and 10-4 % of the total variation,
respectively.

between the two groups in the three species, two (H, NSI) in B.
stacei and B. hybridum, and two (LGCL, AL), four (IL, SLB,
UGL, LL) and one (SLE) in B. distachyon, B. stacei and B.
hybridum, respectively. Among the three common stable traits
in both data sets, PGL discriminated between all three species
and SLA between B. distachyon and B. stacei or B. hybridum;
NFI did not discriminate between species (Table 2). LGCL, LL
and AL also discriminated between all three species, and SLL
and SLB between B. distachyon and B. stacei or B. hybridum in
both data sets but with different means in W and I for some spe-
cies, SLW between the three species in W (but only between B.
distachyon and B. stacei or B. hybridum in 1), and CL between
B. distachyon and B. stacei or B. hybridum in W (and between
B. stacei and B. distachyon or B. hybridum in 1) (Table 2).
Two traits that significantly discriminated between the three
species within the inbred lines (I) discriminated only between
B. hybridum and B. distachyon or B. stacei (NNTC), or did not
discriminate between them (UGL) in the larger data set of wild
individuals (W) (Table 2). The Spearman correlation analysis
conducted with the phenotypic traits studied in the wild individ-
uals of B. distachyon, B. stacei and B. hybridum revealed
significant correlations (P < 0-001) between several characters
(SLA/SLB, 0-89; IL/NSI, 0-75; H/IL, 0-70; SL/SLL, 0-69;
H/SLL, 0-66; H/NSI, 0-65; IL/SLA, 0-65; NFI/SLA, 0-62;
LL/SLA, 0-59; NFI/SLB, 0-59; LL/SLB, 0-56; NNTC/SLL,
0-56; LGCL/PGL, 0-54; H/SLW, 0-53; H/NNTC, 0-52)
(Supplementary Data Table S3).

The PCA revealed that 93-3 % of total variation of the 15
analysed characters could be explained by the first three

principal components, which accounted for 79-2, 10-4 and
3-6 % of the variance, respectively (Supplementary Data Table
S4, Fig. 3). Three characters were identified as the most import-
ant contributors to the positive and negative extremes of the
first components of the PCA. Plant height (0-98), pollen grain
length (0-88) and stomata leaf guard cell length (—0-61)
showed the highest contributions to the first, second and third
components, respectively (Table S3). The impact of these com-
ponents on the hierarchical structure of the three species was
visualized in a two-dimensional PCA plot (Fig. 3). Population
samples of the three species overlapped in the two-dimensional
space created by the first two components. The highest overlap
was observed between the minimum convex polygons of B. sta-
cei and B. hybridum (Fig. 3).

The DA conducted over all 174 wild populations of B. dis-
tachyon, B. stacei and B. hybridum using data from the 15
analysed phenotypic traits separated the three species in the
two-dimensional plot constructed with the two functions (Fig.
4A). Brachypodium distachyon clustered separately from B.
stacei and B. hybridum along the first axis of the plot, which
explained 68-2 % of the total variance, whereas the last two
species separated along the second axis, which explained
31-8 % of the variance. Catalan et al. (2012) found similar
discrimination among the three species when DA was per-
formed only with individuals from the six inbred lines, though
sampling of B. stacei was reduced to the type specimen
(ABR114). Equivalent results were obtained when DA was
performed with the six inbred lines added to the 174 wild
populations (Fig. 4B); the three species showed similar
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FiG. 4. Two-dimensional DA scatterplots of populations of B. distachyon (blue), B. stacei (red) and B. hybridum (purple) based on averaged values of individuals
analysed for 15 phenotypic traits in 174 wild populations (A) and in 174 wild populations plus six inbred lines (B). Wild populations (circles), inbred lines (stars), ac-
cessions with metabolites (B. distachyon, diamonds; B. stacei, triangles; B. hybridum, squares).

TABLE 3. Assignment probabilities of individuals from 174 wild

populations (W) and from six inbred lines plus 147 wild popula-

tions (I+W) of B. distachyon, B. stacei and B. hybridum based on

discriminant analysis of 15 phenotypic traits. N, number of popu-
lations and populations + inbred lines studied

Data sets Samples N Predicted group membership
B. distachyon B. stacei B. hybridum

w B. distachyon 44 44 (100 %) 0 0

B. stacei 30 0 25833 %) 5(16:7 %)

B. hybridum 100 3 (3 %) 55 %) 92 (92 %)
I+W B. distachyon 46 46 (100 %) 0 0

B. stacei 31 1(32%) 25 (80-6 %) 5(16:1 %)

B. hybridum 103 3 (3 %) 5(5 %) 95 (92 %)

clustering patterns in the two-dimensional plot, in which func-
tions 1 and 2 explained 66-8 and 33-2 % of the total variance,
respectively. All B. distachyon populations were correctly
classified (100 %), both including (46 samples) and excluding
(44) the inbred lines (Table 3). However, only 25 (83 %) of
30 wild populations of B. stacei were correctly classified
[with the five remaining samples, B891, B921, B621, Bra286
and B100-H141, classified as B. hybridum (17 %)], and only
25 (81 %) of 31 wild + inbred samples were correctly as-
signed [with six remaining samples classified either as B.
hybridum (5; 16 %) or B. distachyon (1 (BGE044241); 3 %)].
Most samples of B. hybridum were correctly classified in both
analyses (92 %); 92 out of 100 wild populations and out of
103 wild + inbred samples were correctly assigned, with the
eight remaining samples classified either as B. stacei (five
samples: B124, 333F, BGE044239, BGE044247, Mog; 5 %)

or B. distachyon (three samples: BGE044243, B741, Bra299;
3 %) in both cases (Table 3). Up to ten and five pheno-
typic characters showed strong correlations to the first
and second canonical discriminant functions, respectively
(Supplementary Data Table S5), with Wilks’s A values of
0-12 and 0-44 (P <0-001), respectively. Of these, three
(LGCL, CL, PGL) showed the highest contributions to func-
tion 1 and one (IL) to function 2 in the wild populations and
the combined inbred lines and wild population data sets
(LGCL, 0-54, 0-56; CL, 0-47, 0-46; PGL, 0-42, 0-44; 1L, 0-52,
0-53) (Table S5).

Intraspecific phenotypic variation

The DAs conducted at the intraspecific level in B. dis-
tachyon, B. stacei and B. hybridum using the 15 phenotypic
traits showed significant differences for some traits and differ-
ent geographical groupings of populations in one or other of the
studied species. In B. distachyon, the two-dimensional plot con-
structed with the first two discriminant functions, which ex-
plained 79-7 % and 10-8 % of the total variance, indicated the
separation of four groups of Iberian populations (Fig. 5A).
North-eastern Iberian populations (Aragon, Navarra, Lleida)
clustered in the upper left area of the plot, north-western
Iberian populations (Valladolid, Palencia) and southern Iberian
populations (Andalucia) plus one additional population from
southern Spain (Cadiz) in the lower left and middle areas, and
central Iberian populations (Albacete, Cuenca, Madrid, Rioja)
in the upper right area. The characters that showed higher cor-
relations to functions 1 and 2 were H (0-56) and UGL (0-66),
AL (0-46) and NNTC (0-46) (P <0-001), respectively, with
Wilks’s 4 values of 0-012 (P <0-001) and 0-15 (P =0-058)
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Fic. 5. Two-dimensional DA scatterplots of 41 Spanish populations of B. distachyon (A), 29 circum-Mediterranean populations of B. stacei (B) and 89 circum-
Mediterranean populations of B. hybridum (C) based on averaged values of wild individuals analysed for 15 phenotypic traits. Colours for the respective geograph-
ical groups of each species are indicated in the charts.

(Supplementary Data Table S6), respectively. The height of the
plant (H) was significantly different between the central
(X =42-2) and north-western (X =32-2) groups, which in turn
showed taller individuals than those of the north-eastern
(¥ =18-6) and southern (¥ =13-8) Iberian groups (Table 4).
The length of the upper glume (UGL) significantly separated
the southern (X = 4-3) populations from the others (X = 6-4), the
number of nodes in the tallest culm (NNTC) the north-eastern
populations (x =2-7) from the rest (X = 6-4), the length of the
awn (AL) the north-eastern (x=11-2) from the southern
(¥ =9-5) populations, and the number of spikelets per inflores-
cence (NSI) the central (x =3-0%) from the north-eastern and
southern (X = 1-8) populations (Table 4).

In B. stacei the two-dimensional plot constructed with the
first two discriminant functions, which accounted for 79-4 and
11-4 % of the total variance, classified three groups of circum-
Mediterranean populations (Fig. 5B). The Iranian populations
clustered in the upper right area of the plot and the Balearic
populations in the lower right area; they were clearly separated
from the other populations along function 1. Populations from
Israel clustered close to populations from Almeria (southern
Spain) in the upper middle area of the plot, those from the
Canary Islands in the middle central area, those from southern
Spain and Mahgreb (Tunisia) in the leftmost central area, and
one population from Greece in the lowest left area (Fig. 5B).
The phenotypic traits that showed highest correlations to func-
tions 1 and 2 were IL (—0-11) and SLB (0-18), and SLA (0-17)
(P <0-001) (Supplementary Data Table S7), respectively, with
Wilks’s A values of 0 (P < 0-001) in both cases. The PGL trait
significantly discriminated the Iranian populations, which
showed longer pollen grains (X =47-2) than the rest (x =32-3)
(Table 4). Traits IL, NNTC and SLL separated southern
Spain (¥x=3-7; ;x=2-8;x=9-2) from Balearic Island
(¥ =06-1;Xx=06-2; X =4-3) populations, NNTC and SLL sepa-
rated southern Spain from the Israel (x=5-8;x=95)

populations, and SLL separated southern Spain from Iran
(X =4-5) populations; the remaining populations showed inter-
mediate measurements for these traits
(X=52; x=4-6;x=06-9) (Table 4).

In B. hybridum the first two discriminant functions of the
two-dimensional DA plot, which explained 42-7 and 31-4 % of
the total variance, did not show a clear-cut geographical cluster-
ing of circum-Mediterranean populations, though they sepa-
rated two main groups along the first axis (Fig. 5C).
Populations from northeastern Spain and the Balearic islands
clustered in the left area of the plot, whereas those from the
Middle East, the Mediterranean basin, southern Spain and the
Canary Islands clustered predominantly in the right area. The
most influential characters were H (0-51), SLW (0-44) and CL
(0-40), and NNTC (0-57), UGL (0-48) and NFI (0-42), which
were highly correlated to the first and second functions
(P < 0-001), respectively (Supplementary Data Table S8), with
Wilks’s A values of 0-02 and 0-08 (P < 0-001), respectively.
The height of the plant separated the taller Mediterranean and
Canary Islands individuals (¥ =47;X=45-8) from the shorter
Balearic  Islands and northern  Spain  individuals
(x=18-1; x=21-5), whereas individuals from other regions
(southern Spain x=36-7; Middle East x=35-3) showed inter-
mediate statures (Table 4). Caryopsis length (CL) and width of
the second leaf (SLW) differentiated the individuals from
Middle East and Canary Islands (x=7-4; x=2-7) from those of
northern Spain and Balearic Islands (x=6-2; x=1-7), whereas
the Mediterranean and southern Spain individuals showed inter-
mediate values (¥x=6-6; 2-4) (Table 4). The number of nodes in
the tallest culm was higher in Mediterranean and southern
Spain individuals (x=6-8; x=6-2 respectively; Table 4) with re-
spect to those of Middle East (x=5-2) and Balearic Island,
Canary Islands and northern Spain (¥=3-8;x=3-3;x=2-8)
individuals.


Deleted Text: Table S
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw239/-/DC1
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text:  the
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: ,
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: 2D 
Deleted Text:  that
Deleted Text: accumulated 
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: circumMediterranean
Deleted Text: at 
Deleted Text: ,
Deleted Text: at
Deleted Text: S
Deleted Text: (-
Deleted Text: Table S
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw239/-/DC1
Deleted Text: &hx00B4;
Deleted Text: Lambda
Deleted Text: The Pollen grain length (
Deleted Text: )
Deleted Text: Iranian 
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: traits 
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: o
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text:  
Deleted Text:  that
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: circumMediterranean
Deleted Text: -
Deleted Text: o
Deleted Text: ,
Deleted Text: Table S
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw239/-/DC1
Deleted Text: &hx00B4;
Deleted Text: <italic>lambda</italic>
Deleted Text: &thinsp;&hx003D;&thinsp;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: <sup>;</sup>
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;
Deleted Text: &hx003D;

Lo’pez-AlvareZ et al. — Phenotypic and metabolomic study of annual Brachypodium species

555

TABLE 4. ANOVA test of 15 variables used for comparisons among wild individuals from intraspecific groups within each species

(Brachypodium distachyon, B. stacei, B. hybridum). Superscripts denote least significant difference (LSD) pairwise comparisons be-

tween geographical groups within species; means with the same letter do not differ significantly (P<0-05). See text and Table S2 for
abbreviations of variables. N, number of individuals analysed

Species N LGCL PGL H NNTC SLL SLW IL NSS SLA SLB NFS UGL LL AL CL
B. distachyon * wk
North-east Spain 23 232 301  13.8° 2.7°  2.5° 1-8 23 21 1.7 1-1 85  65° 73 112 53
South Spain 8 230 286 1865 55  3.1% 15 18 1-6 15 1-1 67°  4.3° 71 95 5.8
Central Spain 3 221 285 322° 7.3 43% 2 2:6 24 16 .0 78  61° 7.0 10-0° 5.0
North-west Spain 6 214 309  42.3* 6.5  5.5° 19 2.8 3.0 15 12 73 67" 74 107 56
Cadiz 1 214 348 364™ 4.0° 26> 1-8 4.3 30 2.0 1-6 125 67 76  140° 65
F 12 11 322 129 86 1-4 5.2 4.9 1-6 2.0 3.7 71 05 35 22
P >0-05 >0-05 <0001 <0-001 <0-001 >0-05 <005 <005 >005 >005 <005 <0001 >0-05 <005 >0-05
B. stacei ok
Almeria 4 269 332° 457" 3.6° 64 2-8 5.5% 3. 2.7 1-9 10-0 5.0 101 121 67
South Spain 6 223 301° 559°  62° 9.3 29 6-1* 36 2.1 14 72 63 95 140 68
Canary Islands 4 250 313" 49.1*  4.0™ 61 24  53% 35 2:1 14 86 58 92 105 638
Balearic Islands 4 276 366" 19.0°  2.8° 4.4 23 3.7° 25 2.0 15 9.5 58 86 115 64
Israel 6 257 358" 423% 58 50 25 53% 3.3 22 1.7 87 64 102 151 69
Iran 3285  472%  277% 3.6% 4.5 23 4.1 23 2:6 21 116 56 93 143 77
Tunisia 1 286 309° 42.0° 4.0 42 12 54® 390 22 17 10-0 57 74 115 64
Greece 1 197 286> 650° 58° 110 28  60™ 43 18 09 7.8 52 104 142 61
F 18 81 17-0 4.6 5.4 14 4.1 3.7 1.7 2.0 1.9 1-0 1.9 2.0 23
P >0-05 <0-001 <0-001 <0-05 <0-001 >0-05 <005 <005 >0-05 >005 >005 >005 >005 >0-05 >0-05
B. hybridum
North Spain 7 303 355° 215 2.8 35° 1.8 4.0°  2.9%  22° 13 9.7 72%  ggc  12.5% 6.3
Canary Islands 10 288  44.0° 458 34° 66> 2.7 52° 32®  28° 19 111*  7-6° 102%™ 11.8* 74
South Spain 23 295 364° 367° 620 7.9®  23® 3.3 27 20 1.5 73 54 94® 116> 670
Balearic Islands 15 285  38-8° 182°  3.8° 3.5° 1-6° 2.7¢ 19t 21° 14> 96° 5.7¢ 67 110  61°
Mediterranean 16 30-5 378" 469"  6.8°  9.1°  24%™ 3% 340 2P 13> 75 52¢ 7.8 104°  66°
Middle East 18 287 383® 353> 520 67° 274 334 3 0P 15> 78> 64°  104* 13.6°  74°
F 12 6-0 185 137 121 1000 122 5.5 52 4.7 8.0 101 172 39 9.5
P >0-05 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-001 <0-05 <0-001

Characters with significant differences only for some comparisons: B. distachyon:
*[L, north-east # south; north-west # south; Cadiz # north-east + south + centre + north-west.

**N8S, north-west # north-east + south; Cadiz # south- B. stacei:
###SLL= south # Balearic Islands, Israel, Iran.

Interspecific metabolomic variation

Metabolite fingerprinting analysis resulted in a total of 2219
nominal m/z signals in combined positive and negative ioniza-
tion datasets in the 12 studied ecotypes of B. distachyon, B. sta-
cei and B. hybridum. However, only 693 metabolite signals
showed significant differences between species based on
randomForest feature selection, and of these only 434 nominal
mj/z signals could be further annotated with a targeted accurate
mass m/z search through the MZedDB database
(Supplementary Data Table S9). Where more than one m/z sig-
nal resulted in the annotation of the same metabolite, e.g. due
to the formation of various adducts, the most likely adduct was
selected based on the most abundant adduct or by giving prefer-
ence to the [M+H]'" and [M+K]'" adducts in positive ion
mode and the [M-H]lf adduct in negative ion mode over the
other adducts. The other duplicate adducts were, however, kept
in the annotation list of 434 m/z signals (in plain text rather than
bold) (Table S9) as they give added confidence in the annota-
tion of m/z signals. These m/z signals with duplicate annotations
were, however, later removed from the DA, details of which
are provided below. Some of the annotation results were con-
firmed by comparing MS" fragmentation patterns of m/z signals
with those of available standards (see Supplementary Data
Table S10 for the list of annotated m/z signals).

Statistical descriptors and box and whisker plots indicated that
434 fingerprint m/z signals were able to significantly discrimin-
ate between the three species (Supplementary Data Tables S11
and S12, Fig. 6). Of these, several positive (e.g. p214-09,
pl47-09, pl182, p296-18, p139-9, p816-54, p235-09, p381-18)
(Fig. 6A) and negative (e.g. n281-18, n385-18, n346-09,
n315-18, n163, n203-09, n135, n179-09) (Fig. 6B) m/z signals
discriminated the ecotypes of B. distachyon, B. stacei and B.
hybridum from each other (Table S12).

The DAs conducted on the 12 ecotypes of B. distachyon, B.
stacei and B. hybridum using the data from the 434 (positive
217, and negative 217) metabolomic traits discriminated the
three species in the two-dimensional plots formed by the two
functions (Table S11, Fig. 7). Removing mj/z signals of the
same annotations showing different adducts did not alter the
DA classification results (Tables S9 and S11, Supplementary
Data Fig. S1). The five ecotypes of B. distachyon clustered sep-
arately from those of B. stacei and B. hybridum along the first
axis of the plot, which explained 84-7 % (positive data set) or
80 % (negative data set) of the total variance, whereas the eco-
types of the last two species separated respectively along the
opposite extremes of the second axis, which explained 20 %
(positive data set) or 15-3 % (negative data set) of the variance.
Both positive and negative metabolites were significantly corre-
lated with the first (Wilks’s A=0; P <0-001) and second
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FiG. 7. Two-dimensional DA scatterplot of five ecotypes (60 replicates) of B. distachyon (circles), three (36) of B. stacei (triangles) and four (48) of B. hybridum
(squares) based on averaged values of individuals analysed for 434 metabolomic traits. Colours for each ecotype are indicated in the charts.

[Wilks’s A= 0-01 (positive data set), 0-02 (negative data set);
P < 0-001] functions of their respective analysis, though their
correlation values were usually low (Table S11). The ecotypes
of each species were correctly classified to their respective
groups in all cases (100 %).

Association of phenotypic traits and metabolites

The Pearson correlation analysis between phenotypic traits
and 434 fingerprint m/z signals indicated that the highest signifi-
cant Bonferroni-corrected P value (<0-05) correlations were for
PGL and LL (Table 5) to discriminate the three species. PGL
showed significant correlations with ten metabolite signals
[hydroxybutyrate, threonate, shikimate, '*C isotope of shiki-
mate, quinate, "°C isotope of quinate, sinapate, sedoheptulose 7-
phosphate, ADP-glucose, phosphatidylglycerol (PG)(18:1(11Z)/
22:6 (42,772,102,137,16Z,197)] and LL showed significant cor-
relations with six metabolites [O-phosphohomoserine and lipids
tentatively  assigned as  phosphatidylcholine  (PC)(16:0/

18:2(2Z.,47)), sulfoquinovosyl diacylglycerol (SQDG)(16:0/16:1
(11Z)), PC(18:3(8E,10E,12E)/ 18:3(8E,10E,12E)) (PC(36:6)),
PC(18:0/18:3(9Z,127,157)/0:0), PG(18:0/20:3(5Z,8Z,11Z7))]
(Table 5, Supplementary Data Fig. S2).

DISCUSSION

Phenotypic differentiation is shaped both taxonomically and
geographically within the B. distachyon s.l. complex species

This large phenotypic analysis conducted on 1050 individuals
from 174 wild populations and six inbred lines of B. distachyon,
B. stacei and B. hybridum has provided a wealth of data and
strong statistical evidence for disentangling the intraspecific
phenotypic plasticity and interspecific differentiation of the
three species, once considered cryptic taxa (Garvin et al., 2008;
Catalan et al., 2012; Lopez-Alvarez et al., 2012). The consider-
ably increased sampling size of this study with respect to the pi-
oneer work of Catalan er al. (2012) has also made it possible to
increase the number of significantly discriminating traits
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TABLE 5. Pearson correlation coefficient between 435 metabolic variables (m/z) and 15 phenotypic traits based on 12 ecotypes of B. distachyon, B. stacei and B. hybridum.

See text and Table S2 for abbreviations of variables

Putative ionization product Adduct

L NSS SLA SLB NFS UGL LL AL CL

SLW

NNTC SLL

LGCL PGL H

m/z

[M-H]1—

0-555 0-468 0474 Hydroxybutyrate
0-553 0-432 0-487 Threonate

0-656 0-834 0488 0-300 0439 0-537 0-539 0-500 0-533 0-702

0-601

nl103-09 0-707  0-906*

nl35

0279 0-384 0436 0427 0405 0462 0-637

0-807 0-553

0-784  0-936*

[M-H]1—

0-505 0-506 0-450 Shikimate

0-641

0-581

0-618 0-878 0347 0-107 0394 0597 0-520 0-481

0-617 0-885 0429 0-101

nl73-09 0-578  0-900*

[M-H]1—

Lo'pez-AlvareZ et al. — Phenotypic and metabolomic study of annual Brachypodium species

[M-H]1—

13C isotope of shikimate

Quinate

0497 0-437 0519

0488 0-633

0-444  0-405

0-533

0-345

nl74-09 0-724  0-929*

0-534 0-496 0463

0-608 0-530 0492 0-588 0-682

0-610 0-856 0429 0-189 0423

nl191-09 0-605 0-919*

[M-H]1—

13C isotope of quinate

0-534  N-acetyl tyrosine

0-547 0-528 0474
0-546 0-430 0-571

0-551

nl92-09 0-590 0-897* 0-646 0-856 0-394 0-218 0460 0-628 0-587 0-552 0-633 0-707

[M-H]1—

[M-H]1—

0-561

0-076 0460 0-699 0-608 0-556 0-640 0-655

0-316  0-481

0-343

n223-09 0762 0-911* 0-638 0-819 0-583

n236-09 0-658 0-714 0-823

n222-09 0-:528 0-873 0-650 0-890*
n289-18 0-697  0-890*

[M-H]1—

Sinapate

0-596 0-463 0447 0-548 0672

[M+K-2H]1—
[M-H]1—

0-891* 0-768 0-690 O-phosphohomoserine

0752 0-614 0-835 0-808 0:730 0-643

0-573 0-421

0-571

Sedoheptulose 7-phosphate

0756 0700 0-630 f3-1,4-mannose-N-acetyl glucosamine

0-648 0-515 0-578 ADP-glucose

0-547 0-490 0-445

0-636  0-817 0398 0229 0:347 0425 0-526 0483 0-466 0-694

[M+K-2H]1—
[M-H]1—

0723 0-666 0-553 PG(18:1(112)/22:6(4Z,72,10Z,13Z,16Z,19Z))** [M-H]1—

0-866 0-780 0-874 0-876 0-891* 0-760

0-539 0-661
0-663

0-571

n420-18 0472 0632 0811
n588-09 0-736  0-892*

0-500 0-628 0-572 0554 0-546 0-583 0-631

0-658 0-803

0-697 0-811

0532 0-309 0:576 0-588 0:659 0626 0-673 0-651

0318 0-030 0-237 0478 0311

n819-63 0-598 0-907*

[M-H]1—

0290 0-416 Oxalate

0311
p445-27 —0-576 —0-751 —0-607 —0-534 —0-320 —0-352 —0-480 —0-519 —0-778 —0-764 —0-601 —0-904* —0-749 —0-723 —0-580 Unknown

0-284 0-426 0-558

0-892%*

n89-09 0-666 0-869 0-521

[M+K]1+

0-897* 0-768 0-536 PC(16:0/18:2(2Z,4Z))**

0-806 0-788 0-735 0-470

0-582 0-687 0409 0625 0-537 0-834 0-581
p815-54 0-555 0-724 0.758 0-530 0-730 0-594 0-787 0-620 0-804 0.770 0-716 0-663

p816-54 0-548 0-747 0708 0493 0-699 0-593 0790 0-664 0-820 0-803 0-765 0-724

p796-63 0-413

[M+Na]l+
[M+K]1+
[M+K]1+

SQDG(16:0/16:1(11Z))**
0-913* 0-758 0-607 PC(18:3(8E,10E,12E)/18:3(8E,10E,12E))**

0-900% 0746 0-608 PC(18:0/18:3(9Z,12Z,15Z)/0:0)*

0-904* 0-745 0764 PG(18:0/20:3(5Z,8Z,11Z))**

0-746  0-633

0-910*

0-801 0-589 0-813 0-798 0:737 0-590

0493 0647 0-531
p823-54 0690 0-692 0-840 0-585 0-668 0478 0-772 0-563

p822-54 0:593 0-688 0-741

[M+Na]l+

0-809 0-776 0-682 0-591

*Bonferroni-corrected significant P values (< 0-05); **many possible isomers with this particular accurate mass (see Table S9).

between the species from five to eight (Table 1, Fig. 2). To
the five characters (LGCL, PGL, UGL, LL, AL) found previ-
ously Catalan er al. (2012) to significantly discriminate be-
tween the three taxa when inbred lines were grown under
controlled greenhouse conditions, the present study adds four
more characters (H, SLW, IL, NSI) and discards one (UGL)
for discriminating between wild individuals of the three spe-
cies. Exhaustive analysis shows that despite an increase in
intraspecific phenotypic variability within each species
(Tables 1 and 2, Fig. 2) when compared with Catalan et al.
(2012), the number of discriminant taxonomic traits also rises
(from the same 15 original characters) as a consequence of
the more robust statistical inference and the underlying evolu-
tionary phenotypic differentiation of the three members of the
complex (Catalan er al., 2012, 2014).

This study has also shown geographically diverse pheno-
typic data for the poorly known species B. stacei (Tables 1
and 2, Table S1, Fig. 2). This taxon emerges as the tallest
plant and with some of the largest features (inflorescence,
number of spikelets per inflorescence, lemma and awn) of
the three species of the complex, exceeding the measure-
ments of the allotetraploid B. hybridum for these traits
(Table 1, Fig. 1). Additionally, this study confirms previous
findings of Catalan et al. (2012), such as smaller stature and
shorter features (12 out of the 15 studied traits) of B. dis-
tachyon with respect to its two congeners. The considerable
phenotypic gap observed between the two diploid species B.
stacei and B. distachyon (Table 1, Fig. 2) could be a conse-
quence of their distinct evolutionary origins, large diver-
gence and genomic expression (Catalan et al., 2012, 2014).
The allotetraploid B. hybridum shows significantly larger
measurements for two non-endoreduplicating plant cell
types, LGCL and PGL, than its two diploid progenitors
(Table 1). Correlations between increasing ploidy level and
larger pollen grain and stomata guard cell sizes have been re-
ported in other pooids, like Lolium (Speckmann et al., 1965),
Bromus (Tan and Dunn, 1973) and Dactylis (Bretagnolle and
Lumaret, 1995). These traits could be also used as proxies to
differentiate B. hybridum from its parents.

The use of morphological traits is considered to be limited,
because most of the traits are multigenic, quantitative charac-
ters that could be influenced by environmental conditions,
plant age, phenological stage or cultivation conditions
(Smykal et al., 2008). However, the data presented here sup-
port the stability of the phenotypic characters in natural popu-
lations when compared with the propagated inbred lines
(Table 3). Most of the studied characters show the same dis-
criminant value to separate between wild, cultivated, or wild
and cultivated individuals of B. distachyon, B. stacei and B.
hybridum (Table 3, Table S5). Furthermore, three of the traits
(PGL, SL, NFI) have been shown to be similarly discriminant
among the three species, both in wild and inbred plants.
Results of this study suggest that these traits could be genetic-
ally fixed and might constitute a valuable tool to separate and
identify individuals of the B. distachyon, B. stacei and B.
hybridum. However, the precise phenotypic characterization
and identification of all individuals is not always possible, as
demonstrated by the failure to correctly classify a few indi-
viduals of B. stacei and B. hybridum, erroneously assigned to
other species (Table 3, Fig. 4A, B). Because the taxonomic
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identity of these individuals was confirmed by chromosome
counting and/or DNA barcoding, their diverging phenetic fea-
tures could have resulted from extreme plasticity or could be a
consequence of the restricted number of phenotypic traits used
in the study. By contrast, the low percentages of failures de-
tected (up to 20 % in B. stacei, 8 % in B. hybridum and 0 % in
B. distachyon) suggest that the morphological traits employed
here are good diagnostic features to differentiate these taxa. In
a recent updated taxonomic description of these species, five
additional qualitative phenotypic traits have been found to be
useful discriminators: leaf blade colour to separate all three spe-
cies; occasional production of short rhizomes to discriminate B.
stacei and B. hybridum; and leaf blade shape, softness and hairi-
ness to separate B. stacei from the other two species (Catalan
etal.,2016a).

The analysis of phenotypic variation within each of the three
species of the B. distachyon complex has also untapped the or-
ganization of their intraspecific diversity (Fig. 5). The geo-
graphical phenotypic structure observed between the northern,
central and southern Iberian populations of B. distachyon (Fig.
5A) might reflect different adaptations to environmental condi-
tions (Manzaneda er al., 2015) and could also be indicative of
genotypic differences (LOopez-Alvarez and Catalan, unpubl.
res.). Also, the observed differences in plant height (H), with
central and northern Spanish individuals being significantly
taller than southern Spanish individuals (Table 4), has been cor-
roborated in independent phenomic studies of Iberian B. dis-
tachyon inbred lines (E. Pérez-Collazos, University of
Zaragoza (Spain), and J. Finch, Aberystwyth University (UK),
pers. comm.). The broader but less congruent geographical
structure of B. stacei phenotypes (Fig. 5B) suggests the isola-
tion of circum-Mediterranean-edge Iranian and continental-is-
land Balearic populations versus the proximity of largely
disjunct Israel-southern Spain (Almeria) and southern Spanish—
Canary Islands populations. Long-distance dispersal of seeds
has been proposed for B. distachyon and B. hybridum (Vogel
et al., 2009) and could also operate in B. stacei. The low geo-
graphically structured variation within B. hybridum detects,
however, a slight differentiation of the Balearic and northern
Spanish populations from the rest (Fig. 5C). It is important to
stress, however, that the southern Spanish allotetraploid indi-
viduals derived from the unusual cross of maternal B. dis-
tachyon parent and paternal B. stacei parent (cf. Lopez-Alvarez
et al., 2012) are morphologically close to other Mediterranean
individuals derived from the common cross of maternal B. sta-
cei and paternal B. distachyon (Fig. 5C). In allopolyploid
grasses different bidirectional crosses of parental species might
be the origin of the same or different hybrid allopolyploid spe-
cies (e.g. Aegylops; Meimberg et al., 2009). However, our data
corroborate the idea of a unique speciation event in the origin
of B. hybridum, even if its individuals could have originated
from alternative bidirectional crosses between different ances-
tral diploid progenitors (Catalan et al., 2016b).

Metabolomic characterization of B. distachyon, B. stacei and B.
hybridum and association of phenotypic with metabolite traits

The use of FIE-MS fingerprinting has provided a prelimin-
ary metabolite profile for the three species of the B. distachyon
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complex. This study shows that a large number of metabolites
(434) could be used to discriminate between B. distachyon, B.
stacei and B. hybridum (Tables S9-S12, Fig. 6). For example,
citrulline content is significantly larger in B. hybridum than in
its parental species, of which B. distachyon shows the lowest
concentration (Fig. 6A). Citrulline has been shown to play an
important role in transporting and storing nitrogen, and is re-
ported to be an important biochemical indicator of plant toler-
ance of saline and drought stresses (Kawasaki et al., 2000;
Kusvuran et al., 2013). In this study, citrulline levels reflect cli-
matic variation from warmer and more aridic Iberian places (B.
hybridum ecotypes), through warm but shady places (B. stacei
ecotypes) to more mesic places (B. distachyon ecotypes) (Fig.
1; Catalan er al., 2016a), supporting the different ecological
adaptations of the three species’ ecotypes to their respective en-
vironments. Another example is a phospholipid assigned as
phosphatidylcholine(36:6) [PC(36:6)], whose levels were sig-
nificantly higher in B. hybridum than in its parental species
(Fig. 6A). Drought stress has been shown to induce changes in
leaf lipid composition by increasing the levels of phosphatidyl-
choline, suggesting specific adaptive alterations in membrane
composition to compromise drought stress tolerance (Vigh
et al., 1986; Toumi et al., 2008).

Discriminant analysis indicates not only that each species
could be significantly separated from each other (Fig. 7, Fig.
S1) but that B. distachyon is clearly apart from B. stacei and B.
hybridum, followed by metabolomic differentiation of the latter.
This pattern parallels what has been observed in the phenotypic
analysis (Fig. 4) and in molecular relationships between the
species, especially in the plastid genome-based reconstructions
(Lopez-Alvarez et al., 2012). Thus, metabolite fingerprinting is
concordant with phenotypic analysis within the B. distachyon
species complex. The Pearson correlation analysis between
phenotypic and metabolomics traits indicated a significant asso-
ciation of PGL and LL with two distinct groups of metabolites,
respectively: members of the phenolics biosynthesis and lipids.
Pollen grain length showed significant correlations with metab-
olite signals for shikimate, the '*C isotope of shikimate, sina-
pate, quinate, the '>C isotope of quinate as well as
sedoheptulose-7-phosphate, ~ADP-glucose and PG(40:7).
Lemma length correlated mainly with lipids, including phos-
phatidylcholines (Table 5). Since the correlation analysis
applied here is only preliminary and these phenotypic traits are
among the best markers to discriminate the three species, PLG
in particular is likely genetically fixed (Table 2, Table S3), one
has to consider chance: high, significant correlations found be-
tween metabolites and phenotypic traits might reflect their stat-
istical value in separating the three species, rather than a direct
association with PGL and LL. However, there is evidence that
these results indicate a potentially strong link between PGL and
lignin/phenolic biosynthesis, and between LL and lipid metab-
olism. Pollen grain length can be associated with phenolic com-
position as it provides structural support to the pollen grain,
because mature angiosperm pollen grains are covered by three
distinct layers of cell walls: (1) an outer exine coating, com-
posed of a tough, chemically resistant biopolymer (sporopolle-
nin), which is interrupted by openings called apertures; (2) an
inner intine coating, made primarily of cellulose; and (3) a pol-
len coat, composed of lipids, proteins, pigments and aromatic
compounds, that fills the sculpted cavities of the pollen exine
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wall (Edlund et al., 2004). Sporopollenin, which is present in
the spore/pollen walls of all land plants, comprises both ali-
phatic (unsaturated lipids) and aromatic (phenolics) compo-
nents and is regarded as one of the most recalcitrant
biomacromolecules, providing protection against harsh terres-
trial environments, including a range of abiotic stresses (de
Leeuw et al., 2006; Fraser et al., 2012). Results therefore show
that phenolic biosynthesis may be crucial for pollen grain de-
velopment as phenolics provide structural components for both
sporopollenin and pollen coat formation. An alternative explan-
ation is that the levels of accumulation of these metabolites in
the different species indicate that some biochemical pathways
have or have not been switched on yet. A genome-wide SNP
scan study to identify trait-regulatory genomic loci in chickpeas
showed that upregulation of a superior gene haplotype corre-
lated with increased transcript expression of the Ca Kabuli
CesA3 gene in the pollen and pod of an accession with a high
pod/seed number, resulting in higher cellulose accumulation for
normal pollen and pollen tube growth (Kujur et al., 2015).
Environmental triggers like temperature or drought might also
influence the availability of metabolites for enzymatic systems
regulating pollen grain and lemma length, but gaps in our
knowledge of how constraints affect plant survival and seed
production are being filled only slowly (Ejsmond et al., 2011).

A number of studies have corroborated the differentiation of
the three species of the B. distachyon complex, like those based
on seed protein data (Hammami et al., 2011), phenotypic and
cytogenetic traits and nuclear and plastid phylogenetic markers
(Catalan et al., 2012), nuclear single sequence repeats (SSRs)
(Giraldo et al., 2012), DNA barcoding (Lopez-Alvarez et al.,
2012), isozymes (Jaaska, 2014) and comparative chromosome
painting (Idziak et al., 2011; Betekhtin et al., 2014). This study
shows that metabolomics can discriminate the three species.
Furthermore, preliminary metabolite discriminant analysis sug-
gests a closer metabolomic affinity of B. hybridum to its mater-
nal B. stacei parent than to its paternal B. distachyon parent for
the studied ecotypes (Fig. 7). The closeness of the allotetraploid
hybrid to its B. stacei parent, supported by both phenotypic and
metabolomic data (Figs 4 and 7) is also in agreement with
whole-genome sequence (Vogel, Joint Genome Institute
(USA), pers. comm.) and environmental data; environmental
niche model analyses demonstrated a larger niche overlap and
niche affinity of the B. hybridum niche to that of B. stacei than
to the B. distachyon niche (Lopez-Alvarez et al., 2015).
Because phenotypic and metabolomic data reflect the summed
effects of genotypic composition and environmentally mediated
gene expression, larger genomic, phenomic and metabolomic
analyses should be conducted on higher numbers of replicates
and different ecotypes of the three species to identify the allelic
variants and regulatory elements responsible for the observed
phenotypic and metabolomics profiles at both species and eco-
type level. The preliminary phenotypic and metabolomic ana-
lyses performed in this study have set the way for future, more
exhaustive, GWAS studies.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxfordjour
nals.org and consist of the following. Tables S1-S12 and
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Figures S1 and S2A: detailed description of phenotypic and
metabolomics variables analysed in inter and intraspecific stat-
istical studies of Brachypodium distachyon, B. stacei and B.
hybridum populations.
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