Skip to main content
. Author manuscript; available in PMC: 2017 Dec 1.
Published in final edited form as: Psychometrika. 2016 Jul 11;81(4):1014–1045. doi: 10.1007/s11336-016-9506-0

Table 3.

Model parameter counts (K >1). The 1st row counts all parameters. The 2nd through 4th rows list three parameterizations of a baseline model. The remaining rows list models whose invariant parameters are noted in Column 1. For all rows, 12m(m-1)G factor covariances are not listed but counted. Negative numbers are the number of constraints on diag(Σ). The entry with *** is pKG − (G − 1)(p + m).

T Λ ν diag(Θ) κ diag(Φ) diag(Σ) Total
Total pKG pG pG pG mG mG 0 G(p(K + 3) + m(m + 3)/2)

Condition 7 pKG pG 0 pG 0 0 pG
Condition 8 pKG pG 0 0 0 0 0 G(p(K + 1) + m(m − 1)/2)
MYT *** (pm)G 0 pG m(G − 1) mG p

T pK pG p(G − 1) pG 0 0 p p(K − 2) + G(3p + m(m − 1)/2)
Λ pKG 0 0 pG 0 0 0 same as baseline
ν or Θ same as Condition 8 same as baseline

T & Λ pK p p(G − 1) pG 0 m(G − 1) p G(2p + m(m + 1)/2) + p(K − 1) − m
T & ν pK pG 0 pG mG 0 p G(2p + m(m + 1)/2) + p(K − 1)
T & Θ pK pG p(G − 1) p 0 0 p G(2p + m(m − 1)/2) + p(K − 1)
Λ & ν same as loading invariance same as baseline
Λ & Θ pKG p 0 p 0 m(G − 1) p G(pK + m(m + 1)/2) + pm
ν & Θ same as Condition 8 same as baseline

T, Λ & ν pK p 0 pG m(G − 1) m(G − 1) p G(p + m(m + 3)/2) + pK − 2m
T, Λ & Θ pK p p(G − 1) p 0 m(G − 1) p G(p + m(m + 1)/2) + pKm
T, ν & Θ pK pG 0 p mG 0 p G(p + m(m + 1)/2) + pK
Λ, ν & Θ same as loading and unique variance invariance

all four pK p 0 p m(G − 1) m(G − 1) p Gm(m + 3)/2 + p(K + 1) − 2m