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Abstract Epithelial–mesenchymal transition (EMT) is

an essential process for morphogenesis and organ

development which reversibly enables polarized epithe-

lial cells to lose their epithelial characteristics and to

acquire mesenchymal properties. It is now evident that

the aberrant activation of EMT is also a critical mech-

anism to endow epithelial cancer cells with migratory

and invasive capabilities associated with metastatic

competence. This dedifferentiation program is mediated

by a small cohort of pleiotropic transcription factors

which orchestrate a complex array of epigenetic mech-

anisms for the wide-spread changes in gene expression.

Here, we review major epigenetic mechanisms with an

emphasis on histone modifications and discuss their

implications in EMT and tumor progression. We also

highlight mechanisms underlying transcription regulation

concerted by various chromatin-modifying proteins and

EMT-inducing transcription factors at different molecu-

lar layers. Owing to the reversible nature of epigenetic

modifications, a thorough understanding of their func-

tions in EMT will not only provide new insights into our

knowledge of cancer progression and metastasis, but also

facilitate the development of diagnostic and therapeutic

strategies for human malignancy.
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Introduction

During embryonic gastrulation of metazoans, formation of

mesoderm starts from the primitive streak of the primitive

ectoderm, where a small population of polarized epithelial

cells loses their tight cell–cell junctions and adhesions,

undergoes dedifferentiation and eventually migrates along

the extracellular space underneath the ectoderm. The pro-

cess was thus defined as epithelial–mesenchymal transition

(EMT) and has been observed during a variety of tissue

remodeling events, including the formation of neural crest,

cardiac valve, and secondary plate [1]. In addition to

enabling the inter-conversions of epithelial cells to distinct

cell types for tissue and organ formation during develop-

ment, EMT participates in wound healing, tissue

regeneration, and organ fibrosis in adulthood to generate

repair-associated mesenchymal cells or fibroblasts [2, 3].

Furthermore, accumulating evidences suggests that the

progression of most carcinomas is associated with the

acquisition of abilities for epithelia tumor cells to escape

from the primary site and invades through the basement

membrane. This process recapitulates the developmental

EMT program and has emerged as a critical early step for

malignant progression and metastasis, the most common

fatal consequence of carcinogenesis [2, 4, 5].

EMT is typically characterized by alterations in gene

expression, loss of cell polarity and contacts, and gain of

motility and invasiveness [6]. Certain cancer cells also

acquire cancer stem cell (CSC) like properties and thera-

peutic resistance through this dedifferentiation program

[5, 7]. The physiological activation of EMT can be trig-

gered by extracellular signals, such as ECM, soluble

growth factors TGF-b and FGF, Wnt and Notch proteins,

or by intracellular cues, such as oncogenic Ras or NF-jB

signaling [8, 9]. In response to ligands from nearby
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microenvironment, receptor-mediated signaling first acti-

vates intracellular molecules, including the Src tyrosine-

kinases and the small GTPase family members. These

effectors next orchestrate the changes in cytoskeletal

organization and disassemble cell–cell junction complexes.

A cohort of transcription factors, including two double zinc

finger and homeodomain factors (ZEB1/2, the Snail family

of zinc finger proteins (SNAI1/2/3), and the family of

bHLH factors (TWIST1/2, E12/E47) becomes expressed

and alters gene expression patterns [10, 11]. Although most

EMT-inducing transcription factors (EMT-TFs) were

originally implicated in embryogenesis and cell differen-

tiation, their elevated expression has been well documented

in many invasive tumors [11, 12]. These EMT-TFs func-

tion as molecular switches, convert the activated signaling

pathways to transcriptional reprogramming and confer

epithelial–mesenchymal plasticity.

One of the most-characterized hallmarks of EMT is the

functional loss of E-cadherin, a pluripotent calcium-de-

pendent adhesion molecule expressed in most epithelial

tissues to connect adjacent epithelial cells. The loss of

E-cadherin results in disaggregation of adjacent cancer

cells and thus contributes to metastatic dissemination

[13]. Although loss or reduction of E-cadherin expression

can be occasionally caused by genetic lesions, transcrip-

tional repression has emerged as a fundamental

mechanism during EMT and tumor progression [14].

E-cadherin promoter harbors E-box elements which are

directly bound by EMT-TFs for repression, such as

SNAI1/2, ZEB1/2, and E47. EMT-TFs also suppress

expression of other cell junction proteins, including

Claudins and Desmosomes to promote EMT. Several

other transcription factors, such as TWIST1, FOXC2, and

TCF4 trigger EMT without binding to E-cadherin pro-

moter. It has been shown that TWIST1 binds to SNAI2

promoter to induce its expression and epithelial gene

silencing [15]. In NMuMG cells, Snail1 also induces

expression of Twist1 and Ets1 which further bind to Zeb1

promoter to activate transcription [16], suggesting that

different EMT-TFs also function synergistically to confer

EMT. Since migrating tumor cells are believed to undergo

a reverse mesenchymal-epithelial transition (MET) at the

distal site to enable their colonization and metastasis, the

acquisition of mesenchymal characteristics by epithelial

cancer cells through EMT need not be permanent. In this

scenario, the reprogramming of gene expression provides

a rapid regulatory mechanism to switch epithelial–mes-

enchymal states during cancer progression. Given that

most eukaryotic transcription factors do not have long

residence times at the binding sites and turn over rapidly,

a variety of epigenetic regulators and modifications are

considered as critical mechanisms to integrate signals

from multiple transcription factors.

Epigenetics was defined as ‘‘the study of mitotically

and/or meiotically heritable changes in gene function that

cannot be explained by changes in DNA sequence’’ [17]. In

eukaryotic cells, DNA is wrapped around histone octamers

to form nucleosomes that are the basic repeating units of

chromatin. Individual nucleosomes can pack against each

other to form several higher order structures which reduce

DNA availability and impede transcription. However, the

chromatin structure is dynamically regulated by numerous

epigenetic modifications, including chromatin remodeling,

DNA methylation, histone modifications, and histone

variants, which not only reflect, but also affect the tran-

scriptional states of underlying genes [18]. These

epigenetic modifications are delicately balanced in normal

cells, while small changes in a given parameter can lead to

major consequences and ultimately result in cellular

transformation and malignant outgrowth [19]. In this

review, we discuss major epigenetic mechanisms and focus

on histone modifications which confer transcriptional

reprogramming to regulate EMT and tumor progression.

Chromatin remodeling in EMT

ATP-dependent chromatin remodeling is one of the well-

known mechanisms that permit active compaction and

decompaction of DNA for gene expression regulation,

DNA replication, chromosome segregation, DNA repair,

and recombination. Currently, four major families of

chromatin remodeling complexes have been characterized,

including SWI/SNF, ISWI, CHD, and INO80. These multi-

protein complexes contain a catalytic ATPase subunit

which utilizes ATP hydrolysis to alter histone-DNA con-

tacts and restructure nucleosomes [20]. They also harbor

distinct non-catalytic components that are responsible for

the regulation of complex targeting and specific nucleo-

some positioning activities to determine the gene

expression programs and cell fate. The perturbation of

chromatin remodeling complexes has been well docu-

mented in malignant progression [21]. Over-expression of

MTA1/2, the components of the CHD family of NuRD

chromatin remodeling complex, correlates with invasive-

ness of multiple cancers. On the contrary, MTA3 has been

shown to directly inhibit transcription of SNAI1 to abro-

gate EMT and metastasis of breast cancer [22]. Recent

cancer genome sequencing projects uncovered that *20 %

of human tumors contain mutations in at least one member

of the SWI/SNF remodeling complex [23]. The catalytic

subunit of SWI/SNF complex BRG1 is one of the most

commonly mutated subunits across cancer types, while loss

of a non-catalytic component BRM is also a contributing

factor and potential marker for lung, prostate, and gastric

cancers [24], suggesting that SWI/SNF complex function
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as a tumor suppressor. However, BRG1 can also be

recruited by ZEB1 to E-cadherin promoter for transcription

silencing [25]. Another SWI/SNF subunit BAF60c up-

regulates WNT5a expression and activates WNT signaling

to promote EMT [26], indicating that the same remodeling

complex also promotes tumor progression. Recently, dis-

crepant tumor-suppressive and oncogenic activities of Brg1

have been reported at distinct stages in a Kras-driven

pancreatic cancer mouse model [27]. These findings sug-

gest that chromatin remodeling factors possess antithetical

functions that are precisely regulated during tumorigenesis

and tumor progression in a stage- and/or tissue-dependent

manner through different mechanisms [28].

DNA methylation in EMT

DNA methylation is a covalent modification usually

occurs at the 50-position of the cytosine ring (5mC) within

CpG dinucleotides and is associated with transcriptionally

repressed chromatin. It is one of the best-characterized

epigenetic modifications that play pivotal roles in various

physical and pathological processes [29, 30]. In mammals,

about 70–80 % of CpGs are methylated by three active

DNA methyltransferases (DNMTs). While DNMT1 pri-

marily acts on hemi-methylated CpG to maintain DNA

methylation patterns during cell division, DNMT3A and

3B introduce de novo DNA methylation [30]. Aberrant

DNA methylation is often observed in cancers, including

hypermethylation of CpG islands and hypomethylation of

gene-poor regions, which leads to tumor suppressor gene

silencing, genomic instability, loss of genomic imprinting,

etc. [31]. The overall CpG methylation change was not

detected during EMT in genome-wide profiling studies

using different models. However, the DNA methylome

undergoes selective CpG site methylation changes in

discrete genomic regions upon induction of EMT, which

are in association with transcription regulation of EMT-

related genes [32, 33]. Among them, silencing of E-cad-

herin correlates with promoter hypermethylation in a wide

range of cancer cells [34, 35]. Several EMT-TFs,

including SNAI1 [36] and ZEB1 [37], are able to recruit

different DNMTs to E-cadherin promoter for CpG

methylation. It has also been shown that the recruitment

of DNMT1 relies on TGFb-SMAD2 signaling pathway

[38], whereas DNMT3A targeting is facilitated by high-

mobility group protein HMGA2 [39]. DNA methylation-

associated silencing of miR-200 family members also

occurs during EMT [40–42], and both DNMT1 and

DNMT3A are involved in establishing DNA methylation

on promoter of these key regulators of epithelial pheno-

types [43, 44]. Intriguingly, recent genomic studies have

identified DNMT3A mutations in 22 % of adult AML that

was associated with the increased risk of relapse [45, 46],

revealing a tumor suppressor function of DNMT3A in

haematological malignancies [47]. Consistently, depletion

of Dnmt3a in a lung cancer mouse model significantly

promotes tumor growth and progression [48]. Although

expression changes were observed with genes involved in

angiogenesis, cell adhesion, and cell motion, whether

Dnmt3a deficiency directly contributes to EMT in vivo is

not clear.

It is believed that DNA methylation-mediated tran-

scription silencing is conferred by the recruitment of

various methyl-DNA-binding domain (MBD) proteins,

such as MeCP2, MBD1-4, and Kaiso [49]. Through inter-

action with different chromatin-modifying proteins

(discussed below), MBD proteins can transduce the

methyl-CpG signal into a compacted chromatin environ-

ment for transcription repression [50]. It has been shown

that MeCP2 and MBD1/2 bind to methylated CpG island

within E-cadherin promoter in a differential manner and

their binding correlates with gene silencing in various

tumor cells [51]. Although different CpG methylation

patterns have been proposed to directly recruit different

sets of MBD proteins, other mechanisms also exist. For

example, MBD2/3 is key components of NuRD chromatin

remodeling complex [52] which was also co-purified with

TWIST1 [53]. In pancreatic cancer cells, TWIST1 also

associates with MBD1 on E-cadherin promoter for gene

silencing and EMT, suggesting that MBD proteins can be

recruited by this EMT-TF [54]. Moreover, promoter CpG

methylation-associated E-cadherin silencing correlates

with elevated MeCP2 expression in colorectal cancer tis-

sues [55] as well as over-expression and the nuclear

localization of Kaiso during progression of prostate and

breast cancers [56, 57]. In addition to E-cadherin promoter,

Kaiso directly binds to methylated sequence in microRNA

miR-31 promoter and promotes EMT through a different

pathway [56, 58]. Therefore, MBD proteins are critical

effectors in the methyl-CpG-mediated epithelial gene

silencing during EMT.

Although 5mC is a stable epigenetic mark, passive and

active losses of DNA methylation were observed in dif-

ferent biological contexts. While passive DNA

demethylation occurs during successive replications, active

demethylation can be mediated by three ten–eleven

translocation (TET1-3) proteins. Through the three con-

secutive oxidation reactions, these oxygenases can convert

5mC to 5-hydroxymethylcytosine (5-hmC), 5-formylcy-

tosine (5fC), and 5-carboxylcytosine (5caC) [59]. In mES

cells, TET1 interacts with SIN3A co-repressor complex

and significantly contributes to its recruitment and the

mediated transcription repression [60]. Although SIN3A

complex can be recruited by SNAI1 to E-cadherin pro-

moter in epithelial cell lines [61], whether TET1 is
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involved in SNAI1-mediated gene silencing and EMT

remains unknown. In several cancer cells, TET1 interacts

with hypoxia inducible factors HIF-1a and HIF-2a to

enhance their transactivation activities. Together with HIF-

2a, TET1 functions as a transcriptional co-activator to

enhance the expression of INSIG1, a master regulator of

cholesterol biosynthesis and contributes to hypoxia-in-

duced EMT [62]. Although the 5mC-to-5hC conversion

was detected on the promoter, the synergistic activation of

INSIG by TET1 and HIFs is independent of its DNA

demethylation activity.

Consistent with the importance of DNA methylation in

epithelial gene silencing and EMT, treatment with DNA

methylation inhibitor 5-aza-20-deoxycytidine (5-Aza-dC)

effectively induces E-cadherin expression in a variety of

cancer cell lines and restores epithelial phenotypes

[63–66]. Although this approach has been applied in clin-

ical settings to treat myelodysplastic syndrome and

leukemia [67], DNA-demethylating agent also non-

specifically activates the expression of many non-epithelial

genes and leads to obvious side-effect toxicities. Further-

more, genome-wide DNA hypomethylation induced by

Dnmt1 deficiency increases chromosome instability and

thus raises tumor incidence in mice [68, 69]. Given that the

reverse MET process is required for migrating cells to

colonize a secondary site, inhibition of DNA methylation

during the late stage of tumor progression could also pro-

mote metastasis. Thus, the utilization of DNA

demethylating agents alone for anti-cancer therapy will

need to be carefully evaluated.

Histone modifications

As the nucleosome core, histone octamer is composed of

one H3–H4 tetramer and two separate H2A–H2B dimers.

While the globular domains of histone proteins interact

together and contact closely to DNA, the flexible N-ter-

minal domains (also called histone tails) are subjected to

nine different types of post-translational modifications

[18]. These modifications, including acetylation, methyla-

tion, phosphorylation, ubiquitination, and their different

combinations have been proposed to constitute a unique

‘‘code’’ to confer specific biological outcomes [70, 71]. To

simplify their diverse functions in transcription regulation,

histone modifications can be briefly grouped into two

major categories for either transcription activation or

repression, representing their associated chromatin envi-

ronments. Given that a transcription reprogramming occurs

during EMT, wide-spread changes in histone modifications

serve as a regulatory platform to orchestrate the simulta-

neous repression of epithelial genes and activation of

mesenchymal genes. Here, we focus on the well-studied

histone acetylation and methylation, and discuss their

diverse regulations and functions in this process.

Permissive histone modifications in EMT

Histone acetylation

The actively transcribed euchromatin represents a more

relaxed genome partition, where DNA is accessible to

transcription machineries. These regions usually have high

level of histone lysine acetylation that is catalyzed by

several families of histone acetyltransferases (HATs),

including PCAF, p300/CBP, TIP60, and hMOF [72]. The

addition of an acetyl group to lysine residue is believed to

neutralize the positive charge of histone, weaken histone-

DNA, and/or nucleosome–nucleosome interactions, and

thus potentiate transcription. In Wnt- and b-catenin-de-

pendent EMT pathway, nuclear localized b-catenin binds

to T-cell factor (TCF), recruits p300/CBP to assemble a

transcription activation complex on target gene promoters

and up-regulate their expression [73, 74]. Intriguingly,

p300 and PCAF have been shown to interact with ZEB1

and acetylate this EMT-TF. The resultant acetylation dis-

sociates ZEB1 from miR-200c/141 promoter and induces

microRNA expression [75]. Furthermore, over-expression

of SNAI1/2 results in an up-regulated TGFBR2 expression

and increased TGF-b signaling. Although it is unknown

whether SNAI1/2 directly activates transcription, increased

H3K9 acetylation was detected on TGFBR2 promoter [76].

In several breast cancer cells, hMOF-catalyzed promoter

H4K16 acetylation is also important to maintain expression

of several EMT-related tumor suppressor genes, including

TMS1, E-cadherin, and ESR1 [77]. In addition to E-boxes,

E-cadherin promoter harbors four HNF3-binding sites. The

hepatocyte nuclear factor HNF3 also cooperates with p300/

CBP on E-cadherin promoter to activate gene expression

and antagonize EMT and metastatic potential of breast

cancer cells [78].

In cells, lysine acetylation is dynamically counteracted

by histone deacetylases (HDACs), which restore the posi-

tive charge of the lysine, stabilize the local chromatin

architecture, and thus predominantly function as tran-

scription co-repressors. There are about 18 mammalian

HDACs that are grouped into four classes. Inhibiting

enzymatic activities of class I/II or class III HDACs

increases H3/H4 acetylation on E-cadherin promoter and

de-represses gene expression in multiple cancer cell

lines further support the importance of HDACs and histone

deacetylation in epithelial gene silencing and EMT

[61, 79]. Similar to HATs, different HDACs often exist in

large protein complexes which can be recruited to target

promoters by EMT-TFs. For instance, SNAI1 has been
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shown to recruit HDAC1/2-containing SIN3A complex to

deacetylate histones on E-cadherin promoter for gene

silencing [61]. During chick neural crest EMT, SIN3A

interacts with a PHD domain -containing protein PF1

which recruits the complex and SNAI2 for transcription

silencing of E-cadherin and Cad6b through histone

deacetylation [80]. Although the molecular details of these

recruitments are not clear, blocking PF1-SIN3A interaction

in triple negative breast cancer cells not only de-represses

expression of E-cadherin and ESR1, but also reduces

invasive morphogenesis, CSC properties, and in vivo

metastasis [81]. In addition, SNAI2/SLUG binds to E-box

on BRCA2 promoter and recruits HDAC1-containing CtBP

complex for gene silencing [82], suggesting that it could

suppress E-cadherin expression in a similar manner. ZEB1/

2 could also recruit CtBP1/HDAC complex to E-cadherin

promoter, as they were co-purified in a large co-repressor

complex [83]. This possibility is supported by findings that

ZEB1 recruits HDAC1/2 to E-cadherin promoter for

repression in pancreatic cancer cells [84]. In prostate can-

cer cells, ZEB1 has been shown to recruit SIRT1, a class III

HDAC for E-cadherin silencing, and to promote EMT and

metastasis in vitro and in vivo [85]. Moreover, ZEB1-in-

duced EMT is accompanied by repression of several other

epithelial genes, including EPCAM, ST14, ESRP1, and

RAB25, together with reduced H3K9 and H3K27 acety-

lation on their promoters. A global H3K27 deacetylation

was also observed, suggesting that it is a key epigenetic

event in ZEB1-induced transcriptional reprogramming

[86]. In addition to EMT-TFs, HDAC1 is co-purified with

TCF12, while the elevated expression of TCF12 and

HDAC1 correlates with poor prognosis of gallbladder

cancer patients [87], indicating that this HLH transcription

factor could also recruit HDACs for epithelial gene

silencing during EMT. Intriguingly, HDAC6 and SIRT1

have been shown to counteract p300-catalyzed acetylation

on Cortactin and thus enhance its F-actin-binding ability to

facilitate EMT and tumor progression [88, 89].

Inhibition of class I HDACs using different inhibitors,

such as TSA and SAHA, displayed antigrowth activities in

a variety of cancer cells accompanied by abrogated EMT

and metastasis in vitro and in vivo [90–93]. So far more

than 10 HDAC, small molecule inhibitors have been

applied in different clinic trials [94]. Although many of

them are promising in the treatment of hematological

tumors, they exhibited limited effects on solid tumors,

particularly on carcinomas [12]. A recent study demon-

strates that mocetinostat, but not other HDAC inhibitors,

specifically antagonizes ZEB1-mediated miR-203 repres-

sion in pancreatic cancer cells by restoring histone

acetylation on the promoter. In cancer patients, miR-203

silencing significantly associates with recurrence after

gemcitabine treatment [95]. Based on findings that

HDAC1/2 is over-expressed in metastatic melanoma tis-

sues, another report reveals that inhibition of class I

HDACs sensitizes malignant melanoma cells to apoptosis

following temozolomide treatment [96]. Together, these

results also highlight the potential of mechanism-based

combinations of selected HDAC inhibitors with standard

chemotherapy in the treatment of aggressive solid tumors.

Considering that persistent genes activation may require

targeting of multiple epigenetic silencing machineries,

HDAC inhibitors have also been utilized in combination

with 5-Aza-dC as synergistic strategies [97]. In AML

treatment, the combination of incorporated epigenetic

inhibitor was developed [98] and led to promising results in

a small cohort of patients [99]. However, recent studies

uncovered that HDAC inhibitors could promote EMT in

prostate and nasopharyngeal cancer cells [100, 101], indi-

cating that the application of HDAC inhibitors in anti-

cancer therapy has limitations as well.

Permissive histone methylation

Histone methylation occurs on the side chain of both

lysine and arginine residues. While arginine can be mono-

(me1) and di-methylated (me2, symmetrically or asym-

metrically) by protein arginine methyltransferases

(PRMTs), lysine can be catalyzed to mono-, di-, and tri-

methylated (me3) forms by SET domain-containing his-

tone methyltransferases (HMTases) and DOT1/DOT1L

[102]. Different from acetylation, histone methylation has

diverse consequences and associates with either tran-

scription activation or repression, depending on

methylation sites as well as methylation states. Among

them, histone H3K4me2/3 decorates euchromatic regions

particularly enhancers and promoters, while H3K36me3

associates with transcription elongation and thus marks

gene bodies and 30-ends. H3K79 methylation is also

associated with transcribed genes, with H3K79me2/3 near

transcription start sites and H3K79me1 spreading gene

bodies [103]. A recent study reveals that the elevated

DOT1L expression correlates with the metastatic potential

of breast cancer [104]. This H3K79 HMTase forms a

complex with c-Myc and p300 on the promoter of SNAI1

and ZEB1/2, while the catalyzed H3K79 methylation

coordinates with other epigenetic marks to activate their

expression to promote EMT and metastasis [105]. In a

TGF-b-induced EMT model, a global increase of

H3K4me3 and H3K36me3 was detected, revealing the

occurrence of a genome-wide reorganization of these two

permissive methylation marks [33]. Furthermore, PRMT1

has been shown to promote EMT, CSC properties, and

metastasis of breast cancer cells in vitro and in vivo. In

this case, PRMT1 directly catalyzes asymmetric H4R3me2

on ZEB1 promoter to activate gene expression [106].
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In addition to HMTases, histone methylation is reg-

ulated by LSD and Jumoji-domain-containing families of

histone demethylases (HDMs). The nuclear amine oxi-

dase homolog LSD1 was the first identified de novo

HDM which removes H3K4me1/2 via a FAD-dependent

oxidative reaction [107]. Over-expression of LSD1 was

detected in a variety of tumors, including colorectal,

breast and prostate [108], while its role in E-cadherin

gene silencing and EMT is also established. Inhibition of

LSD1 in prostate cancer cells de-represses epithelial

proteins, including E-cadherin and ZO1, and leads to

reduced cell migration. Given that LSD1 was co-purified

with CoREST, HDAC1/2 [109, 110], and SNAI1 [111],

it is likely that LSD1/CoREST can be recruited by

SNAI1 for H3K4me2 demethylation on E-cadherin pro-

moter [111]. The findings that LSD1 exists in the ZEB1/

2-containing CtBP1 co-repressor complex [83] suggest

that it is a key player in ZEB1/2-mediated epithelial

gene silencing and EMT as well. Although these results

suggest an EMT-promoting role of LSD1, one study

reveals that LSD1 is also an integral subunit of NuRD

chromatin remodeling complex which suppresses TGF-

B1 expression and negatively regulates EMT and breast

cancer progression [112]. Intriguingly, TGF-b treatment

up-regulates LSD1 expression in AML12 cells, which is

required to confer EMT. However, the enzymatic

activity of LSD1 antagonizes the same process [33]. As

LSD1 can also remove the repressive H3K9 methylation

after forming a complex with transcription activator AR

[113], it is possible that TGFb-induced co-activators

(including AR) could interact with LSD1 and switch its

substrate specificity to H3K9 [113, 114]. Therefore,

LSD1 can modulate EMT through multiple mechanisms.

Furthermore, over-expression of another H3K4 HDM

JARID1A strongly associates with metastasis of multiple

cancers. While JARID1A represses p27, but activates

cyclin D1/E1 and ITGB1 expression for lung cancer cell

growth and metastasis [115], it also up-regulates TNC

expression to promote breast cancer cell invasion and

metastasis [116]. In gastric cancer cells, TGF-b1 treat-

ment induces expression of JARID1A which is recruited

by p-SMAD3 to E-cadherin promoter for gene silencing

and thus promotes malignant progression [117]. In breast

cancer cells, another JARID family HDM JARID1B was

also co-purified with NuRD complex, in which JARID1B

and LSD1 coordinate to remove all three H3K4 methy-

lation forms on CCL14 promoter to antagonize the

chemokine pathway-mediated migration, angiogenesis,

and metastasis [118]. On the contrary, JARID1B has

been shown to promote EMT by suppressing the

expression of miR-200s [119] or PTEN [120] through

promoter H3K4 demethylation. Together, dynamic reg-

ulation of the permissive H3K4 methylation at different

genomic loci through different molecular mechanisms

can lead to opposite EMT outcomes.

Repressive histone modifications in EMT

Methylations on histone H3K9, H3K27, H4K20, and H4R3

(symmetric di-methylation, me2s) often associate with

transcriptionally repressed genes. In mammals, H3K9

methylation is mainly introduced by G9a, GLP, SETDB1,

and SUV39H1/2 [121]. G9a and GLP catalyze H3K9me1/

2, while the elevated G9a expression has been correlated

with poor prognosis in lung cancer patients. Mechanisti-

cally, G9a represses a cell adhesion molecule EPCAM by

catalyzing H3K9me2 on the promoter to promote EMT and

cancer metastasis of lung cancer cells in vitro and in vivo

[122]. In breast cancer cells, G9a interacts with SNAI1 and

is recruited to E-cadherin promoter for transcription

silencing. Inhibiting G9a reduces promoter H3K9me2 as

well as DNA methylation and further abrogates EMT and

tumor metastasis [36]. The similar mechanism was also

reported in head and neck squamous cell carcinoma [123],

suggesting that SNAI1-G9a mediated repression could be a

general mechanism during EMT. Intriguingly, SNAI1 also

recruits SUV39H1 to E-cadherin promoter for H3K9me3

which is important for gene repression and EMT pheno-

types in breast cancer cells [124]. Moreover, down-

regulation of SETDB1 in breast cancer cells correlates with

reduced EMT and CSC properties, suggesting that this

HMTase has similar EMT-promoting role. However, it has

been proposed that SETDB1 indirectly up-regulates

STAT3 expression and induces TWIST and C-MYC to

potentiate this process [125]. Alternatively, SETDB1 sta-

bilizes DNp63a through protein interaction, while DNp63a
might recruit SETDB1 to repress multiple EMT-related

genes [126]. In addition, amplification of SETDB1 was

observed in melanoma, lung, and liver cancers [127–129].

It represses a large set of genes, including HOX genes for

melanoma progression [127] and confers outgrowth and

advantages of liver cancer cells through methylating and

stabilizing the oncogenic p53 mutants [128]. Surprisingly,

it has also been shown that SETDB1 cooperates with

SMAD2/3 to suppress EMT and metastasis of lung cancer

cells [130].

As another major repressive modification, H3K27

methylation is catalyzed by EZH2 or its close homolog

EZH1-containing polycomb repressive complex 2 (PRC2),

which plays fundamental roles in embryonic development

and stem cell differentiation [131]. Early studies uncovered

that over-expression of EZH2 correlates with poor prog-

nosis in prostate and breast cancer patients [132].

Comparing with primary tumor, PRC2/EZH2 expression is

also elevated in the lymph mode metastatic breast cancer
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where E-cadherin expression is significantly reduced [133],

indicating a promoting role of PRC2 in EMT and malig-

nant progression. In pancreatic cancer cells, SNAI1 recruits

PRC2 to E-cadherin promoter to catalyze H3K27me3 via

interaction with a non-catalytic subunit SUZ12 [134].

SNAI1–PRC2 interaction can also be bridged by Ajuba

LIM, PRMT5 or a mediator protein MEP50 [135, 136]. In

gastric cancer cells, PRC2 is recruited through SUZ12 as

well and catalyzes H3K27me3 on KLF2 and E-cadherin

promoters [137]. In a TWIST1-induced EMT cell model,

an H3K4me3-to-H3K27me3 switch was observed on 102

EMT marker gene promoters, including E-cadherin. The

reverse H3K27me3-to-H3K4me3 switch occurred on the

promoter of a set of up-regulated mesenchymal genes,

including ZEB2, N-cadherin, PDGFRa, and ESRP1 [138].

Intriguingly, another set of promoters contains H3K4me3

and H3K27me3 marks simultaneously. This bivalent

chromatin configuration often poises genes for subsequent

activation or repression in response to specific differenti-

ation cues [19]. The amount of genes harboring this

bivalent chromatin state also increased significantly during

TWIST1-induced EMT, indicating that the dedifferentiated

mesenchymal cell state also associates with greater plas-

ticity [138]. In breast cancer cells, the bivalent chromatin

state was found on ZEB1 promoter to facilitate the rapid

switch a CSC-like state upon different EMT signals [139].

Among five characterized H4K20 HMTases, SET8 and

SUV420H1/2 are major enzymes catalyzing H4K20me1

and H4K20me2/3, respectively [140]. In breast cancer

cells, SET8 interacts with TWIST1 and is targeted to

E-cadherin and N-cadherin promoters for repression and

activation, respectively. Although the mechanism of action

is unclear, these opposite transcription regulations require

the catalyzed H4K20me1 [141]. The bipolar roles of SET8

in regulating E/N-cadherin expression and EMT were also

observed in prostate cancer cells, which are mediated

through protein interactions with ZEB1 [142]. On the

contrary, H4K20me3 plays a pivotal role in chromatin

integrity, while the global loss of H4K20me3 is observed in

a wide range of human cancers [143]. In breast cancer

cells, loss of H4K20me3 correlates with reduced

SUV420H2 expression and activation of a focal adhesion

protein TNS3. Given that H4K20me3 on TNS3 promoter is

necessary for gene silencing, this modification could also

attenuate EMT and tumor progression through transcription

regulation [144].

In addition to histone lysine methylation, symmetric di-

methylation of H4R3 (H4R3me2s) has been associated

with transcriptional repression. Catalyzed by PRMT5 or

PRMT7, H4R3me2s prevents binding of MLL4 to nucle-

osomes through its PHD domain and indirectly reduces

MLL4-mediated H3K4me3 [145]. PRMT5 interacts with

SNAI1 through a bridging protein AJUBA, while

knockdown of PRMT5 activates E-cadherin expression

[135], demonstrating that PRMT5-mediated H4R3me2s is

another crucial epigenetic event in SNAI1-induced

repression and EMT. Consistently, PRMT5 expression

reversely correlates with E-cadherin expression in a larger

set of lung cell lines and has been linked to EMT and the

loss of the bronchial epithelial phenotype of lung adeno-

carcinoma [146]. Similarly, over-expression of PRMT7

associates with EMT and breast cancer metastasis. Through

a different mechanism, PRMT7 interacts with YY1 and

HDAC3 and is recruited to E-cadherin promoter for tran-

scription silencing [147].

Furthermore, these repressive methylation marks are

dynamically regulated in cell. In addition to LSD1-AR

complex discussed above, H3K9 methylation can be

removed by several JmjC-domain-containing HDMs,

including JMJD1A/B, JMJD2, PHF2/8, and KIAA1718

[108]. JMJD1A has been shown to up-regulate a long non-

coding RNA MALAT1 and induce migration, invasion,

and EMT in neuroblastoma cells [148]. JMJD2B is co-

purified with the H3K4 HMTase MLL-2 complex, and is

required for ERa-activated transcription [149]. In gastric

cancer cells, JMJD2B interacts with b-catenin to activate

Vimentin expression through promoter H3K9 demethyla-

tion and thus facilitates EMT and metastasis [150].

Differently, PHF8 removes H3K9 methylation on the

promoter of Integrin genes and ROCK kinase to induce

gene expression and promote migration and invasion of

prostate cancer cells. Consistently, elevated PHF8 expres-

sion also correlates with poor prognosis of prostate cancer

patients [151]. Similar to JMJD2B, a H3K27 HDM UTX

interacts with another H3K4 HMTase MLL4 complex to

activate expression of several oncogenes and prometastatic

genes, including MMP-9/11 and SIX1, which leads to

increased EMT and metastasis of breast cancer in vitro and

in vivo [152]. In colon cancer cells, UTX not only

demethylates H3K27me3 on the E-cadheirn promoter, but

also recruits CBP for H3K27 acetylation. These epigenetic

events delocalize PRC2 from the promoter and result in

active transcription [153]. In breast cancer cells, UTX-

MLL4 forms a complex with LSD1/HDAC1/DNMT1 on

the promoter of several EMT-TFs. Through a histone

demethylation independent mechanism, UTX represses

SNAI1 and ZEB1/2 expression and negatively regulates

EMT and CSC-like properties [154]. In mammary epithe-

lial cells, TGF-b treatment also induces expression of

JMJD3. This H3K27 HDM further activates SNAI1

expression through promoter H3K27 demethylation to

facilitate EMT [155].

Many HMTases and HDMs inhibitors have been

developed and characterized as well. Chaetocin is the first

developed HMTase inhibitor targeting SUV39H1 without

high selectivity [156]. Treatment with Chaetocin induces
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expression of E-cadherin and p15INK4B while reduces

H3K9me3 levels on their promoters in a large panel of

tumor cells, but does not affect global H3K9 methylation

[157]. On the contrary, BIX01294 specifically inhibits

enzymatic activity of G9a and GLP by occupying the

histone peptide-binding pocket [158, 159]. BIX01294

treatment also activates E-cadherin expression and reverses

EMT phenotypes in different cancer cells, accompanied by

reduced H3K9me2 and increased H3K9 acetylation on the

promoter [36, 123]. As BIX01294 is toxic to cells at higher

concentration [159], another G9a/GLP inhibitor UNC0638

was developed with higher potency and selectivity [160].

UNC0638 treatment not only reduces H3K9me2 on G9a/

GLP target gene promoters and up-regulates their expres-

sion, but also decreases H3K9me2 globally. A recent study

reported that UNC0638 treatment activates E-cadherin

expression in PANC-1-R cells, reverses EMT, and thus

inhibits tumor growth in vivo [161]. Because of the

importance of H3K27 methylation in cancer, several highly

specific EZH2 inhibitors have also been developed,

including GSK2816126 and EPZ-6438, which are currently

in clinical trials for lymphoma and solid tumor/lymphoma

[162]. However, whether they are able to reverse EMT

under different clinical settings is unknown. In breast

cancer and lung cancer cells, an LSD1 inhibitor Pargyline

is able to reverse EMT phenotypes [111, 163]. Treatment

with Parnate, another LSD1 inhibitor or blocking LSD1–

SNAI1 interaction using a permeable peptide correspond-

ing to the SNAG domain also activates E-cadherin

expression and suppresses motility and invasiveness of

multiple cancer cells derived from different origins in vitro

and in vivo [164]. Recently, two highly specific LSD1

inhibitors, GSK2879552 and ORY-1001, have also been

applied to clinical trials for the treatment of small cell lung

cancer and acute leukemia [162]. Several inhibitors tar-

geting JmjC-domain-containing HDMs have been reported

as well. While JIB-04 inhibits activity of H3K4 and H4K9

HDMs and alters a subset of transcriptional pathways to

attenuate lung cancer cell proliferation [165], YUKA1/2

specifically targets JARID1A with high potency and inhi-

bits growth of different tumor cells. Although the action of

mechanism is currently unknown, the ability of YUKA1 to

mitigate drug tolerance to targeted therapy of breast and

lung cancers highlights its clinic potential [166].

Histone modification-binding proteins in EMT

In some cases, histone modifications directly contribute to

the regulation of chromatin dynamic. For example, H4K16

acetylation inhibits the folding of chromatin fiber in vitro

and could thus impede the formation of chromatin com-

paction [167, 168]. In most cases, however, they are

recognized by proteins containing distinct recognition

domains. Bromodomain (BD) functions as an acetylated

lysine binding motif, while two tandem BDs of BET

(Bromodomain and extraterminal domain) family proteins

(i.e., BRD4) recognize acetylated histones and further

recruit transcription machineries to chromatin [169].

Recently, numerous studies reveal that pharmacologic

inhibition of BRD4 with BET-specific BD inhibitors

effectively blocks MYC expression and function in dif-

ferent types of cancer cells [170]. This inhibition also

reduces WNT5A expression and suppresses invasion, CSC-

like properties, and tumorigenicity of breast cancer cells

in vitro and in vivo [171].

Given that the addition of methyl groups to lysine or

arginine does not alter the charge of their side chains,

histone methylation is believed to generate docking sites

for binding proteins harboring specific motifs, including

Chromodomain (CD), MBT, WD40 repeat, PHD finger,

PWWP, Tudor, and Ankyrin repeat. These binding mod-

ules are able to distinguish methylation marks on different

residues as well as different methylation states on the same

residue to mediate distinct downstream functions [172].

CD-containing HP1 proteins are the first identified methyl-

lysine-binding proteins which recognize methylated-H3K9

(methyl-H3K9) [173]. The conserved CD of MPP8 also

functions as a specific methyl-H3K9 binding motif

[174–176], while both HP1 and MPP8 have been impli-

cated in EMT (see below). Several MBT domain family

proteins can bind to mono- and di-methylated lysines,

although these bindings lack sequence selectivity [177].

Four MBT-repeats domain of SFMBT1 recognize

H3K4me2/3 and form a stable complex with LSD1. During

TGF-b-induced EMT, SFMBT1 recruits LSD1 to E-cad-

herin promoter to remove H3K4me2 for gene silencing.

Elevated SFMBT1 expression also correlates with several

mesenchymal markers and unfavorable prognosis in breast

cancer patients [178]. H3K4me2/3 is also recognized by

WD40 repeat domain of WDR5 [179], and this binding

lacks the lysine recognition motif in the crystal structure

[180, 181]. Additionally, WDR5 is important for the

assembly and activity of SET1 protein complex catalyzing

H3K4me3 [179]. Under the hypoxia condition, WDR5 is

induced, interacts with HDAC3, and further recruits SET1

complex to activate expression of mesenchymal genes to

confer EMT [182]. Furthermore, WD40 repeat domain of

EED, a key component of PRC2, recognizes H3K27me3.

This binding recruits PRC2 to chromatin with pre-existing

H3K27me3 to further spread the same methylation into

adjacent regions [183]. Intriguingly, several chromatin-

modifying enzymes also contain methyl-lysine binding

motifs. DNMT3A possesses a PWWP domain which rec-

ognizes H3K36me3, and this binding facilitates

nucleosomal DNA methylation [184]. The ankyrin repeats
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of G9a and GLP are involved in H3K9me1/2 binding

which could retain G9a/GLP on chromatin for additional

H3K9 methylation [185]. In addition, JMJD2A harbors a

double Tudor domain which recognizes H3K4me3 and

H4K20me3 [186]. Although these enzymes have been

implicated in EMT, the importance of their methyl lysine

binding modules still remains elusive.

In addition to inhibiting catalytic activities of chromatin-

modifying enzymes, another strategy is to target specific

binding proteins recognizing different histone modifications.

Small molecules targeting the acetylated-histone-binding

motif BD have been well characterized and the best example

is the compounds selectively blocking the binding to

acetylated lysine by BRD4, a well-studied BD-containing

transcription co-activator [187, 188]. Given that BRD4

localizes in the super enhancer region of the key oncogene

MYC, BRD4 inhibition preferentially abrogates MYC

function in a variety of tumor cells [189]. It has been

recently shown that the treatment of BRD4 inhibitor MS417

reduces distal metastasis of colorectal cancer in mouse

xenograft models by modulating expression of several key

EMT genes [190]. MS417 and another BRD4 inhibitor JQ1

also disrupt BRD4 binding to di-acetylated K73/K76 on

TWIST and thus repress WNT5A expression to reverse

EMT and metastasis of breast cancer in vitro and in vivo

[171]. Currently, both BRD4 inhibitors are in multiple

clinical trials for the treatment of different cancers. Several

small molecule compounds targeting specific methylated

histone-binding proteins have also been developed, includ-

ing UNC1215 and UNC3866, which block the methyl-lysine

binding mediated by MBT domain-containing protein

L3MBTL3 [191] and CD-containing protein CBX4/7 [192],

respectively. However, their function in reversing EMT and

tumor progression is unknown.

Coordinated epigenetic regulations in EMT

Given that different chromatin-modifying proteins and the

catalyzed modifications have been implicated in regulating

the same set of genes, it is likely that they act in concert for

the same pathway during EMT. One underlying mecha-

nism is that multiple chromatin modifiers co-exist in the

same protein complex to orchestrate transcription regula-

tion [193]. Since most chromatin-modifying enzymes lack

DNA-binding motifs, they are normally recruited to target

promoters by different EMT-TFs. HDAC1/2, G9a/GLP and

HP1 have been co-purified with ZEB1/2 in CtBP1 co-re-

pressor complex [83, 107]. In a possible scenario, ZEB1/2

first initiates transcription repression and recruits the pro-

tein complex to E-cadherin promoter. HADC1/2 next

deacetylates histones, while the primed H3K9 will be

methylated by G9a/GLP. Meanwhile, LSD1 removes

H3K4me1/2, and the un-methylated H3K4 could also

prevent H3K9 from re-acetylation (Fig. 1a) [194, 195]. The

established H3K9 methylation further recruits HP1 proteins

to lock the local chromatin in a repressive state. Through

protein interactions, HP1 could also recruit DNMT1 for

DNA methylation [196] and turn off transcription

(Fig. 1b). Although this repression pathway suggests an

EMT-promoting role of HP1, its expression is down-reg-

ulated in invasive breast cancer cells. Knockdown of HP1

increases invasiveness without affecting cell growth,

whereas over-expression of HP1 reduces it [197], sug-

gesting that HP1 proteins could also attenuate EMT

through mechanisms independent of E-cadherin silencing.

Owing to the importance of H3K9 methylation in

E-cadherin silencing and EMT, we have characterized

MPP8 as another methyl-H3K9-binding protein. Different

from HP1s, MPP8 expression is elevated in various inva-

sive breast and lung cancer cells. Knockdown of MPP8 de-

represses E-cadherin expression and reduces cell migration

and invasion, indicating that it has an EMT-promoting role.

MPP8 not only targets E-cadherin promoter through

methyl-H3K9 binding, but also interacts with G9a/GLP

and DNMT3A. Knocking-down MPP8 or disabling its

methyl-H3K9 binding impairs DNMT3A binding on

E-cadherin and reduces DNA methylation, but does not

affect GLP and H3K9 methylation. These findings suggest

a repression pathway, in which G9a/GLP methylates H3K9

on E-cadherin promoter for MPP8 targeting, while MPP8

further recruits DNMT3A for CpG methylation [175].

Furthermore, G9a/GLP methylates DNMT3A at K47 as

well as their N-termini at G9a-K185 and GLP-K205,

respectively [198, 199]. Intriguingly, MPP8 binding to

G9a/GLP and DNMT3A is mediated through these

methylated lysines. Given that the CD of MPP8 forms a

dimer in structures [200, 201], MPP8 could bridge

DNMT3A and G9a/GLP to assemble a repressive trimeric

protein complex on the chromatin through binding to dif-

ferent methyl-lysines and couple H3K9 methylation and

DNA methylation for epithelial genes silencing and EMT

(Fig. 1c, d).

Although inhibition of HDAC1/2 also activates E-cad-

herin expression in multiple cancer cell lines, MPP8-

mediated repression is independent of class I/II HDACs

[175]. However, MPP8 interacts with a class III HDAC

SIRT1 to coordinate silencing of E-cadherin and other

genes [202]. In prostate and breast cancer cells, knocking-

down SIRT1 or MPP8, or disabling methyl-H3K9 binding

by MPP8 or MPP8–SIRT1 interaction leads to similar de-

repression of E-cadherin, restoration of epithelial cell

morphology, and reduction of cell migration and invasion

[202]. Disabling methyl-H3K9 binding by MPP8 or

MPP8–SIRT1 interaction also decreases SIRT1 localiza-

tion on target promoters and increases H4K16 acetylation,
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suggesting that MPP8 binds to methyl-H3K9 and recruits

SIRT1 for H4K16 deacetylation [202]. As H4K16 acety-

lation is able to de-compact chromatin directly [168],

removing this modification could be critical for MPP8-

mediated transcription repression. Intriguingly, SIRT1 also

removes acetylation on MPP8-K439 which is catalyzed by

PCAF. Given that K439 acetylation accelerates MPP8

protein degradation through the ubiquitin–proteasome

pathway, SIRT1-mediated deacetylation stabilizes MPP8

as a feed-forward regulatory loop in MPP8-mediated
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repression pathway (Fig. 1c, d). Although SIRT1 is

methylated by G9a at K622 [203], MPP8–SIRT1 interac-

tion is independent of SIRT1–K622 methylation, revealing

that MPP8 recruits SIRT1 and DNMT3A through different

mechanisms. While CpG methylation prevents RNA Pol II

binding on target promoters, H4K16 acetylation facilitates

the release of RNA Pol II from promoter-proximal pausing

and the transition into active elongation [204]. Therefore,

MPP8-directed promoter DNA methylation and H4K16

deacetylation could introduce multiple barriers for tran-

scription machineries.

Furthermore, SNAI1 associates with SIN3A and PRC2

complexes and is required for histone deacetylation and

H3K27 methylation on E-cadherin promoter and gene

silencing [61, 134]. A recent study also uncovered SNAI1–

LSD1 interaction which not only recruits LSD1 to

demethylate H3K4 on E-cadherin promoter for repression,

but also increases protein stability to enhance the function

of SNAI1-LSD1 co-repressor complex in EMT and

metastasis of breast cancer cells [111]. Additionally,

SNAI1 has been shown to recruit G9a and SUV39H1 to

E-cadherin promoter through different motifs, while the

catalyzed H3K9me2 and H3K9me3 are required for gene

silencing [36, 124]. Inhibition of LSD1, G9a, or SUV39H1

results in similar reversed EMT phenotypes and reduced

breast cancer progression and metastasis in vivo. Although

these results demonstrate the role of SNAI1 in targeting

different chromatin modifiers for E-cadherin silencing and

EMT (Fig. 1e), whether these co-repressor protein com-

plexes are recruited simultaneously and how they

coordinate for transcription repression is currently not

clear.

In addition to reduced H3K9 methylation, inhibiting

G9a or SUV39H1 leads to increased H3K9 acetylation and

decreased DNA methylation on E-cadherin promoter,

indicating that DNA methylation plays an important role in

SNAI1-mediated repression and EMT as well. Consistent

with genome-wide correlation between H3K9 methylation

and DNA methylation [205], G9a has been shown to

interact with DNMT1 and DNMT3A/B through its N-ter-

minal and Ankyrin-repeat domains, respectively

[206, 207]. However, these protein interactions may not be

the major mechanism to target DNMTs as inhibiting G9a

and GLP’s enzymatic activity is sufficient to reduce DNA

methylation on E-cadherin promoter [36]. The findings that

HP1 proteins interact with different DNMTs [207, 208]

suggest another possibility that DNMTs are recruited after

HP1 binds to H3K9 methylation catalyzed by G9a/GLP

and SUV39H1. SUV39H1 could also directly recruit HP1

proteins, because they form a heterodimer through their

Chromo-Shadow domains (CSDs) [209]. Although MPP8

does not interact with SUV39H1, it recognizes self-

methylated lysines in G9a/GLP [198]. Binding to these

methyl-lysines could contribute to MPP8 promoter target-

ing after G9a/GLP is recruited by SNAI1 or other EMT-

TFs (Fig. 1c). Owing to the higher binding affinity to

methyl-H3K9 [200], MPP8 could rapidly switch to methyl-

H3K9 binding on target promoters and further recruit

DNMT3A through DNMT3A-K47 methylation to establish

H3K9 methylation coupled DNA methylation (Fig. 1d)

[175, 198]. Furthermore, PRC2 could direct promoter DNA

methylation after being recruited by SNAI1 [134], because

its catalytic subunit EZH2 also associates with different

DNMTs [210]. Intriguingly, H3 acetylation and H3K4

methylation are able to disrupt DNMT3A’s chromatin

binding through its ADD domain [211, 212]. In this case,

SNAI1-recruited LSD1 and HDAC1/2 could remove these

inhibitory modifications to facilitate chromatin DNA

methylation by DNMT3A. Together, these findings suggest

that SNAI1 not only directly recruits histone-modifying

enzymes for repression, but also promotes DNA methyla-

tion through different indirect mechanisms (Fig. 1f).

TWIST1 has also been shown to associate with different

chromatin-modifying enzymes. An affinity purification of

Flag-TWIST identified several components of NuRD

chromatin remodeling complex. Among them, TWIST

directly interacts with Mi2b, MTA2, and RbAp46, and

likely targets NuRD complex for histone deacetylation and

chromatin remodeling on E-cadherin promoter. These

epigenetic events together lead to gene silencing and pro-

mote EMT and breast cancer metastasis [53]. Under the

bFig. 1 Coordinated transcription regulations mediated by different

EMT-TFs and chromatin-modifying proteins. a ZEB1/2 recruits CtBP

co-repressor complex, in which HDAC1/2 and LSD1 remove histone

acetylation and H3K4 methylation, respectively, whereas G9a/GLP

introduces H3K9 methylation. b H3K9 methylation marks are

recognized by HP1 proteins which further recruit DNMTs for

promoter CpG methylation. c ZEB1 and SNAI1 recruit multiple

H3K9 HMTases to target promoters, while the resulting methylation

and G9a/GLP self-methylation could target MPP8 for methyl-H3K9

binding. MPP8 protein stability is dynamically regulated by PCAF-

and SIRT1-catalyzed MPP8–K439 acetylation and deacetylation.

d G9a/GLP also methylates DNMT3A, while the resulting K47

methylation facilitates DNMT3A recruitment by MPP8. e SNAI1

recruits multiple histone-modifying enzymes to remove permissive

histone acetylation and H3K4 methylation to introduce repressive

H3K9 methylation and H3K27 methylations. f DNMTs are further

recruited by PRC2 and HP1 proteins to catalyze promoter CpG

methylation. PRC1 is also recruited by binding to methyl-H3K27

marks on the promoter. g On epithelial gene promoters, TWIST1

recruits NuRD complex, SET8, and PRC2 for histone deacetylation,

H4K20 methylation, and H3K27 methylation, respectively. It also

recruits PRC1 directly and indirectly to introduce H2AK119 mono-

ubiquitination. h On mesenchymal gene promoters, SET8-catalyzed

H4K20 methylation serves as transcription activation mark (N-

cadherin promoter). TWIST1 also forms a protein complex with

TIP60/NuA4 which acetylates histone H4 and TWIST1. The acety-

lated lysines are recognized by BRD4 which recruits P-TEFb and

super elongation complex to facilitate transcription (WNT5a

promoter)
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hypoxia condition, up-regulated HIF-1a activates TWIST1

expression by directly binding to the hypoxia-response

element (HRE) on the promoter and thus promotes EMT

and metastatic progression [213]. In head and neck squa-

mous cell carcinoma cells, HIF1a-induced TWIST1 binds

to the E-box element in BMI1 gene, activates expression of

this polycomb repressive complex 1 (PRC1) subunit, and

potentiates EMT and CSC-like properties. Mechanistically,

TWIST1 also interacts with BMI1 and recruits PRC1 to

E-cadherin and p16INK4a promoters for H2AK119 mono-

ubiquitination and gene silencing [214]. Intriguingly,

knockdown of TWIST1 reduces PRC2 promoter targeting

and H3K27me3, indicating that TWIST1 could also recruit

PRC2. It has been shown that the PRC1 core subunits

HPCs can recognize methyl-H3K27, and this H3K27me3

binding contributes to the recruitment of PRC1 [131].

Therefore, TWIST1 could also target PRC1 indirectly

(Fig. 1g) and the indirect PRC1 targeting is facilitated by

SNAI1 through recruitment of PRC2 [134]. Moreover,

inhibition of HDACs reduces both PRC1 and PRC2 pro-

moter localizations [214, 215], suggesting that H3K27

deacetylation is a prerequisite for PRC2-catalyzed

H3K27me3 methylation. In this case, TWIST1-recruited

NuRD complex [53] or other HDAC-containing complexes

recruited by SNAI1 or ZEB1 [61, 83] could facilitate

PRC1/2 recruitment as well. Together, these results illus-

trate a complex regulatory network for transcription

repression which is orchestrated by different chromatin-

modifying proteins and EMT-TFs.

Moreover, TWIST has been shown to associate with

different sets of chromatin-modifying proteins in different

cell lines. While NuRD complex was co-purified with Flag-

TWIST1 from HEK-293 cells [53], a similar Flag-TWIST1

purification using HeLa-S3 cells identified E12/E47,

BRD4, and NuA4 HAT complex. This finding leads to a

discovery that TWIST1 is di-acetylated at K73/K76 by

TIP60, the catalytic subunit of NuA4 complex which also

di-acetylates H4K5/K8 [171]. Intriguingly, di-acetylated

H4 and TWIST1 are recognized by BRD4 through its first

and second BDs. Although mutation of both acetylation

sites on TWIST1 does not affect its localization on

WNT5A promoter/enhancer, it abrogates the sequential

recruitment of BRD4, P-TEFb, and RNA-Pol II. These

results support a model, in which TWIST1 assembles an

active transcription elongation complex through the

acetylated K73/K76 and BRD4 binding to activate

WNT5A expression and promote EMT and tumorigenicity

of breast cancer cells (Fig. 1h) [171]. In MCF7 breast

cancer cells, Flag-TWIST1 was co-purified with SET8,

BRCA1-associated protein BRAP, NF-jB subunit RELA,

PPP2CA, and HES6 [141]. Surprisingly, SET8 and

TWIST1 mediate E-cadherin repression and N-cadherin

activation simultaneously to promote cell invasion and

EMT. While SET8 localization on both promoters relies on

TWIST1, TWIST1-mediated repression/activation also

requires SET8 and the catalyzed H4K20me1, arguing that

the same protein complex could contribute to opposite

functions on different genomic loci (Fig. 1g, h). Although

H4K20me1 has been implicated in transcription activation

and repression [216, 217], the molecular mechanism

underlying the bipolar contextual roles of TWIST1-SET8

is not clear. One possibility is that H4K20me1 could fur-

ther coordinate different chromatin modifications or recruit

distinct group of effectors to different promoters. In addi-

tion, the findings of three distinct TWIST1 protein

complexes in different cell lines suggest that the diverse

functions of TWIST1 could be fine-tuned by different

groups of interacting proteins and different chromatin

environments.

MicroRNAs and lncRNAs in EMT

In addition to various chromatins modifying proteins, the

importance of several classes of non-coding RNAs

(ncRNAs) in transcription regulation and EMT is now

being appreciated, representing another category of epi-

genetic mechanisms. ncRNAs can be briefly classified into

small ncRNA (\200nt) and long ncRNA (lncRNA) and

contribute to a variety of cellular functions. Among them,

miRNAs are the best-studied class in epithelial–mes-

enchymal plasticity [218]. Derived from long primary

transcripts and processed through sequential cleavage

steps, miRNAs function post-transcriptionally and target

mRNAs for degradation, inhibition of translation, or a

combination of both [219]. Dozens of miRNAs have been

identified to target 30UTR of ZEB1/2 mRNAs to suppress

their expression in various cancer cells [220], while five

miR-200 family members are essential regulators for dif-

ferentiation and epithelial characteristics of a wide range of

cell types and tissues [221–223]. During EMT, ZEB1/2

binds to miR-200s and miR-205 promoters and represses

their transcription. Conversely, miR-200s and miR-205

suppress ZEB1/2 expression by directly targeting 30-UTR

of their mRNAs to maintain epithelial properties

[224, 225]. Therefore, ZEB1/2 and miR-200s/205 form a

reciprocal feedback regulatory loop which functions as a

molecular motor for EMT, tumor progression, and metas-

tasis [226–228]. In addition, miR-200s repress TGF-b2 and

b-catenin expression to attenuate EMT [227, 229]. They

also target mRNA of several chromatin-modifying

enzymes, such as BMI1, SUZ12, and SIRT1, to negatively

regulate EMT and CSC-like properties [230–232]. In ton-

gue cancer cells, SNAI1/2 recruits PRC2 to suppress

transcription of miR-101 which also targets 30-UTR of

EZH2 mRNA [233], representing another axis of miRNA
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signaling for EMT [234]. Furthermore, mRNA of SNAI1/2

and TWIST1/2 is targeted by different large groups of

miRNAs, however, the reciprocal regulatory loop was not

reported [220]. Intriguingly, SNAI1/2 mRNAs are directly

targeted by miR34 family members in a variety of cancer

cells, whereas the expression of miR34s is positively reg-

ulated by wild-type p53. These findings reveal a miR34-

SNAI1/2 axis in p53 loss-of-function-induced EMT [235].

In hepatocellular carcinoma cells, p53 also up-regulates

miR-200s and miR-192 family members which further

target ZEB1/2 mRNAs to abrogate EMT [236]. It has been

reported that oncogenic p53 mutant represses transcription

of miR130b which also targets ZEB1 mRNA and inhibits

EMT [237]. In addition to p53, the expression of many

miRNAs is regulated by different transcription factors,

including EMT-TFs. These miRNAs further target multiple

EMT-related genes and contribute to EMT [220]. While

MYC-activated miR-9 targets 30-UTR of E-cadherin

mRNA to facilitate EMT and metastasis of breast carci-

noma cells [238], TWIST1-induced miR-424 activates

N-cadherin and Fibronectin expression through unknown

mechanism without affecting E-cadherin expression [239].

Moreover, expression level of miRNAs associates with

various epigenetic modifications on their promoters. For

example, expression of miR-200s/205 reversely correlates

with promoter CpG methylation in various tumor cells

[41, 42]. This DNA methylation pattern can be readily

shifted during EMT or MET in vitro and in vivo [40, 240],

indicating that DNA methylation is also critical to regulate

miRNA expression. Consistent with this notion, a global

analysis uncovered a strong inter-individual concordance

between miRNA expression and epigenetic states on their

promoters in human mammary epithelial cells and mammary

fibroblasts. While repression of miR-200c/141 and miR-

200a/200b/429 associates with promoter CpG methylation

and H3K27me3, respectively, silencing of miR-205 requires

both DNA methylation and H3K27me3 in fibroblasts [41].

During EMT, the promoter of miR-200a/200b/429 and miR-

200c/141 is also decorated by distinct group of repressive

histone modifications [41], suggesting a possibility that

different chromatin-modifying enzymes and DNMTs are

orchestrated with EMT-TFs to regulate transcription of these

miRNAs. However, molecular details underlying these epi-

genetic regulations are largely unknown.

Recent transcriptome studies also identified a large

group of lncRNAs which are differentially transcribed in

various metastatic tumors and contribute to EMT and

tumor progression through diverse mechanisms [241].

Functioning as a chromatin modulator, lncRNA HOTAIR

interacts with both PRC2 and LSD1 and targets these

histone-modifying enzymes to repress HOX genes and

many metastasis suppressor genes across genome [242].

HOTAIR expression is significantly elevated in several

types of cancers and associates with metastasis and poor

prognosis [243]. In contrast, lncRNA SChLAP1 impedes

genome-wide chromatin targeting of SWI/SNF remodeling

complex and repress its target gene expression. SChLAP1

is over-expressed in *25 % of prostate cancers and is also

critical for invasiveness and metastasis [244]. In breast

cancer cells, lncRNA-ROR promotes EMT and metastasis

in vitro and in vivo by antagonizing miR-205-mediated

repression of ZEB2, revealing a crosstalk between lncRNA

and miRNA [245]. Furthermore, ncRNA-a7 (also known as

treRNA) functions as an enhancer lncRNA to facilitate

transcription of its neighboring gene SNAI1 [246].

Enforced expression of ncRNA-a7 in breast cancer cells

promotes EMT and metastasis, while its over-expression

was detected in metastatic breast cancer tissues. Intrigu-

ingly, ncRNA-a7 also associates with a hRNP complex

which binds to 30-UTR of E-cadherin mRNA and sup-

presses its translation [247]. TGF-b-induced lncRNA-HIT

also inhibits E-cadherin expression to promote EMT and

breast cancer metastasis. However, it suppresses E-cad-

herin transcription via unknown mechanism [248].

Together, these examples demonstrate the critical regula-

tory roles of lncRNAs in control of EMT and cancer

metastasis at multiple molecular layers [249].

Conclusions and perspectives

The abnormal activation of EMT, a developmental program,

has been proposed to play important roles in the initiation and

progression of carcinomas. This process involves a complex

transcriptional reprogramming of a large set of EMT-related

genes, and is triggered and regulated by different EMT-TFs.

The studies within the past decade have revealed that different

chromatin modifications are essential mediators of the activity

of EMT-TFs and have an indispensable role in EMT and the

reverse MET processes. In concert with different EMT-TFs

and classical oncogenic pathways, a variety of chromatin

modifications constitute a sophisticated regulatory network to

coordinate the simultaneous up- and down-regulation of var-

ious mesenchymal and epithelial genes. This orchestrated

action also occurs at multiple molecular layers to ensure the

precise control of epithelial–mesenchymal plasticity which

associates with cell motility and invasiveness that could have

detrimental effects on the organism.

In spite of fast-growing information about epigenetic

modifications in EMT, it will be very important to further

dissect mechanisms by which different chromatin-modi-

fying enzymes and the catalyzed modifications contribute

to this dedifferentiation program. The functional impor-

tance of the non-catalytic domains of these enzymes and

molecular details underlying different modification signals

are recognized and transduced into biological functions are
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also limited. Thus, molecular elucidation will provide

greater insights into the coordinated epigenetic regulation

of gene expression programs during EMT. Furthermore,

understanding mechanisms underlying the regulation of

EMT-TFs and chromatin-modifying proteins by different

EMT-inducing stimuli, ncRNAs, and alternative splicing is

also important to elucidate the complex epigenetic regu-

latory network.

Furthermore, the biochemically reversible nature of epi-

genetic modifications not only provides a platform for rapid

switch of a variety of epithelial and mesenchymal genes

during EMT and MET, but also presents multiple therapeutic

opportunities. Over the last decade, considerable progress

has been achieved in the development of potent and selective

small-molecule inhibitors targeting specific chromatin

modifiers, and many of them are currently being evaluated in

clinic studies. The application of BRD4 inhibitors also

highlights the possibility to interfere specific bindings to

different histone methylation marks. Comparing with

inhibiting catalytic activity of chromatin-modifying

enzymes, blocking specific binding event could render

higher selectivity to target given epigenetic pathways in

different clinic applications. Although reversing EMT is

conceptually attractive for anti-cancer therapy, current

understanding of EMT-induced metastasis is derived from

in vitro and mouse studies. Using different mouse models,

two recent studies provide evidence that EMT is not a pre-

requisite for metastatic dissemination, suggesting that the

in vivo regulation of tumor progression and metastasis is

more sophisticated. However, both studies demonstrate that

EMT cells significantly contribute to chemoresistance and

recurrent metastasis after standard therapy [250, 251].

Therefore, selected EMT-targeting epigenetic drugs can also

be utilized to synergize the conventional chemotherapy and

to overcome drug resistance. In addition, specific epigenetic

inhibitors could serve as powerful tools to facilitate the

functional characterization of different epigenetic pathways

in EMT in vivo as well as many other important physiolog-

ical and pathological processes.
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