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Abstract

Background—The current ability to predict readmissions in patients with heart failure is modest 

at best. It is unclear whether machine learning (ML) techniques that address higher dimensional, 

non-linear relationships among variables would enhance prediction. We sought to compare the 

effectiveness of several ML algorithms for predicting readmissions.

Methods and Results—Using data from the Telemonitoring to Improve Heart Failure 

Outcomes trial, we compared the effectiveness of Random Forests (RF), Boosting, RF combined 

hierarchically with Support Vector Machines (SVM) or Logistic Regression (LR) and Poisson 

Regression against traditional LR to predict 30-day and 180-day all-cause and heart fauilre-only 

readmissions. We randomly selected 50% of patients for a derivation set and the remaining 

patients comprised a validation set, repeated 100 times. We compared c-statistics for 

discrimination and distributions of observed outcomes in risk deciles for predictive range. In 30-

day all-cause readmission prediction, the best performing ML model, RF, provided a 17.8% 
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improvement over LR (mean c-statistics 0.628 and 0.533, respectively). For readmissions due to 

heart failure, Boosting improved the c-statistic by 24.9% over LR (mean c-statistic 0.678 and 

0.543, respectively). For 30-day all cause readmission, the observed readmission rates in the 

lowest and highest deciles of predicted risk with RF (7.8% and 26.2%, respectively) showed a 

much wider separation than LR (14.2% and 16.4%, respectively).

Conclusions—ML methods improved the prediction of readmission after hospitalization for 

heart failure compared with LR and provided the greatest predictive range in observed readmission 

rates.
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High rates of readmission after hospitalization for heart failure impose tremendous burden 

on patients and the healthcare system 1-3. In this context, predictive models facilitate 

identification of patients at high risk for hospital readmissions and potentially enable direct 

specific interventions toward those who might benefit most by identifying key risk factors. 

However, current predictive models using administrative and clinical data discriminate 

poorly on readmissions 4-8. The inclusion of a richer set of predictor variables encompassing 

patients' clinical, social, and demographic domains, while improving discrimination in some 

internally validated studies 9 does not necessarily markedly improve discrimination 10, 

particularly in the dataset to be considered in this work. This richer set of predictors might 

not contain the predictive domain of variables required, but does represent a large set of data 

not routinely collected in other studies.

Another possibility for improving models, rather than simply adding a richer set of 

predictors, is that prediction might improve with methods that better address the higher order 

interactions between the factors of risk. Many patients may have risk that can only be 

predicted by modeling complex relationships between independent variables. For example, 

no available variable may be adequately explanatory; however, interactions between 

variables may provide the most useful information for prediction.

Modern machine learning (ML) approaches can account for non-linear and higher 

dimensional relationships between a multitude of variables that could potentially lead to an 

improved explanatory model 11, 12. A number of methods have emerged from the ML 

community that can construct predictive models using many variables and their rich non-

linear interactions 13-15. Three widely used ML approaches may provide utility for 

readmission prediction: Random Forest (RF), Boosting, and Support Vector Machines 

(SVM). A primary advantage of ML methods is that they handle non-linear interactions 

between the available data with similar computational load. RF involves the creation of 

multiple decision trees 16 that sort and identify important variables for prediction 14, 17. 

Boosting algorithms harness the power of weaker predictors by creating combined and 

weighted predictive variables 18, 19. This technique has been applied to preliminary learning 

work with electronic health records 20. SVM is a methodology that creates clearer separation 

of classes of variables using non-linear decision boundaries, or hyperplanes, from complex 

multi-dimensional data in possibly infinite dimensional spaces 21-26.
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In this study, we tested whether these ML approaches could predict readmissions for heart 

failure more effectively than traditional approaches using logistic regression (LR) 7, 9, 27, 28. 

We tested these strategies using data that included detailed clinical and socio-demographic 

information collected during the Telemonitoring to Improve Heart Failure Outcomes (Tele-

HF) trial 29, a National Institutes of Health-sponsored randomized clinical trial to examine 

the effect of automated telemonitoring on readmission following hospitalization for heart 

failure 10, 29, 30. We further tested whether the ML techniques could be improved when used 

hierarchically where outputs of RF were used as training inputs to SVM or LR. We 

evaluated these approaches by their effect on model discrimination and predictive range in 

order to understand ML techniques and evaluate their effectiveness when applied to 

readmissions for heart failure.

Methods

Data Source

Data for this study were drawn from Tele-HF, which enrolled 1653 patients within 30 days 

of their discharge after an index hospitalization for heart failure 30. In addition to the clinical 

data from the index admission, Tele-HF used validated instruments to collect data on 

patients' socioeconomic, psychosocial, and health status. This study collected a wide array 

of instrumented data, from comprehensive, qualitative surveys to detailed hospital 

examinations, including many pieces of data not routinely collected in practice, providing a 

larger exploratory set of variables that might provide information gain.

The primary outcome was all-cause readmission or mortality within 180 days of 

enrollment 29. A committee of physicians adjudicated each potential readmission to ensure 

that the event qualified as a readmission rather than another clinical encounter (e.g., 

emergency department visit) and to determine the primary cause of the readmission. The 

comprehensive nature in which outcomes were tracked and determined across the various 

sites makes this a well-curated dataset that can potentially leverage this information where 

other trials may not, as readmissions often occur at other institutions external to the study 

network 31. Results of the Tele-HF study revealed that outcomes were not significantly 

different between the telemonitoring and control arms in the primary analysis 29.

Analytic Sample Selection

For this study, we included all patients whose baseline interviews were completed within 30 

days of hospital discharge to ensure that the information was reflective of the time of 

admission. Of the 1653 enrolled patients, we first excluded 36 who were readmitted or died 

before the interview, 574 whose interviews were completed after 30 days from discharge, 

and 39 who were missing data on >15 of the 236 baseline features to create a study sample 

of 1004 patients for the 30-day readmission analysis set. To create the 180-day readmission 

analysis set, we further excluded 27 patients who died before the end of the study and had no 

readmission events, leaving 977 patients in the sample.
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Feature Selection

We used 472 variables (called “features” in the ML community) for input. We first gathered 

the full 236 baseline patient characteristics available in Tele-HF 10, 30. This set included data 

extracted from medical record abstractions, hospital laboratory results, physical examination 

information as well as quality of life, socioeconomic, and demographic information from 

initial patient surveys. The polarity of qualitative and categorical questions was altered if 

necessary to ensure that the lowest values reflect a strongly negative answer or missing data, 

and the highest values correspond to strongly positive answers (see Supplemental Materials). 

In addition, we created dummy variables for each of the 236 features to indicate whether the 

value was missing or not (0 and 1 values).

Definition of Outcomes

We developed methods to predict 4 separate outcomes: (1) 30-day all-cause readmission; (2) 

180-day all-cause readmission; (3) 30-day readmission due to heart failure; and (4) 180-day 

readmission due to heart failure. We trained predictive models for each of these outcomes 

and compared them to each other.

Predictive Techniques

We built models using both traditional statistical methods and ML methods to predict 

readmission, and compared model discrimination and predictive range of the various 

techniques. For traditional statistical methods, we used an LR model 10, and a Poisson 

Regression (PR). Three machine learning methods - RF, Boosting, and SVM - were used for 

readmission prediction.

Logistic Regression—A recent study from Tele-HF had used random survival forest 

methods to select from a comprehensive set of variables for Cox regression analysis 10. The 

paper had a comprehensive evaluation of the most predictive variables in the Tele-HF 

dataset, using various techniques and various validation strategies. Using the variables 

selected in the paper would provide the most accurate representation of an LR model on the 

Tele-HF dataset for comparison purposes. Therefore, we used the same selected variables for 

our current study to compare model performance, as the current analysis is concerned with 

finding improved analytic algorithms for predicting 30-day readmissions rather than 

primarily with variable selection.

In order to verify that this LR model, which leverages the comprehensive variable selection 

technique in prior work 10, was the best model for comparison, we compared its 

performance against other LR models built using varied feature selection techniques. The 

first model selected variables for LR by lasso regularization, the next a forward, stepwise 

feature selection technique based upon each variable's likelihood ratio. All models were 

validated over 100 bootstrapped iterations; the former could not find a set of predictive 

variables, the latter varied in features chosen but selected, on average, only 5 variables. The 

model built using features selected from the work of Krumholz et al outperformed the other 

techniques, when comparing mean c-statistics. For a further detailed discussion of the other 

LR models built, we refer readers to the Supplementary Material.
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Comparison Techniques—Given the flexibility of non-linear methods, the complexity 

of the desired models might overwhelm the available data, resulting in overfitting. While all 

the available variables can be used in ML techniques such as RF and Boosting, which are 

robust to this overfitting, we may require some form of feature selection to help prevent 

overfitting in less robust techniques like SVM 22. Further explanation of the predictive 

techniques, as well as the evaluation method, is provided in the Supplemental Materials and 

additionally in referenced by Hastie et al.16.

Hierarchical Methods

To overcome the potential for overfitting in LR and SVM, we developed hierarchical 

methods with RF. Previous hierarchical methods used RF as a feature selection method, 

since it is well-suited to a dataset of high dimensionality with varied data types, to identify a 

subset of features to feed into methods such as LR and SVM 22. RF is well known to use 

out-of-bag estimates and an internal bootstrap to help reduce and select only predictive 

variables and avoid over-fitting, similarly to AdaBoost32. RF is well-known to be able to 

take varied data-types as well as high-dimensional data and reduce to a usable subset, which 

we also verify through our bootstrapped cross-validation (through use of a derivation and 

validation set) 33. However, rather than use the list of variables supplied by RF as the inputs 

to SVM or LR, the Tele-HF dataset allowed us to use the probability predicted by RF as the 

inputs to SVM and to LR to create two new hierarchical methods.

The Tele-HF dataset has comprehensive outcomes information for all patients. We leveraged 

this by designing two prediction models using all of the aforementioned methods in a 

hierarchical manner. We used the RF algorithm as a base for this technique. The RF model, 

trained on all of the available features, then produced a probability for a number of 

readmission events (e.g. 0-12 events in this dataset). These probabilities were then given to 

LR and SVM as inputs to build models from. A detailed discussion of the method by which 

RF and SVM as well as RF and LR are combined together is in the Supplementary Material.

Analytic Approach

For each of the predictive techniques above, we iterated the analyses illustrated in Figure 1 

100 times. To construct the derivation and validation data sets, we split the cohort into 2 

equally-sized groups, ensuring equal percentages of readmitted patients in each group. To 

account for a significant difference in numbers of patients who were readmitted and not 

readmitted in each group, we weighted the ML algorithms. The weight selected for the 

readmitted patients was the ratio of not-readmitted patients to readmitted patients in the 

derivation set. The testing and selecting of appropriate weights are further detailed in the 

Supplemental Materials.

Once the derivation and validation sets were created, a traditional LR model was trained. We 

used SAS and the 5 most important variables as identified previously 10: blood urea 

nitrogen, glomerular filtration rate, sex, waist-to-hip ratio, and history of ischemic 

cardiomyopathy. The remaining techniques were created using the full raw data of 472 

inputs for each patient, and were trained on the different readmission outcome labels.
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We trained models to predict either the 30-day readmission or 180-readmission outcome. 

While we supplied the same input data to each method, we varied the outcome information 

provided. Since the 180-day readmission set contains more outcomes information, including 

the total number of readmission events during the trial, it is possible that it might be easier to 

predict 180-day readmission, given the propensity of some patients to be readmitted multiple 

times. To provide a range of modeling for the final binary prediction (readmitted/not 

readmitted), we ran 5 distinct training methods based upon the labels provided to the 

algorithm, known as supervised learning. For 30-day readmission prediction, we first 

generated 3 different training models with the same baseline data, but 3 different outcomes: 

30-day binary outcomes, 180-day binary outcomes, and 180-day counts of readmissions. We 

then used the predictive models created by these 3 training methods to predict 30-day 

readmission outcomes in the validation cohort. Similarly, to test 180-day readmission, we 

generated 2 different training methods with same baseline data but different outcomes 

namely 180-day binary outcomes and 180-day counts of readmissions. A detailed 

description of how these methods vary from each other is available in the Supplemental 

Materials.

We ran the models generated on the validation set and calculated the area under the receiver 

operating characteristics (ROC) curve (c-statistic), which provided a measure of model 

discrimination. The analysis was run 100 times in order to provide robustness over a 

potentially poor random split of patients and to generate a mean c-statistic with a 95% 

confidence interval (CI). We also evaluated the risk stratification abilities of each method. 

The probabilities of readmission generated over the 100 iterations were then sorted into 

deciles. Finally, we calculated the observed readmission rate of each decile to determine the 

predictive range of the algorithms.

These models should be used prospectively, to provide clinicians with decision making 

points. For each iteration, we calculated the positive predictive value (PPV), sensitivity, 

specificity, and f-score, a common measurement in machine learning25, which is calculated 

as:

The f-score provides a balance between PPV and sensitivity, similarly to a c-statistic, but at 

designated thresholds on the ROC curve. The data-driven decision threshold for prospective 

modeling measurements was that which maximized the f-score.

Further, to test whether a narrowed focus of prediction could improve discrimination, we 

conducted the same analyses using heart-failure-only readmission instead of all-cause 

readmission.

All ML analyses were developed in R. The list of R packages used in this study are included 

in the Supplemental Materials. The Human Investigation Committee at the Yale School of 

Medicine approved the study protocol.
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Results

Baseline characteristics of patients in 30-day and 180-day analytic samples are detailed in 

Table 1. In both analytic samples, the proportion of females and African-Americans was 

approximately 40%. Ninety percent of patients had New York Heart Association Class II or 

III heart failure, with almost 70% having left ventricular ejection fraction <40%. A history 

of hypertension (77%) and diabetes (45%) was common. The 30-day all-cause readmission 

rate was 17.1% while the 180-day all-cause readmission rate was 48.9%. No sex-specific or 

race-specific differences were found.

30-Day All-Cause Model Discrimination

The discrimination of the different predictive models for 30-day all-cause readmission 

represented by c-statistic values is illustrated in Figure 2a. LR had a low c-statistic of 0.533 

(95% CI: 0.527-0.538). Boosting on the input data had the highest c-statistic (0.601, 95% 

CI: 0.594-0.607) in 30-day binary outcome with 30-day training case. Boosting also had the 

highest c-statistic for the 30-day binary outcome with 180-day binary training (0.613, 95% 

CI: 0.607-0.618). For the 30-day outcomes with 180-day counts training, the RF technique 

had the highest c-statistic (0.628, 95% CI: 0.624-0.633).

180-day All-Cause Model Discrimination

The c-statistic values for different models in predicting the 180-day readmission are 

graphically illustrated in Figure 2b. LR again showed a low c-statistic (0.574, 95% CI: 

0.571-0.578) for the 180-day binary case. The RF into SVM hierarchical method had the 

highest achieved c-statistic across all methods (0.654; 95% CI: 0.650-0.657) in 180-day 

binary outcome, and 180-day count case (0.649; 95% CI: 0.648-0.651).

30-Day All-Cause Model Predictive Range

Deciles of the probabilities/responses generated by the algorithms were plotted against the 

observed rate of readmission in each decile in Figure 3. For each training version of the 

method, we plotted the values from the method and training version with the highest c-

statistic (i.e., best RF from the three 30-day training scenarios). In Figure 2a, the RF has the 

same mean c-statistic and similar CI as the RF into LR hierarchical model. In Figure 3, for 

RF, the readmission rates were markedly higher at the tenth decile of probabilities (26.2%) 

than the first decile of probabilities (7.8%) showing a higher predictive range than LR 

(14.2% and 16.4%, respectively), whereas for the RF into LR hierarchical model, the actual 

readmission rates varied only from 10.6% to 19.0% from first to tenth decile, despite the 

same mean c-statistic for RF and RF into LR.

180-Day All-Cause Model Predictive Range

When the predicted probabilities of each algorithm were separated into deciles and plotted 

against the real readmission rate per decile, RF into SVM had the largest difference in 

readmission rate from first decile (31.0%) to tenth decile (69.4%), whereas LR had a 

readmission rate of 40.5% in the first decile and 60.1% in the tenth decile (Figure 4).
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Readmission Due to Heart Failure Discrimination

As illustrated in Figures 5a and 5b, for heart failure-only readmissions, the LR model again 

had a low c-statistic for the 30-day binary case (0.543; 95% CI: 0.536-0.550) and the 180-

day binary case (0.566; 95% CI: 0.562-0.570). Boosting had the best c-statistic for the 30-

day binary-only case (0.615; 95% CI: 0.607-0.622) and for the 30-day with 180-day binary 

case training (0.678; 95% CI: 0.670-0.687). The highest c-statistic for other prediction cases 

were RF for the 30-day with 180-day counts case training (0.669; 95% CI: 0.661-0.676); RF 

into SVM for the 180-day binary-only case (0.657; 95% CI: 0.652-0.661); and RF into SVM 

for the 180-day counts case (0.651; 95% CI: 0.646-0.656).

Readmission Due to Heart Failure Predictive Range

When the deciles of risk prediction were plotted against the observed readmission rate, RF 

and Boosting each had the biggest differences between first and tenth deciles of risk 

(1.8%-11.9% and 1.4%-12.2%, respectively). Although the hierarchical methods of RF into 

LR and RF into SVM had similar c-statistics (0.654; 95% CI: 0.645-0.663 and 0.656; 95% 

CI: 0.648-0.664 respectively) in Figure 6, only RF into LR clearly identifies low- and high-

risk groups. The risk stratification for the 180-day heart failure-only case follows closely 

with c-statistics, similar to the 180-day all-cause case (Figure 7).

Improvements over Logistic Regression

Table 2 shows the percentage improvement in prediction of the best-trained model for each 

ML technique over LR for each outcome predicted. RF achieved a 17.8% improvement in 

discrimination over LR, the best 30-day all-cause readmission improvement. Similarly, the 

hierarchical method of RF into SVM achieved a 13.9% improvement for 180-day all-cause 

readmission; Boosting achieved a 24.9% improvement for 30-day readmission due to heart 

failure; and the hierarchical method of RF into SVM achieved a 16.1% improvement over 

LR for 180-day readmission due to heart failure.

Prediction Results

Table 3 shows the prospective prediction results of the best model for 30-day all-cause 

readmission, 180-day all-cause readmission, 30-day heart failure-only readmission, and 180-

day heart failure-only readmission. 30-day all-cause readmission had a positive predictive 

value of 0.22 (95% CI: 0.21-0.23), sensitivity of 0.61 (0.59-0.64), and a specificity of 0.61 

(0.58-0.63) at a maximal f-score of 0.32 (0.31-0.32); 180-day all-cause readmission had a 

positive predictive value of 0.51 (0.51-0.52), a sensitivity of 0.92 (0.91-0.93), and a 

specificity of 0.18 (0.20-0.21) at a maximal f-score of 0.66 (0.65-0.66); 30-day heart failure-

only readmission had a positive predictive value of 0.15 (0.13-0.16), a sensitivity of 0.45 

(0.41-0.48), and a specificity of 0.79 (0.76-0.82) at a maximal f-score of 0.20 (0.19-0.21); 

180-day heart failure-only readmission had a positive predictive value of 0.51 (0.50-0.51), a 

sensitivity of 0.94 (0.93-0.95), and a specificity of 0.15 (0.13-0.17) at a maximal f-score of 

0.66 (0.65-0.66). The 30-day predictions, in general, were better at identifying negative 

cases while the 180-day predictions were better able to correctly identify positive cases.

Mortazavi et al. Page 8

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2017 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

In our study to model risk of readmissions in a sample of patients hospitalized with heart 

failure, the ML analytic techniques we applied improved discrimination modestly compared 

with the traditional method of LR. These ML models also provided better identification of 

groups at low and high risk for readmission by increasing predictive range compared with 

LR. These results are consistent with our hypothesis that ML methods can leverage complex 

higher-level interactions among a multitude of variables to improve discrimination and 

predictive range with respect to heart failure outcomes compared with traditional linear 

models. We used readmissions among patients with heart failure as a test case to examine 

the advantage of ML algorithms over traditional statistical analysis to see if such an 

approach could be applied to other outcomes prediction and predictive range problems.

Models developed from ML algorithms to improve discrimination and predictive range can 

be evaluated using several measures or methods. The modest improvement in discrimination 

represented by c-statistics across the various ML methods, while promising, is ultimately 

insufficient. Further, the models selected, at a data-driven threshold that optimizes the f-

score, optimized the correct classification of negative cases but had a large number of false 

positives, as seen in the low positive predictive value and f-score. This threshold decision 

would be varied if further cost information was inputted to the model or the selected 

threshold optimized on another factor, such as reducing false alarms, etc. We found that 

while discriminatory power was similar across certain methods, the range in observed events 

among deciles of predicted risk varied greatly. Analyzing multiple aspects of models 

provides a stronger understanding of those models. With regard to 30-day all-cause 

readmission case, RF better differentiates low- and high-risk groups compared with all other 

methods including the hierarchical RF into LR model. Despite similar discrimination (mean 

c-statistic) between the 2 methods, RF actually has a better predictive range. In other words, 

RF better discriminates patients in low- and high-risk strata, whereas hierarchical RF into 

LR better discriminates patients in the middle deciles of risk. This suggests that a 

combination of various approaches, with possible deployment of different methods at 

different strata of risk, can improve discrimination of the overall model and may improve the 

predictive range.

There have been some suggestions in the literature about how to improve predictive range of 

risk strata and overall discrimination. Wiens et al. 26 showed that use of time-based 

information can improve their predictive range and overall discrimination when predicting 

the risk of Clostrium Difficile infection in hospitalized patients. In an earlier study 

examining heart failure mortality prediction using cytokine measurements, use of the 

baseline cytokine measurements alone did not significantly improve discrimination 34. 

However, the addition of serial cytokine measurements over follow-up time to the predictive 

model improved discrimination for 1-year mortality34. Thus, perhaps leveraging serially 

collected telemonitoring data on daily health and symptoms of patients could improve 

discrimination and predictive range of our predictions.

The general experience with LR is that readmissions after index hospitalizations for heart 

failure are more difficult to predict than mortality outcomes. In a meta-analysis, Ouwerkerk 
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et al. analyzed 117 heart failure outcome prediction models with 249 variables; the average 

c-statistic to predict mortality was 0.71 and hospitalization was 0.63 12. Tele-HF study data 

were collected to identify and track heart failure-related symptoms, and we find that 

narrowing our prediction to heart failure-only readmissions improves the discrimination and 

predictive range of each method.

Ultimately, despite the increase in a wide array of data, from quality of life questionnaires to 

hospital examinations, as well as the increase in complex methods to perform predictions, 

questions do arise from the modest c-statistics. The incremental gains over the LR models 

do indicate the power of the machine learning methods. However, a deeper analysis of why, 

even with data from a multitude of domains, the models remain at a consistent level with 

prior work does raise the question of what other data might be collected that would provide 

predictive value, and whether it is currently being collected or not. It seems that a deeper 

study into other possible important predictors of readmission might need to be carried out in 

order to better understand why current administrative claims and clinical studies models 

have had varied, but moderate, success.

Limitations

The discrimination and range of prediction is likely affected by several limitations of the 

Tele-HF dataset. First, the number of patients is small in comparison to the number of 

variables measured per patient. As a result, while rich in terms of patient features, the small 

number of patients makes the dataset vulnerable to overfitting. Further, many variables 

included in models with stronger c-statistics from prior studies are not present in Tele-

HF 9, 27, which could affect performance. Time-to-event analysis conducted on the Tele-HF 

dataset produced a c-statistic of 0.65 10. This finding suggests there are measurable domains 

of variables not analyzed in this study that might be more predictive in all heart failure 

patients. However, with the moderate-at-best c-statistics, it is possible that the best set of 

features in predicting risk in heart failure patients has not yet been collected.

The interpretation of the results can be varied depending upon the particular dataset and 

purpose of modeling. For example, the prediction threshold selected by optimal f-score may 

not be desirable for a particular intervention that designed when considering a model, such 

as when used a prospective fashion. Further, the numeric ranges of the probabilities 

generated by the algorithms do not necessarily match, and thus the thresholds considered 

across each method vary. While the output of the algorithm provides a predicted probability 

of readmission, the value in this is not the number provided but where this lies in the 

predictive range of the method and, thus, whether it can be classified as low or high risk, 

where the observed rates are considered. This is a result of each method basing its distance 

(and thus probability) of observations in the model on different metrics, resulting in a 

different calculation of a final probability. If, these probabilities would be desirable for direct 

use, the values could be scaled to match comparable intervals across methods.

The trial arm of Tele-HF may provide further insights into the value of time-to-event 

analysis by permitting inclusion of the daily telemonitoring responses by patients in the 

intervention arm as a time-series signal to be processed for time-dependent risk models. In 

order to determine the accuracy of additional methods, a direct comparison in the predictions 
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of each individual patient (both risk and outcome) needs to be made between methods rather 

than net reclassification index work, which has not been shown to be effective in many cases 

at understanding and improving model discrimination performance 35, 36. Finally, in order to 

address the viability of the model and the clinical predictors it is built upon, an external 

validation cohort should be used. However, as the clinical predictors collected in studies are 

often varied, it becomes important to distinguish unique predictors in internal validation, as 

well as understand the impact each predictor has on the models for better interpretation. As 

this is a post-hoc analysis of a randomized controlled trial, the generalizability of such 

models is a limitation. Nevertheless, the goal of this study was to compare methods, not to 

introduce a new model. Therefore, there is little reason to think that a population-based 

sample would yield a different result. While the data from such a trial spans a diverse set of 

hospitals and patients, and is well curated, once the understanding of such strengths and 

weakness of ML methods is understood, they should be extended to data derived from other 

sources as well, including electronic health records, which will likely affect results due to a 

consideration of varied data availability as well as a more heterogeneous patient population

Conclusions

The results of our study support the hypothesis that ML methods, with the ability to leverage 

all available data and their complex relationships, can improve both discrimination and 

range of prediction over traditional statistical techniques. The performance of the ML 

methods varies in complex ways, including in discrimination and predictive range. Future 

work needs to focus on further improvement of predictive ability through advanced methods 

and more discerning data, so as to facilitate better targeting of interventions to subgroups of 

patients at highest risk for adverse outcomes.
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What is Known

- Prediction models for readmissions in heart failure are often modest, at best, at 

discriminating between readmitted and non-readmitted patients.

- Prediction models for readmissions in heart failure often preselect a small 

number of variables with which a logistic regression model is developed
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What the Study Adds

- This study introduces comparisons of multiple popular machine learning 

methods for comparison against traditional techniques.

- This study introduces selecting models that can select variables for us from a 

larger, comprehensive dataset.

- This study shows the improvements in using both machine learning methods and 

a comprehensively-collected dataset, to help readers understand factors that 

contribute to readmission and limitations to current results in readmission 

prediction.
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Figure 1. Statistical analysis flow
The data are split into derivation and validation sets. These sets are passed to each algorithm 

for comparison.
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Figure 2. Forest plots for c-statistics and 95% confidence intervals for each method with respect 
to prediction of 30-day and 180-day all-cause readmission (2a and 2b)
Diamond represents c-statistic and the line represents the 95% confidence interval. SVM, 

Support Vector Machine. Color coding for model training: Red - trained in 30-day binary 

case only; Green - trained with 30-day and 180-day binary outcome; Blue - trained with 

180-day counts case.
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Figure 3. Deciles of algorithm risk versus readmission rates (%) for the best 30-day all-cause 
models for each method
The y-axis presents the observed readmission rates in each decile, the x-axis the ordered 

deciles of risk predicted. SVM, Support Vector Machine.
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Figure 4. Deciles of algorithm risk versus readmission rates (%) for the best 180-day all-cause 
models for each method
The y-axis presents the observed readmission rates in each decile, the x-axis the ordered 

deciles of risk predicted. SVM, Support Vector Machine.
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Figure 5. Forest plots for c-statistics and 95% confidence intervals for each method with respect 
to prediction of 30-day and 180-day heart failure readmission (5a and 5b)
Diamond represents c-statistic and the line represents the 95% confidence interval. SVM, 

Support Vector Machine. Color coding for model training: Red - trained in 30-day binary 

case only; Green - trained with 30-day and 180-day binary outcome; Blue - trained with 

180-day counts case.
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Figure 6. Deciles of algorithm risk versus readmission rates (%) for the best 30-day heart failure-
only models for each method
The y-axis presents the observed readmission rates in each decile, the x-axis the ordered 

deciles of risk predicted. SVM, Support Vector Machine.
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Figure 7. Deciles of algorithm risk versus readmission rates (%) for the best 180-day heart 
failure-only models for each method
The y-axis presents the observed readmission rates in each decile, the x-axis the ordered 

deciles of risk predicted. SVM, Support Vector Machine.
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Table 1
Patient Characteristics

30-Day 180-Day

Characteristic All N (%) Readmission N (%) All N (%) Readmission N (%)

N 1004 (100.0) 149 (14.8) 977 (100.0) 478 (48.9)

Median age (SD) 62 (15.7) 62 (15.9) 62 (15.7) 62 (15.4)

Females 415 (41.3) 58 (38.9) 403 (41.2) 193 (40.4)

Race

White 507 (50.5) 84 (56.4) 491 (50.3) 253 (52.9)

African American 393 (39.1) 55 (36.9) 385 (39.4) 188 (39.3)

Other 104 (10.4) 10 (6.7) 101 (10.3) 37 (7.8)

New York Heart Association

Class I 56 (5.6) 7 (4.7) 54 (5.5) 31 (6.5)

Class II 515 (51.3) 85 (57.0) 500 (51.2) 256 (53.6)

Class III 355 (35.4) 52 (35.0) 347 (35.5) 160 (33.4)

Class IV 58 (5.8) 2 (1.3) 57 (5.8) 20 (4.2)

Missing 20 (1.9) 3 (2.0) 19 (2.0) 11 (2.3)

Medical History

LVEF† % <40 687 (68.4) 99 (66.4) 668 (68.4) 317 (66.3)

Hypertension 771 (76.8) 116 (77.9) 752 (77.0) 376 (78.7)

Diabetes 450 (44.8) 57 (38.3) 439 (44.9) 200 (41.8)

Myocardial Infarction 257 (25.6) 47 (31.5) 250 (25.6) 131 (27.4)

Stroke 96 (9.6) 15 (10.1) 92 (9.4) 44 (9.2)

Ischemic Cardiomyopathy 235 (23.4) 44 (29.5) 228 (23.3) 127 (0.27)

Clinical Values (Mean/SD)

Albumin 3.32 (0.53) 3.25 (0.61) 3.31 (0.53) 3.33 (0.55)

Blood Urea Nitrogen 25.2 (17.8) 28.7 (20.3) 26.3 (16.8) 29.1 (17.5)

Creatinine 1.40 (0.77) 1.53 (0.80) 1.45 (0.72) 1.55 (0.80)

Hemoglobin 12.3 (1.94) 12.0 (1.80) 12.4 (1.94) 12.1 (1.87)

Glomerular Filtration Rate 58.5 (27.4) 52.8 (24.6) 58.8 (27.4) 54.4 (27.2)

Potassium 4.08 (0.57) 4.19 (0.58) 4.08 (0.57) 4.09 (0.56)

*
All values are mean (standard deviation) unless noted.

†
LVEF, Left Ventricular Ejection Fraction
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Table 3
Prospective Prediction Results (Mean and 95% Confidence Intervals)

Positive Predictive Value Sensitivity Specificity F-Score

30-Day All-Cause Readmission 0.22 (0.21-0.23) 0.61 (0.59-0.64) 0.61 (0.58-0.63) 0.32 (0.31-0.32)

180-Day All-Cause Readmission 0.51 (0.51-0.52) 0.92 (0.91-0.93) 0.18 (0.20-0.21) 0.66 (0.65-0.66)

30-Day Heart Failure-Only Readmission 0.15 (0.13-0.16) 0.45 (0.41-0.48) 0.79 (0.76-0.82) 0.20 (0.19-0.21)

180-Day Heart Failure Only Readmission 0.51 (0.50-0.51) 0.94 (0.93-0.95) 0.15 (0.13-0.17) 0.66 (0.65-0.66)
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