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Abstract

Type 1 diabetes (T1D) is commonly diagnosed in childhood and adolescence, and the

developing brain has to cope with its deleterious effects. Although brain adaptation to the

disease may not result in evident cognitive dysfunction, the effects of T1D on neurodevelop-

ment could alter the pattern of BOLD fMRI activation. The aim of this study was to explore

the neural BOLD activation pattern in patients with T1D versus that of healthy matched con-

trols while performing two visuospatial working memory tasks, which included a pair of

assignments administered through a block design. In the first task (condition A), the subjects

were shown a trial sequence of 3 or 4 white squares positioned pseudorandomly around a

fixation point on a black background. After a fixed delay, a second corresponding sequence

of 3 or 4 red squares was shown that either resembled (direct, 50%) or differed from (50%)

the previous stimulation order. The subjects were required to press one button if the two

spatial sequences were identical or a second button if they were not. In condition B, the par-

ticipants had to determine whether the second sequence of red squares appeared in inverse

order (inverse, 50%) or not (50%) and respond by pressing a button. If the latter sequence

followed an order distinct from the inverse sequence, the subjects were instructed to press a

different button. Sixteen patients with normal IQ and without diabetes complications and 16

healthy control subjects participated in the study. In the behavioral analysis, there were no

significant differences between the groups in the pure visuo-spatial task, but the patients

with diabetes exhibited poorer performance in the task with verbal stimuli (p < .001). How-

ever, fMRI analyses revealed that the patients with T1D showed significantly increased acti-

vation in the prefrontal inferior cortex, subcortical regions and the cerebellum (in general

p < .001). These different activation patterns could be due to adaptive compensation mech-

anisms that are devoted to improving efficiency while solving more complex cognitive tasks.
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Introduction

Several studies have proposed that glucose dysregulation in type 1 diabetes (T1D) can result in

physiological complications, such as neuropathies, and has also been linked to an increased

risk for cognitive deficits [1]. Cognitive impairments in T1D in both adults and children are

reported in the areas of psychomotor speed, memory, processing speed, verbal ability, learn-

ing, attention and executive functions, including working memory [2–9]. A meta-analysis

reported that patients with T1D decline in mental processing speed and mental flexibility,

while the other cognitive functions seem to be spared [10]. A more recent meta-analysis by

[11] suggests that adults with T1D show alterations in intelligence quotient (IQ), executive

functions, memory and motor speed. However, despite the differences in these two studies, the

authors of both studies concluded that the cognitive impairment in T1D ranges from mild to

moderate.

Although many studies have reported that cognitive deficits in T1D are due to the effect of

glycemic dysregulation on the brain [7, 12–16], some authors have postulated that T1D has a

negative impact on cognition that is unrelated to the quality of metabolic control, since this

variable was not associated with cognitive alterations found in T1D patients [10, 17, 18]. A pre-

vious study reported that patients with early disease onset show structural brain abnormalities

that could reflect suboptimal brain development [6]. In addition, some studies suggest that the

impact of T1D on brain function begins to take effect shortly after diagnosis [19, 20] and in the

final stages of neurodevelopment as well [21]. Among the brain abnormalities in T1D, smaller

gray matter in the left superior temporal region, right cuneus and precuneus and large gray

matter volume in the right prefrontal region have been reported [22], and these changes are

probably associated with both hyperglycemia and hypoglycemia [23].

Early onset T1D patients exhibit ventricular atrophy [6] and larger hippocampal volumes

[24]. Diffusion tensor imaging studies with children with T1D report structural alterations in

white matter that are suggestive of axonal injury or degeneration related to severe hyperglyce-

mia [25–27]. Similarly, fMRI studies have also reported differences in the activation of brain

areas in children with T1D compared to those in healthy controls [28].

As we stated earlier, despite this cerebral insult, brain adaptation to T1D could result in

mild to moderate cognitive dysfunction or may not even affect cognitive functions, which

some studies have reported [7]. In this sense, some works have suggested that some brain

adaptations occur in T1D patients to prevent cognitive impairments. A classic paper [29]

showed that in an n-back task, patients with retinopathy, compared with patients without,

showed less deactivation in the anterior cingulate and the orbital frontal gyrus during hypogly-

cemia compared with euglycemia. However, both groups performed equally on task accuracy

and reaction times. Other work [30] showed a pattern of intrinsic hyperconnectivity in chil-

dren with T1D compared to that in normal controls, and they found a positive association

between high connectivity patterns and good cognitive functioning in children with diabetes.

In a previous work, [31] showed a similar pattern of hyperconnectivity in some patients with

T1D, which was related to better information processing speed and general cognitive perfor-

mance. Although a portion of these results seem to contradict those of [29], all these authors

interpreted their findings in a framework of brain adaptations to prevent cognitive dysfunction

in T1D.

Similarly, a study by [32] investigated the effects of acute hypoglycemia on working mem-

ory and brain function in patients with T1D, in which both patients and controls were studied

using the insulin clamp technique to study both groups in two conditions: euglycemia and

hypoglycemia. Their results suggest that patients with T1D present a pattern of brain activa-

tion during working memory tasks similar to the control group during a normoglycemic state,
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but the pattern of activation was different from that of the control subjects during hypoglyce-

mia, and the BOLD signal in the patients with T1D was increased in areas such as the parietal

and frontal cortex, the hippocampus and the cerebellum, and these patients did not deactivate

several Default Mode Network areas while conducting the task, as expected. Altogether, these

data suggest that, at least for some patients, interactions between T1D and working memory

may exist. These support the relevance of the study of working memory and brain activation

associated with this cognitive function to patients with T1D. On the other hand, the research-

ers that studied working memory in patients with T1D were not focused on contrasting verbal

and visuospatial working memory in these patients. The study by [32] used the digit-retention

task as a paradigm. Therefore, there has been no thorough study of visuospatial memory and

the brain activation associated with this cognitive function in patients with T1D.

Thus, we aimed to explore neurofunctional activation in young patients with T1D during

two visuospatial working memory tasks: 1) with visuospatial stimuli and 2) with the interfer-

ence of verbal stimuli. There is some evidence suggesting that verbal stimuli interfere with

immediate spatial memory and visuospatial working memory. Some behavioral studies have

suggested that reading words presented visually interferes with immediate spatial memory

[33]. On the other hand, when preparing the set of tasks in our behavioral studies, we realized

that verbal stimuli were slightly interfering with working memory performance [28], and we

opted for this method, given that adding stimuli caused a greater degree of interference.

We hypothesized that both groups would show activation in the prefrontal cortex, anterior

cingulate and cerebellum, which have all been previously reported to be involved in working

memory processing [34–36]. We also hypothesized that the aforementioned vulnerability of

the T1D brain would be reflected by increased activation of the subcortical brain regions and

the cerebellum in both tasks, which was previously reported [28]. In addition, similar to the

results of [32] in which both groups exhibited activation of the subcortical areas and the cere-

bellum during a working memory task in normoglycemia, but patients with T1D exhibited

much less deactivation of these areas during in hypoglycemia. Nevertheless, the second part of

our hypothesis should be approached with caution because our patients with T1D were not

tested during hypoglycemia. We also hypothesized that the interference of the verbal stimuli

would also activate the brain regions associated with word reading and semantic processing

without affecting behavioral performance in both groups.

Materials and methods

Participants

Patients were selected through an intentional sampling to fulfill specific inclusion criteria. The

patients were recruited for this study from two associations that specialize in diabetes and the

Endocrinology services from the Centro Médico Nacional de Occidente and Fray Antonio
Alcalde Hospital. The institutional review board at each participating center approved the

study protocol. Informed written consent was obtained from the participants or their parents

or legal guardians. The entire protocol was approved by Comité de Ética del Instituto de Neuro-
ciencias de la Universidad de Guadalajara and also by Comité de Enseñanza, Investigación y
Ética del Hospital Civil de Guadalajara.

Eligibility criteria for the T1D participants included age of onset of the disease during child-

hood or adolescence, right-handed, at least four years of disease evolution, normal intelligence

quotient measured with the Wechsler Adult Intelligence Scale (WAIS-III), a minimum of 9

years of education and no more than two hospitalizations (due to diabetes) during the previous

2 years. Those with diabetic complications (such as retinopathy, nephropathy or neuropathy)
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were not included. Exclusions for both groups included neurodevelopmental disorders, neuro-

logic or psychiatric illness and magnetic resonance imaging contraindications.

Of 22 participants for whom an fMRI scan was obtained, six were excluded due to motion-

related artifacts. Sixteen T1D patients and 16 healthy control subjects matched for sex, age and

education participated in the study. The patients were recruited from the endocrinology ser-

vice of two hospitals and two diabetes associations from Guadalajara, Mexico. The control

group was recruited from among the friends and family of the patients.

Stimuli and procedure

During screening, the patients completed a questionnaire and provided the following informa-

tion: handedness, medical history, including their last glycated hemoglobin (HbA1c) percent-

age and fasting plasma glucose levels, and current treatment or medication.

Before the fMRI session, plasma glucose was measured (Accu-Check Active glucometer).

During the scanning, a working memory task (WMT) was presented. The task stimuli were

administered using E-Prime Studio v.2.0 (Psychology Software Tools, Inc., 2010). The images

were projected through a goggle system, and responses were collected by a magnetic-reso-

nance compatible, hand-held, four-button response pad connected to the computer through

an optical cable interface.

The WMT consisted of two pairs of tasks administered in a block design. For the first task

(conditions A and B, visuospatial task), the subjects were first shown a trial sequence of three

(50%) or four (50%) white squares positioned pseudo-randomly around a fixation point on a

black screen. In condition A, after a fixed delay following the first sequence, the subjects were

shown a second sequence, which also comprised three or four red squares positioned in a

direct order in 50% of the total trials (same sequence positions on the screen). In condition B,

the red squares were in the inverse order in 50% of the total trials (reverse sequence positions).

Then, the subjects had to press the first button (right button) if the second sequence order cor-

responded to exactly the same order presented before, either direct or inverse. If the red

squares were in a different position from that of the white squares shown previously (either

direct or inverse), then the subject had to press the second button (left button). For the second

task (conditions C and D, visuospatial verbal task), common (>100 per million), familiar

2-syllable nouns were used as the stimuli instead of squares. The subjects were instructed to

avoid reading and pay attention to the position and the sequence (direct in task C or inverse in

task D) of the words on the screen. Then, the subjects had to perform the same tasks as A and

B, in which they had to press a button if the sequence order of the red words exactly matched

the order presented before with the white words, either direct or inverse. If the red words were

in a different position from the white words shown previously, then subjects had to press a dif-

ferent button. In this task, the lexical content of the words was irrelevant to accomplish the

tasks. The trial events included a 3000-ms instruction period, 800-ms stimulus presentation,

460-ms inter-interval stimuli, 1800-ms delay period and an 1800-ms response period (Fig 1).

Response times and the response type (correct, incorrect or omission) were recorded for each

trial.

Within a week prior to the scan session, all participants performed a series of training trials

in a mock fMRI environment to familiarize them with the nature of the tasks and desensitize

them to the sights and sounds that they would encounter during the scan.

Image acquisition

A GE Excite HDxT 1.5 Tesla (General Electric Medical System, Milwaukee, WI) with a circular

eight-channel head coil was used. An ultrafast three-dimensional (SPGR) image sequence was
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acquired. BOLD images covering the whole brain were acquired in the axial plane using an

echo-planar imaging (EPI) sequence (TR/TE = 3000/60 ms; 32 slices acquired in sequential

order, slice thickness = 4 mm; field of view = 25.6 cm; flip angle = 90˚ matrix size = 64x64).

The first scans, prior to the experimental sequence, were used to localize the T1 and T2 axial

series. In each experimental task, the subjects performed a total of eight blocks that lasted a

total of 6:12 minutes. A total of 124 brain volumes were obtained. Due to the image acquisition

time and the experimental design, 12 brain volumes per task were discarded, which left a total

of 112 volumes for posterior analysis. The first two discarded volumes corresponded to the

presentation of messages that helped prepare the subjects start the task. Then, before each acti-

vation block, one volume corresponding to a task instruction reminder that served as a warn-

ing to start the task was also eliminated (8 volumes in total). Finally, the last two volumes

corresponded to messages indicating that the task had been completed.

Data analyses

The demographic and behavioral results were performed using SPSS (IBM Corp. Released

2011). Analysis of variance (ANOVA) was used to assess the main and interaction effects of

task condition and disease status on cognitive performance. This analysis was conducted using

group (patients and controls) as the between-group factor, the four tasks (A, B, C and D) as

the within-subject factor, and the percentage of correct answers and the simple response time

as the dependent variables.

Fig 1. Schematic illustrations of stimulus presentation. A and B correspond to the visuospatial WM task,

while C and D are part of the visuospatial verbal task. Each block of stimulus presentation was formed with a

three-stimulus (A and C examples) and a four-stimulus trial (B and D examples) in all conditions.

https://doi.org/10.1371/journal.pone.0178172.g001
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An fMRI analysis was carried out using the SPM8 computer package (http://www.fil.ion.

ucl.ac.uk/spm/software/spm8/). Pre-statistical processing consisted of motion correction,

readjustment to the voxel size, and normalization according to the MNI reference (Montreal

Neurological Institute) and Talairach coordinates. For the data smoothing, a Gaussian kernel

filter three times the voxel size was used on the x-, y-, z-axes (the final smoothing criteria were

12, 12 and 9 mm).

Brain activation in response to the four conditions were examined by performing a first-

level general linear model (GLM) analysis for each subject using a statistical threshold of α =

.05. To compare activation patterns between groups and conditions, a second-level full facto-

rial GLM analysis was conducted using the same statistical threshold and applying Family

Wise Error correction. All the p-values are corrected for the whole brain analysis and for a spe-

cific cluster to reduce the nominal type I error. The a posteriori effects after the main effects

estimation were assessed by contrast conditions A<B to analyze the visuospatial working

memory task that used squares as stimuli; the contrast C<D was also used to analyze the visuo-

spatial working memory that used verbal stimuli; and the bilateral contrasts A-C and B-D were

used to analyze the stimulus effect. A-C corresponded to immediate working memory, and

B-D had the same working memory load.

Results and discussion

In relation to the statistical description of both groups, Table 1 provides further analysis of the

demographic and clinical characteristics of the participants. According to these results, we

concluded that both groups are very similar in all the measured variables, with the exception

of the IQ indexes (total and verbal), Verbal Comprehension Index and Processing Speed Index

(p< .01).

Behavioral performance

For the analysis of the behavioral results of the experimental tasks, we considered only the cor-

rect responses and response times, since the percentages of incorrect responses and omissions

were small and did not greatly contribute to the analysis. Initially, we estimated the linear cor-

relations of several IQ indicators with the distributions of correct answers and reaction times.

This analysis yielded no statistically significant correlations.

The descriptive results revealed a similar performance in both groups. However, we

observed a slightly worse performance in the patients than in the control subjects (Table 2).

However, in factorial ANOVA, this difference was not significant (Table 3). As shown in

Table 3, all the reported effects have a non-significant p-value, with the exception of the inter-

action Task AB x Group (F(1,30) = 4.62; p = .040; η2 = .133) for correct answers and Task AB

for response time (F(1,30) = 4.76; p = .037; η2 = .137). For the correct answers, the patients gen-

erally presented a slightly higher average value in task A than controls, whereas this effect is

reversed in task B. However, this is a low-intensity effect, according to Cohen’s guidelines. In

regard to the reaction time, the means were slightly higher for task A than for task B, although

this effect also shows low intensity. Consequently, with the behavioral data, no relevant statisti-

cally significant differences were observed between the groups.

Imaging results

Given that the task comprised a visuospatial working memory task, the main effect of condi-

tion involved the right anterior prefrontal cortex and anterior cingulate, the left parahippo-

campal gyrus and substantia nigra, and the left anterior lobe of the cerebellum. Since tasks C

and D contained verbal stimuli, activation was also found in the left inferior and middle
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temporal gyrus, including the fusiform gyrus and the right superior temporal gyrus next to the

temporal pole.

On the other hand, the group differences revealed that the patients exhibited two main sub-

cortical activation peaks, including one peak in the right claustrum and insula and another

peak in the left lentiform nucleus in the putamen. Nevertheless, we must be cautious in attrib-

uting part of this activation to a true activation of the claustrum, since the claustrum is a very

small structure and was probably blurred out during the smoothing process. In addition, there

were activation peaks in the right fusiform gyrus and portions of both the anterior and poste-

rior lobes of the cerebellum in both groups. Table 4 and Fig 2 show the activated areas derived

from the principal effect in ANOVA results.

For the group and condition interaction effect, there was more activation in the cerebellum,

particularly the culmen in the anterior lobe and the tonsil of the posterior lobe, in the T1D

group in the A and B conditions. The right superior temporal gyrus (temporopolar cortex)

and the left inferior frontal gyrus, specifically the orbitofrontal cortex, were more activated in

the C and D conditions. On the other hand, the principal activation in the control group

occurred in the right parietal lobe (precuneus) for conditions A and C and parts of the bilateral

middle and superior frontal gyrus for conditions B and D.

In relation to the “a posteriori” statistical comparisons, in Fig 3 and Tables 5 and 6, we

observed that for the unilateral contrasts A<B and C<D and bilateral contrast B-D the same

Table 1. Demographic and clinical characteristics of the study subjects.

Patients with T1D Control subjects Signification

n 16 16 No Sig.

Age (years) 20.6 (4.0) 21.13 (4.41) No Sig.

Sex (men/women) 9/7 9/7 No Sig.

Education (years) 12.69 (2.87) 13.31 (2.75) No Sig.

Total IQ 103.88 (7.40) 113.06 (7.30) p < .01

Verbal IQ 100.75 (8.10) 112.13 (6.47) p < .01

Performance IQ 107.94 (9.05) 113.44 (6.83) No Sig.

Verbal Comprehension Index 102.88 (12.39) 116.81 (8.73) p < .01

Perceptual Reasoning Index 109.19 (8.31) 113.44 (8.41) No Sig.

Working Memory Index 97.00 (2.12) 99.50 (3.08) No Sig.

Processing Speed Index 104.38 (16.36) 118.44 (10.87) p < .01

Diabetes duration (years) 10.44 (5.37) _

HbA1c (%) 8.91 (2.09) _

(mmol/mol) 74 (22.8) _

Last fasting plasma glucose (mg/dL) 128.54 (60.05) _

Plasma glucose before fMRI (mg/dL) 207.06 (72.31) 106.8 (40.19) p < .01

The data are presented as the means (SD). n = number of cases; HbA1c = glycated hemoglobin.

https://doi.org/10.1371/journal.pone.0178172.t001

Table 2. Descriptive statistical results of task performance. Means and (Standard Deviations).

Condition

Group A B C D

Correct answers (%) Controls 88.28 (8.50) 94.53 (11.15) 92.97 (7.86) 92.19 (12.81)

Patients 89.06 (10.07) 92.19 (11.06) 85.94 (15.05) 79.94 (16.38)

Response times (ms) Controls 589.68 (183.64) 589.99 (149.84) 605.73 (151.56) 645.36 (158.94)

Patients 600.19 (143.31) 590.70 (164.24) 671.95 (209.71) 649.02 (234.01)

https://doi.org/10.1371/journal.pone.0178172.t002

Working memory in type 1 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0178172 June 5, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0178172.t001
https://doi.org/10.1371/journal.pone.0178172.t002
https://doi.org/10.1371/journal.pone.0178172


Table 3. Summary results of factorial ANOVA for behavioral results.

F df p η2 1-β
Correct

Answers

Task AB 2.52 1, 30 .123 .078 .336

Task CD 0.09 1, 30 .765 .003 .060

Group 3.82 1, 30 .060 .113 .473

Task AB x Task CD 7.02 1, 30 .013 .190 .727

Task AB x Group 4.62 1, 30 .040 .133 .548

Task CD x Group 1.22 1, 30 .278 .039 .188

Task AB x Task CD x Group 0.14 1, 30 .708 .005 .066

Response

times

Task AB 4.76 1, 30 .037 .137 .561

Task CD 0.03 1, 30 .869 .001 .053

Group 0.14 1, 30 .714 .005 .065

Task AB x Task CD 0.17 1, 30 .682 .006 .069

Task AB x Group 0.40 1, 30 .530 .013 .094

Task CD x Group 2.54 1, 30 .121 .078 .339

Task AB x Task CD x Group 0.71 1, 30 .406 .023 .129

F = Snedecor’s F statistic; p = statistical significance; df = degrees of freedom; η2 = effect size; 1-β = statistical power.

https://doi.org/10.1371/journal.pone.0178172.t003

Table 4. Statistical significance of the activations.

F(df) P MNI

Coordinates

Cluster size

(voxels)

Anatomical region Contrasts used1

Condition

effect

5.55 (3, 120) .001 -38 -4 -14 114 L Inferior temporal gyrus (BA 21, 20) Task B > A Task D > C

Independent of group4.15 (3,120) .008 38 0–22 92 R Superior temporal gyrus (BA 38); Claustrum

3.53 (3,120) .017 14 36 -6 92 R Medial frontal gyrus (BA 45, 46, 10); Anterior

cingulate (BA 32)

3.37 (3, 120) .021 -18 -20 -22 21 L Parahippocampal gyrus (BA 28); Substantia

nigra;

3.09 (3, 120) .029 -14 40 -18 4 L Cerebellum anterior lobe (culmen)

Group effect

15.61 (1, 120) <
.001

30 4 -6 122 R Claustrum; Insula T1D > Control

13.5 (1, 120) <
.001

-26 8 -6 159 L Putamen (Lentiform Nucleus)

11.27 (1, 120) .001 42 -24 18 87 R Fusiform gyrus; Inferior temporal lobe (BA 20)

9.59 (1, 120) .002 2 -52 -22 33 B Cerebellum anterior lobe (culmen)

6.78 (1, 120) .01 6 -56 -46 37 R Cerebellum posterior lobe (tonsil)

Group x

Condition

5.13 (3, 120) .002 14 -44 -18 57 R Cerebellum anterior lobe (culmen) TD1 > Control

3.89 (3, 120) .011 -26 -36 -18 19 L Cerebellum anterior lobe (culmen) TD1 > Control

2.95 (3, 120) .035 14 -60 -30 7 R Cerebellum posterior lobe (uvula) Control > TD1

2.8 (3, 120) .042 42 8 -30 4 R Superior temporal gyrus (BA 38) Control > TD1

2.74 (3, 120) .045 -10 56 -18 4 L Inferior frontal gyrus (BA 11, 47) TD1 > Control

F = Snedecor’s F statistic; df = degrees of freedom; p = statistical significance; MNI coordinates = x, y, z coordinates of cluster peaks; L = left; R = right;

B = bilateral; BA = Brodmann’s area.
1The first task/group presented more activation than the second task/group.

https://doi.org/10.1371/journal.pone.0178172.t004
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cluster was activated, which included the right inferior frontal gyrus, specifically the orbital

prefrontal cortex and the tonsil of the posterior lobe of the cerebellum, in the patients. How-

ever, in the bilateral contrast A-C, the left parahippocampal gyrus was activated in both

groups.

The group x task interactions are shown in Table 6. For all contrasts in the patients with

TD1, there was greater activation of the right inferior frontal gyrus, more specifically the orbi-

tofrontal cortex, as well as the tonsil of the posterior lobe of the cerebellum. However, other

clusters were also activated in the A-B contrast, such as the left inferior temporal and the right

medial temporal gyri, which is closer to the ventral temporal area. Both groups showed a clus-

ter in the left inferior temporal gyrus in the B-D contrast, while we observed greater activation

of the parahippocampal gyrus and the right uncus in the C-D contrast. This same cluster was

also observed in the A-C contrast, but in addition, it involved the activation of the culmen in

the anterior lobe of the cerebellum.

Fig 2. fMRI results of the interaction effect in the T1D group. Although the fMRI analyses were conducted

at the whole-brain level, here we focus on the significant cluster peaks. The left hemisphere is shown on the

left.

https://doi.org/10.1371/journal.pone.0178172.g002
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Discussion

In our study, we explored the neural BOLD activation pattern of patients with T1D versus a

healthy matched control group while performing two visuospatial working memory tasks,

which are explained in the Methods section. In the first pair of tasks AB, task A is similar to

the spatial working memory task described in the study by [37] but has a higher cognitive load.

Fig 3. fMRI results of the interaction between group and each condition contrast. Although the fMRI

analyses were conducted at the whole-brain level, here we focus on the significant cluster peaks. The left

hemisphere is shown on the left.

https://doi.org/10.1371/journal.pone.0178172.g003

Table 5. Statistical significance of a posteriori effects.

F(df) P MNI Coordinates Cluster size

(voxels)

Anatomical region Contrasts used1

Effect A-B

221.77 (2, 120) < .001 34 24 -10 2907 R Inferior frontal gyrus (BA 47); Cerebellum posterior lobe (tonsil) Task B > A

Effect C-D

234.89 (2, 120) < .001 34 24 -10 2965 R Inferior frontal gyrus (BA 47); Cerebellum posterior lobe (tonsil) Task D > C

Effect A-C

226.2 (2, 120) < .001 34 24 -10 2807 R Inferior frontal gyrus (BA 47); Cerebellum posterior lobe (tonsil) Task A 6¼ C

5.47 (2, 120) .005 -22 -20 -26 12 L Parahippocampal gyrus (BA 36)

Effect B-D

231.6 (2, 120) < .001 38 24 -10 2803 R Inferior frontal gyrus (BA 47); Cerebellum posterior lobe (tonsil) Task B 6¼ D

F = Snedecor’s F statistic; df = degrees of freedom; p = statistical significance; MNI coordinates = x, y, z coordinates of cluster peaks; L = left; R = right;

BA = Brodmann’s area.
1The first task/group presented more activation than the second task/group.

https://doi.org/10.1371/journal.pone.0178172.t005
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Task B is very similar to task A, but the subjects had to determine whether the second sequence

was exactly the reverse of the one shown previously. The tasks C and D may be considered

analogous to tasks A and B, respectively, but with a verbal component that is not necessary to

solve the task. Thus, these tasks also involve working memory but with a slightly higher level of

difficulty and a verbal component. Therefore, our design is completely factorial, and we can

therefore study the brain activations most highly associated with the verbal component in

short-term memory tasks when comparing A-C, and the effect of this component on spatial

memory tasks with the B-D comparison.

In our opinion, this study represents an important step towards understanding how T1D

may affect the brain during cognitive activity. Multiple studies have shown that children and

adults diagnosed with T1D usually achieve lower scores than their peers in different neuropsy-

chological tests [2–9, 15, 38]. Our patients had significantly lower IQs than the control group.

This finding was expected because [11] meta-analysis concluded that adults with this disease

had lower IQ scores than the healthy population. Nevertheless, all the patients in our sample

achieved normal IQ scores and an educational background that was significantly higher than

that estimated for the overall Mexican population [39]. Therefore, the IQ difference between

the groups is unlikely to cause clinically significant problems in the day-to-day activities of our

T1D sample, which was previously suggested [40].

The present data demonstrated that the T1D patients showed a different functional brain

activation pattern from that of the controls, as we previously reported [28]. In the present

study, we used two pairs of tasks. The first pair of tasks included visuospatial working memory

tasks, and the second pair of tasks included a working memory task with both visuospatial and

Table 6. Statistical signification of a posteriori contrasts derived from interaction general effect.

F(df) P MNI

Coordinates

Cluster

size

(voxels)

Anatomical region Contrasts used / Group with more

activation

Group x AB

221.03 (2,

120)

< .001 34 24 -10 2628 R Inferior frontal gyrus (BA 47); Cerebellum posterior

lobe (tonsil)

Task B > A / TD1 > Control

27.06 (2,

120)

< .001 -58 -8 -30 53 L Inferior temporal gyrus (BA 20) Task B > A / Control > TD1

15.66 (2,

120)

< .001 58 -4 22 76 R Middle temporal gyrus (BA 21) Task B > A / Control > TD1

Group x CD

235.92 (2,

120)

< .001 34 24 -10 2837 R Inferior frontal gyrus (BA 47); Cerebellum posterior

lobe (tonsil)

Task D > C / TD1 > Control

3.67 (2, 120) .028 -26 -16 -30 L Parahippocampal gyrus; Uncus Task D > C / Control > TD1

Group x AC

226.31 (2,

120)

< .001 34 24 -10 2751 R Inferior frontal gyrus (BA 47); Cerebellum posterior

lobe (tonsil)

Bilateral contrast / TD1 > Control

4.91 (2, 120) .009 -26 -16 -30 13 L Parahippocampal gyrus; Uncus; Cerebellum anterior

lobe (culmen)

Bilateral contrast / Control > TD1

Group x BD

231.35 (2,

120)

< .001 38 24 -10 2792 R Inferior frontal gyrus (BA 47); Cerebellum posterior

lobe (tonsil)

Bilateral contrast / TD1 > Control

25.26

(2,120)

< .001 -58 -8 -30 40 L Inferior temporal gyrus (BA 20) Bilateral contrast / Control > TD1

Note. F = Snedecor’s F statistic; df = degrees of freedom; p = statistical significance; MNI coordinates = x, y, z coordinates of cluster peaks; L = left;

R = right; BA = Brodmann’s area.

https://doi.org/10.1371/journal.pone.0178172.t006
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verbal cognitive loads. As expected, for the effect of condition, regardless of the group, we

found focal brain activations in the prefrontal cortex, anterior cingulate and cerebellum, which

have all been previously reported to be involved in working memory processing [41, 35, 36].

Additionally, the activations observed in the left fusiform gyrus and the right temporal pole

suggest that differences between the conditions (A and B versus C and D) primarily involve

word recognition and semantic processing [42–44].

The a posteriori effects between conditions showed the same activation clusters in all the

conducted contrasts. The clusters in the inferior prefrontal cortex and the tonsil of the cerebel-

lum could be involved in storage processing [36, 45], which suggests that tasks B and D require

more storage resources than tasks A and C. Moreover, the cerebellum may support the execu-

tive control processes [41] needed in these tasks with increasing cognitive demand. However,

in the A-C contrast, there was also one more activation cluster in the left parahippocampal

gyrus. Most likely, tasks A and C, which are tasks of immediate short-term memory, were eas-

ier and required fewer cognitive resources for completion. Thus, the familiarity effect (given

that a square is a common shape and the words used are highly frequent in the Spanish lan-

guage) may be involved in solving these tasks and could explain the left parahippocampal acti-

vations [46, 47].

When we analyzed the differences between the groups, the patients with T1D showed a dif-

ferent brain activation pattern with both pairs of tasks from that of the controls. In our study,

regarding the behavioral performance in the tasks with verbal stimuli versus the tasks with

only visuospatial stimuli, the patients with T1D performed worse in tasks with verbal stimuli.

Although the participants were explicitly instructed to avoid reading, the results suggest that,

probably due to reading automation in adults, both the position of the visually presented

words on the screen and the lexical and semantic content of the words were encoded [48]. In

addition, the participants could use verbal coding to remember the positions on the screen

(e.g., “top left”). According to [49], visuospatial memory should be susceptible to interference

from verbal material. In this case, the verbal stimuli presented in our tasks could elicit both the

central executive processes and the focus of attention to try to maintain additional verbal

information [50].

The load theory [51] claims that the perceptual load reduces distractor interference,

whereas working memory load increases interference. However, recent studies suggest that the

interactive effects of the working memory load and the perceptual load depend on the relation-

ship between the modalities of working memory and stimuli [52, 53]. In our study, although

the lexical content of the words was irrelevant to accomplish the C and D tasks, an additional

automatic coding of verbal material interfered with visuospatial working memory processing,

which probably occurred via the interaction with the executive system due to the natural rele-

vance of verbal stimuli.

On the other hand, the fMRI results showed that the main group differences, regardless of

the task, were that the patients with T1D showed less cortical activation than the control sub-

jects. In fact, the main cortical peak observed in the group of T1D patients was located in the

right inferior frontal gyrus (orbital area). Moreover, this group showed more subcortical acti-

vations, particularly in the cerebellum, insula and the putamen. Previous studies have shown

that the insula commonly shows activations during working memory tasks [45]. In particular,

the anterior insula engages the brain’s attentional working memory and higher-order control

processes while disengaging other systems that are not immediately relevant to the task [54].

Additionally, this model suggests that once a stimulus activates the anterior insula, it will have

preferential access to the brain’s attentional and working memory resources. On the other

hand, it seems that the left putamen is involved in hindering irrelevant information from

entering working memory [34].
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Furthermore, the patients with T1D exhibited strong activation within the cerebellum.

According to the functions attributed to the cerebellum in working memory [41, 55, 56], there

is the general belief that the cerebellum may modulate filtering processes in the basal ganglia

via a cortico-cerebellar circuitry [41]. It has also been hypothesized that the cerebellum may

operate as a type of internal timing system [57], and it is involved in executive control and

inhibition of distractors [41]. Additionally, [1] suggested that the cerebellum is one of the most

affected brain structures during neurodevelopment in children with T1D. This finding could

explain the activation differences between the groups in our study, as the patients with T1D

exhibited more activation in the tonsil of the posterior lobe of the right cerebellum posterior

lobe in the contrasts A-B and C-D. Potentially, the cerebellum has adapted over time during

neurodevelopment in our sample of T1D subjects, which has been suggested in other studies

[32].

It is well known that the right orbital area is critical for successful implementation of inhibi-

tory control [58, 59]. This area is clearly activated in patients with T1D, which suggests that

patients with T1D require more attention, monitoring and internal regulation resources than

healthy controls, and then, to successfully perform the working memory tasks, the patients

recruit other cerebral areas beyond the dorsolateral prefrontal cortex. In this case, the lesser

activation of the dorsolateral prefrontal cortex may be related to the involvement of these

other prefrontal regions to support working memory processes. In addition, the putamen,

insula and the cerebellum could constitute a functional portion of this network, which is

responsible for filtering irrelevant information and thus makes the attentional resources avail-

able to perform the task. However, when greater executive control resources were needed, the

processing efficiency in T1D participants seemed to be diminished, which is probably due to

the higher memory and attentional demands [40].

Similar to our results, [60] reported increased BOLD activation in the cerebellum and right

frontal pole in a task with a greater cognitive load. Equally important is the fact that [61] found

a relative absence of hierarchical high-level hubs in the prefrontal lobe of patients with T1D

and suggested that dysfunctional cortical organization underlies the ineffective top-down con-

trol of the prefrontal cortex. These findings could provide an explanation for our results

regarding the diminished cortical activations and increased subcortical activations.

In accordance with these findings, changes in the brain activation pattern in patients with

T1D could be neuroplastic adaptations to frequent glucose dysregulation experiences since the

diagnosis [32]. Consequently, the activations in the right inferior frontal area, the cerebellum

and the putamen observed in our T1D subjects may be an adaptive response to attain the same

level of behavioral performance as the healthy subjects. Other works support the idea that the

brains of patients with T1D may develop some adaptations to prevent cognitive problems.

From a behavioral point of view, the meta-analyses on the neuropsychological performance of

T1D patients suggest that the neuropsychological alterations in this population are limited to

some cognitive areas and within a range of mild to moderate severity [10, 11]. Some fMRI

studies have also supported this idea. [18] showed that in an n-back task, patients with T1D

and retinopathy, compared with patients without, showed less deactivation in the anterior cin-

gulate and the orbital frontal gyrus during hypoglycemia compared with euglycemia. However,

both groups performed equally on task accuracy and reaction times. [30] showed a pattern of

intrinsic hyperconnectivity in children with T1D with respect to normal children, and the

authors found a positive association between high connectivity patterns and good cognitive

functioning in children with diabetes. [31] showed a similar pattern of hyperconnectivity in

adult patients with T1D without retinopathy to that in patients with diabetes and without vas-

cular damage, and the hyperconnectivity pattern was related to better information processing
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speed and general cognitive performance. All three works interpreted their findings as brain

adaptations to prevent cognitive impairment in T1D.

The present study has several limitations. Most likely, the main limitation is due to the fact

that glucose levels and glycated hemoglobin on fasting were not measured in the control group.

Due to the lack of antecedents, clinical symptoms of diabetes, or of any related disease, the glu-

cose levels in the control group were presumed to be within the normal limits. Moreover, the

study did not evaluate factors such as the evolution of T1D over time. Nevertheless, we studied

a very homogeneous T1D sample, since our study was focused on very young patients with

early onset of the disease and only a few years of disease evolution, with good general health sta-

tus and adequate glycemic control. This decision was based on the notion that later T1D onset

may be associated with a different pattern of functional neuronal network relationships, which

could potentially lead to different behavioral strategies and performance outputs. Therefore,

these issues should be explored in future studies. Additionally, we did not measure how the ver-

bal stimuli were encoded. It would have been useful to know the strategy that the subjects used

to solve tasks C and D. Furthermore, the small sample size may limit the general implications of

our results. Nevertheless, the BOLD activations obtained while performing the tasks were com-

patible with the brain activation patterns found in other fMRI studies [18, 62].

Conclusions

In brief, the present results reinforce the notion that T1D impacts brain activity while cognitive

abilities are evolving that could potentially trigger different degrees of cognitive disturbance,

which has been stated by other authors [11, 63, 64]. However, at the same time, our results also

support the idea that under some circumstances the brains of T1D patients may develop some

adaptations to prevent cognitive dysfunction, presenting different patterns of brain activity that

could permit patients with diabetes to achieve the same levels of cognitive performance as healthy

subjects. Other studies have supported this idea [18, 30, 65, 66]. However, more studies are needed

to confirm this hypothesis and determine the variables responsible for these adaptations.
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52. González-Garrido AA, López-Franco AL, Gómez-Velázquez FR, Ramos-Loyo J, Sequeira H. Emo-

tional content of stimuli improves visuospatial working memory. Neuroscience Letters 2015; 585: 43–7.

https://doi.org/10.1016/j.neulet.2014.11.014 PMID: 25445376

53. Koshino H, Olid P. Interactions between modality of working memory load and perceptual load in dis-

tractor processing. The Journal of General Psychology2015; 142: 135–49.

54. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function.

Brain Structure and Function 2010; 214(5–6): 655–667. https://doi.org/10.1007/s00429-010-0262-0

PMID: 20512370

55. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: A meta-analysis of

neuroimaging studies. Neuroimage 2009; 44: 489–501. https://doi.org/10.1016/j.neuroimage.2008.08.

039 PMID: 18835452

56. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cog-

nitive tasks: An fMRI study. Neuroimage 2012; 59: 560–1570.

57. Chen YC, Jiao Y, Cui Y, Shang SA, Ding J, Feng Y, et al. Aberrant brain functional connectivity related

to insulin resistance in type 2 diabetes: a resting-state fMRI study. Diabetes Care 2014; 37(6): 1689–

1696 https://doi.org/10.2337/dc13-2127 PMID: 24658392

58. Aaron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on.

Trends in Cognitive Sciences 2014; 18(4): 177–185. https://doi.org/10.1016/j.tics.2013.12.003 PMID:

24440116

59. Swick D, Ashley V, Turken AU. Left inferior frontal gyrus is critical for response inhibition. BMC Neuro-

science 2008; 9: 102. https://doi.org/10.1186/1471-2202-9-102 PMID: 18939997
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