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Abstract

The MinION device by Oxford Nanopore produces very long reads (reads over 100 kBp

were reported); however it suffers from high sequencing error rate. We present an open-

source DNA base caller based on deep recurrent neural networks and show that the accu-

racy of base calling is much dependent on the underlying software and can be improved by

considering modern machine learning methods. By employing carefully crafted recurrent

neural networks, our tool significantly improves base calling accuracy on data from R7.3 ver-

sion of the platform compared to the default base caller supplied by the manufacturer. On

R9 version, we achieve results comparable to Nanonet base caller provided by Oxford

Nanopore. Availability of an open source tool with high base calling accuracy will be useful

for development of new applications of the MinION device, including infectious disease

detection and custom target enrichment during sequencing.

Introduction

In this paper, we introduce DeepNano, an open-source base caller for the MinION nanopore

sequencing platform. The MinION device by Oxford Nanopore [1], weighing only 90 grams,

is currently the smallest high-throughput DNA sequencer. Thanks to its low capital costs,

small size and the possibility of analyzing the data in real time as they are produced, MinION

is very promising for clinical applications, such as monitoring infectious disease outbreaks [2–

4], and characterizing structural variants in cancer [5]. Here, we consider two versions of Min-

ION technology, R7.3 and R9. The latter was introduced in May 2016.

Although MinION is able to produce long reads, data produced on the R7.3 version of the

platform exhibit a rather high sequencing error rate. In this paper, we show that this error rate

can be significantly reduced by improving the base caller. Moreover, an open-source base cal-

ler with good performance is essential for developing novel applications of MinION devices

that require modifications of standard base calling utilities. Recent examples of such applica-

tions include runtime read selection protocols [6] and determination of complex methylation

patterns in certain genomes [7].

In the MinION device, single-stranded DNA fragments move through nanopores, which

causes changes in the electric current. The electric current is measured at each pore thousands

times per second, resulting in a measurement plot as shown in Fig 1. The electric current
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depends mostly on the context of several DNA bases passing through the pore at the time of

measurement. As the DNA moves through the pore, the context shifts and the electric current

changes. Based on these changes, the sequence of measurements is split into events, each event

ideally representing the shift of the context by one base. Each event is summarized by the

mean and variance of the current and by event duration. This sequence of events is then trans-

lated into a DNA sequence by a base caller.

A MinION device typically yields reads several thousand bases long; reads as long as

100,000 bp have been reported. To reduce the error rate, the device attempts to read both

strands of the same DNA fragment. The resulting template and complement reads can be com-

bined to a single two-directional (2D) read during base calling. As shown in Table 1, this can

reduce the error rate of the default base caller from roughly 30% for 1D reads to 13-15% for

2D reads on the R7.3 version.

Fig 1. Raw signal from MinION and its segmentation to events. The plot was generated from the E. coli

data (http://www.ebi.ac.uk/ena/data/view/ERR1147230).

https://doi.org/10.1371/journal.pone.0178751.g001

Table 1. Accuracy of base callers on two R7.3 testing data sets. The results of base calling were aligned

to the reference using BWA-MEM [28]. The accuracy was computed as the number of matches in the align-

ment divided by the length of the alignment.

E. coli K. pneumoniae

Template reads

Metrichor 71.3% 68.1%

Nanocall 68.3% 67.5%

DeepNano 77.9% 76.3%

Complement reads

Metrichor 71.4% 69.5%

Nanocall 68.5% 68.4%

DeepNano 76.4% 75.7%

2D reads

Metrichor 86.8% 84.8%

DeepNano 88.5% 86.7%

https://doi.org/10.1371/journal.pone.0178751.t001
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Oxford Nanopore’s default basecaller was provided on the Metrichor cloud computing plat-

form (called “Metrichor” here for short). It is a proprietary software, and the exact details of its

algorithms are not known. Metrichor for R7.3 platform assumed that each event depends on a

context of k = 6 consecutive bases and that the context typically shifts by one base in each step.

As a result, every base is read as a part of k consecutive events. This process can be represented

by a hidden Markov model (HMM). Each state in the model represents one k-tuple and the

transitions between states correspond to k-tuples overlapping by k − 1 bases (e.g. AACTGT

will be connected to ACTGTA, ACTGTC, ACTGTG, and ACTGTT), similarly as in de Bruijn

graphs. Emission probabilities reflect the current expected for a particular k-tuple, with an

appropriate variance added. Finally, additional transitions represent missed events, falsely split

events, and other likely errors (in fact, insertion and deletion errors are quite common in the

MinION sequencing reads, perhaps due to errors in event segmentation). After parameter

training, base calling can be performed by running the Viterbi algorithm, which will result in

the sequence of states with the highest likelihood. It is not known, what is the exact nature of

the model used in Metrichor, but the emission probabilities required for this type of model are

provided by Oxford Nanopore in the files storing the reads. The same approach has also been

implemented in an open source base caller Nanocall [8], which was released simultaneously

with an early version of DeepNano (arXiv:1603.09195).

There are several disadvantages to using HMMs for base calling of MinION data. HMMs

are very good at representing short-range dependencies (such as moving from one k-mer to

the next), yet it has been hypothesized that long-range dependencies may also play a role in

MinION base calling, and such dependencies are very hard to capture in HMMs. Also, in

HMMs a prior model for the DNA sequence itself is a part of the model. This may be difficult

to provide for an unknown DNA sequence and using incorrect prior model may cause signifi-

cant biases.

Our base caller uses recurrent neural networks, which have stellar results for speech recog-

nition [9], machine translation [10], language modeling [11], and other sequence processing

tasks. The current version of Metrichor is also based on recurrent neural networks. Neural net-

works were previously used for base calling Sanger sequencing reads [12, 13], though the

nature of MinION data is rather different.

Several tools for processing nanopore sequencing data were already published, including

read mappers [14, 15], and error correction tools using short Illumina reads [16]. Most closely

related to our work are Nanopolish [17] and PoreSeq [18]. Both tools create a consensus

sequence by combining information from multiple overlapping reads, considering not only

the final base calls from Metrichor, but also the sequence of events. They analyze the events by

hidden Markov models with emission probabilities provided by Metrichor. In contrast, our

base caller does not require read overlaps, it processes reads individually and provides more

precise base calls for downstream analysis. The crucial difference, however, is our use of a

more powerful framework of recurrent neural networks. Thanks to a large hidden state space,

our network can potentially capture long-distance dependencies in the data, whereas HMMs

use fixed k-mers.

Methods

In this section, we describe the design of our base caller, which is based on deep recurrent neu-

ral networks. A thorough coverage of modern methods in deep learning can be found in [19].

A recurrent neural network [20, 21] is a type of artificial neural network used for sequence

labeling. Given a sequence of input vectors f~x1;~x2; . . . ;~xtg, its prediction is a sequence of out-

put vectors f~y1;~y2; . . . ;~ytg. In our case, each input vector~xi consists of the mean, standard
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deviation and length of each event, and the output vector~yi gives a probability distribution of

called bases.

Simple recurrent neural networks. First, we describe a simple recurrent neural network

with one hidden layer. During processing of each input vector~xi, a recurrent neural network

calculates two vectors: its hidden state~hi and the output vector~yi. Both depend on the current

input vector and the previous hidden state:~hi ¼ f ð~hi� 1;~xiÞ,~yi ¼ gð~hiÞ. We will describe our

choice of functions f and g later. The initial state~h0 is one of the parameters of the model.

Prediction accuracy can be usually improved by using neural networks with several hidden

layers, where each layer uses hidden states from the previous layer. We use networks with

three or four layers. Calculation for three layers proceeds as follows:

~hð1Þi ¼ f1ð
~hð1Þi� 1;~xiÞ

~hð2Þi ¼ f2ð
~hð2Þi� 1;

~hð1Þi Þ

~hð3Þi ¼ f3ð
~hð3Þi� 1;

~hð2Þi Þ

~yi ¼ gð~hð3Þi Þ

Note that in different layers, we use different functions f1, f2, and f3, where each function

has its own set of parameters.

Bidirectional recurrent neural networks. In our case, the prediction for input vector~xi

can be influenced by data seen before~xi but also by data seen after it. To incorporate this data

into prediction, we use a bidirectional neural network [22], which scans data in both directions

and concatenates hidden outputs before proceeding to the next layer (see Fig 2). Thus, for a

two-layer network, the calculation would proceed as follows (|| denotes concatenation of vec-

tors):

~hð1þÞi ¼ f1þð
~hð1þÞi� 1 ;~xiÞ

~hð1� Þi ¼ f1� ð
~hð1� Þiþ1 ;~xiÞ

~hð1Þi ¼ ~hð1þÞi jj
~hð1� Þi

~hð2þÞi ¼ f2þð
~hð2þÞi� 1 ;

~hð1Þi Þ

~hð2� Þi ¼ f2� ð
~hð2� Þiþ1 ;

~hð1Þi Þ

~hð2Þi ¼ ~hð2þÞi jj
~hð2� Þi

~yi ¼ gð~hð2Þi Þ

Gated recurrent units. The typical choice of function f in a recurrent neural network is a

linear transformation of inputs followed by hyperbolic tangent nonlinearity:

f ð~hi� 1; ~xiÞ ¼ tanh ðW~xi þ U~hi� 1 þ
~bÞ;

where the matrices W, U and the bias vector~b are the parameters of the model.

This choice unfortunately leads to the vanishing gradient problem [23]. During parameter

training, the gradient of the error function in layers further from the output is much smaller

that in layers closer to the output. In other words, gradient diminishes during backpropagation

through the network, complicating parameter training.

One of the solutions is to use a network with gated recurrent units [24]. Given input ~xi and

previous hidden state~hi� 1, a gated recurrent unit first calculates values for update and reset

DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads

PLOS ONE | https://doi.org/10.1371/journal.pone.0178751 June 5, 2017 4 / 13

https://doi.org/10.1371/journal.pone.0178751


gates:

~ui ¼ sðWu~xi þ Uu
~hi� 1 þ

~buÞ;

~ri ¼ sðWr~xi þ Ur
~hi� 1 þ

~brÞ;

where σ is the sigmoid function: σ(z) = 1/(1 + e−z). Then the unit computes a potential new

value

~ni ¼ tanh ðW~xi þ~ri � U~hi� 1Þ:

Here, � is the element-wise vector product. If some component of the reset gate vector is

close to 0, it decreases the impact of the previous state.

Finally, the overall output is a linear combination of~ni and~hi� 1, weighted by the update

gate vector ~ui :

~hi ¼ ~ui �
~hi� 1 þ ð1 � ~uiÞ �~ni:

Note that both gates give values from interval (0, 1) and allow for a better flow of the gradi-

ent through the network, making training easier.

Fig 2. Schematics of a bidirectional recurrent neural network.

https://doi.org/10.1371/journal.pone.0178751.g002
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Matrices Wu, UU, Wr, Ur, W, U, and vectors~bu,~br are parameters of our model estimated

by training. Note that we use separate parameters for each layer and direction of the network.

In a layer with inputs~hi� 1 of length n1 and~xi of length n2, and output~hi of length m, matrices

Wu, Wr, and W have size m × n2, matrices Uu, Ur, and U have size m × n1, and vectors~bu,~br

have length m. For example, in a network with 100 hidden units per layer, the first layer has

n1 = m = 100 and n2 = 3, the middle layers have n1 = n2 = m = 100 and the final layer has

n1 = n2 = 100 and m = 10.

Output layer. Typically, one input event leads to one called base. But sometimes we get

multiple events for one base, so there is no output for some events. Conversely, some events

are lost, and we need to call multiple bases for one event. We limit the latter case to two

bases per event. For each event, we output two probability distributions over the alphabet

S = {A, C, G, T, −}, where the dash means no base. We will denote the two bases predicted

for input event~xi as bð1Þi and bð2Þi . Probability of each base q 2 S is calculated from the hidden

states in the last layer using the softmax function:

P½bðkÞi ¼ q� ¼
exp ð~yðkÞq

~hð3Þi Þ
P

p2S
exp ð~yðkÞp

~hð3Þi Þ
:

Vectors~yðkÞq for k = 1, 2 and q 2 S are also parameters of the model.

Final base calling is done by taking the most probable base for each bðkÞi (or no base if dash

is the most probable character from S). During training, if there is one base per event, we

always set bð1Þi to dash.

During our experiments, we found that outputing two independent distributions works

better than outputing one distribution with 21 symbols (nothing, 4 options for one base, 16

options for two bases).

Training. Let us first consider the scenario in which we know the correct DNA bases for

each input event. The goal of the training is then to find parameters of the network that maxi-

mize the log likelihood of the correct outputs. In particular, if oð1Þ1 ; o
ð2Þ

1 ; o
ð1Þ

2 ; . . . ; oð1Þn ; o
ð2Þ
n is the

correct sequence of output bases, we try to maximize the sum

Xn

i¼1

lgP½bð1Þi ¼ oð1Þ1 � þ lgP½bð2Þi ¼ oð2Þ2 �

As an optimization algorithm, we use stochastic gradient descent (SGD) combined with

Nesterov momentum [25] to increase the convergence rate. For 2D base calling, we first use

SGD with Nesterov momentum, and after several iterations we switch to L-BFGS [26]. Our

experience suggests that SGD is better at avoiding bad local optima in the initial phases of

training, while L-BFGS seems to be faster during the final fine-tuning.

Unfortunately, we do not know the correct output sequence; more specifically, we only

know the region of the reference sequence where the read is aligned, but we do not know

the exact pairs of output bases for individual events. We solve this problem in an EM-like

fashion.

First, we create an approximate alignment between the events and the reference sequence

using a simple heuristic. With R7.3 data, the expected signal means for k-mer contexts were

readily provided by Oxford Nanopore. Using this data, one can simulate the expected signal

from the reference sequence and then use a simple dynamic programming to find an align-

ment that minimizes the sum of differences between the expected and observed signal means,

with simple penalties for splitting or skipping an event. With R9 data, we have simply used
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Metrichor base calls as the starting event alignment. The reason for this change is that it has

become more difficult to obtain the parameters for simulating the signal, and at the same time,

the Oxford Nanopore base callers have improved so that it is now possible to use their align-

ments as a starting point without a negative impact on the training process.

After each hundredth pass through the whole data set, we realign the events to the

reference sequence by using the outputs from the RNN. We can interpret these outputs as

posterior base probabilities. To each event, zero, one, or two reference sequence bases are

aligned and the score of this alignment is the sum of logarithms of the corresponding out-

put probabilities. Alignment maximizing this score can again be found by a simple dynamic

programming.

Data preprocessing. The mean and standard deviation of measured signals change over

time. The simplest way of accounting for this factor is to scale the measured values.

In our model, we can use scaling parameters calculated by Metrichor. In particular, we use

scale and shift for mean, and scaling for standard deviation; we do not use drift for means as

the use of this parameter has a negligible effect on the performance.

To make our approach independent of Metrichor, we have also implemented a simple

method for computing scaling parameters. In particular, we set the scaling parameters so that

the 25th and 75th percentile of the mean values fit predefined values and the median of the

standard deviations fits a predefined value. Using either Metrichor scaling parameters or our

simplified scaling yields a very similar performance in our experiments for R7.3 data. For R9

data, we have always used our percentile-based scaling.

1D base calling. The neural networks described above can be used for base calling template

and complement strands in a straightforward way. Note that we need a separate model for

each strand, since they have different properties. In both models, we use neural networks with

three hidden layers and 100 hidden units.

2D base calling. In 2D base calling, we need to combine information from separate event

sequences for the template and complement strands. A simple option is to apply neural net-

works for each strand separately, producing two sequences of output probability distributions.

Then we can align these two sequences of distributions by dynamic programming and produce

the DNA sequence with maximum likelihood.

However, this approach leads to unsatisfactory results in our models, with the same or

slightly worse accuracy than the original Metrichor base caller. We believe that this phenome-

non occurs because our models output independent probabilities for each base, while the

Metrichor base caller allows dependencies between adjacent base calls.

Therefore, we have built a neural network which gets as an input corresponding events

from the two strands and combines them to a single prediction. To do so, we need an align-

ment of the two event sequences, as some events can be falsely split or missing in one of the

strands. We can use either the alignment obtained from the base call files produced by Metri-

chor or our own alignment, computed by a simple dynamic programming over output proba-

bilities, which finds the path with the highest likelihood. We convert each pair of aligned

events to a single input vector. Events present in only one strand are completed to a full input

vector by special values. This input sequence is then used in a neural network with four hidden

layers and 250 hidden units in each layer; we needed to use a bigger network than in 1D case

since there is more information to process.

Implementation details. We have implemented our network using Theano library for

Python [27], which includes symbolic differentiation and other useful features for training

neural networks. We do not use any regularization, as with the size of our dataset we saw

almost no overfitting.
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Results

Data sets. We have used existing data sets from Escherichia coli (http://www.ebi.ac.uk/ena/

data/view/ERR1147230) and Klebsiella pneumoniae (http://www.ebi.ac.uk/ena/data/view/

SAMEA3713789) by the SQK-MAP006 sequencing protocol with R7.3 flow cells. We have

only used the reads that passed the original base calling process and had a full 2D base call. We

have also omitted reads that did not map to the reference sequence (mapping was done sepa-

rately for 2D base calls and separately for base calls from individual strands).

We have split the E. coli data set into training and testing portions; the training set contains

the reads mapping to the first 2.5 Mbp of the genome. We have tested the predictors on reads

which mapped to the rest of the E. coli genome and on reads from K. pneumoniae. Basic statis-

tics of the two data sets are shown in Table 2.

Accuracy comparison. We have compared our base calling accuracy with the accuracy of

the original Metrichor HMM base caller and with Nanocall [8] on two R7.3 testing data sets.

The main experimental results are summarized in Table 1. We see that in the 1D case, our base

caller is significantly better on both strands and in both data sets. In 2D base calling, our accu-

racy is still slightly higher than Metrichor.

On the Klebsiella pneumoniae data set, we have observed a difference in the GC content bias

between different programs. This genome has GC content of 57.5%. DeepNano has underesti-

mated the GC content on average by 1%, whereas the Metrichor base caller underestimated it

by 2%.

To explore sequence biases in more detail, we also compared the abundance of all 6-mers in

the Klebsiella genome in the base-called reads. Fig 3 shows that base calls produced by Deep-

Nano exhibits significantly smaller bias in 6-mer composition than Metrichor base calls. This

trend is particularly pronounced for repetitive 6-mers (Fig 4); a similar bias was previously

observed by [17].

With R9 version of the platform, Oxford Nanopore has introduced a variety of base calling

options, including cloud-based Metrichor service, the local base calling option, experimental

Nanonet code base, and binary-only Albacore platform, all of these options very similar in

accuracy. We have used a benchmark E. coli data set from Loman lab (http://s3.climb.ac.uk/

nanopore/R9_Ecoli_K12_MG1655_lambda_MinKNOW_0.51.1.62.tar) to evaluate perfor-

mance of DeepNano and compare the accuracy to Nanonet, which is also based on RNNs. The

training and testing sets were split in the same way as for R7.3 data sets. Table 3 shows that the

accuracy of DeepNano is very similar to that of Nanonet, but DeepNano is faster than Nan-

onet. By decreasing the number of hidden units from 100 to 50, we can further trade accuracy

for base calling speed. The smaller RNNs can be used in applications, where fast running times

are crucial.

Table 2. Sizes of experimental data sets. The sizes differ between strands because only base calls mapping to the reference were used. Note that the

counts of 2D events are based on the size of the alignment.

E. coli

training

E. coli

testing

K. pneumoniae

testing

# of template reads 3,803 3,942 13,631

# of template events 26,403,434 26,860,314 70,827,021

# of complement reads 3,820 3,507 13,734

# of complement events 24,047,571 23,202,959 67,330,241

# of 2D reads 10,278 9,292 14,550

# of 2D events 84,070,837 75,998,235 93,571,823

https://doi.org/10.1371/journal.pone.0178751.t002
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Base calling speed. In the case of R7.3 data sets, it is hard to compare the speed of the

Metrichor base caller with our base caller, since Metrichor is a cloud-based service and we do

not know the exact configuration of hardware used. From the logs, we are able to ascertain

that Metrichor spends approximately 0.01 seconds per event during 1D base calling. Deep-

Nano spends 0.0003 seconds per event on our server, using one CPU thread. During 2D base

call, Metrichor spends 0.02 seconds per event (either template or complement), while our base

caller spends 0.0008 seconds per event. To put these numbers into perspective, base calling a

read with 4,962 template and 4,344 complement events takes Metrichor 46s for template, 34s

for complement, and 190s for 2D data. DeepNano can process the same read in 1.5s for
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Fig 3. DeepNano reduces bias in 6-mer composition. Comparison of 6-mer content in Klebsiella reference

genome and base-called reads by Metrichor (left) and DeepNano (right). From top to bottom: template,

complement, 2D.

https://doi.org/10.1371/journal.pone.0178751.g003
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template, 1.3s for complement, and 11.3 seconds for 2D data. We believe that unless Metrichor

base calling is done on a highly overloaded server, our base caller has a much superior speed.

Compared to Nanocall, we observed that DeepNano is 5 to 20 times faster, depending on

Nanocall settings.

Although DeepNano is relatively fast in base calling, it requires extensive computation dur-

ing training. The 1D networks were trained for three weeks on one CPU (with a small layer

size, there was little benefit from parallelism). The 2D network was trained for three weeks on

a GPU, followed by two weeks of training on a 24-CPU server, as L-BFGS performed better

using multiple CPUs. Note however that once we train the model for a particular version of

MinION chemistry, we can use the same parameters to base call all data sets produced by the

same chemistry, as our experiments indicate that the same parameters work well for different

genomes.

Discussion and conclusions

In this paper, we have presented a new tool for base calling MinION sequencing data. Our tool

provides a more accurate and computationally efficent alternative to the HMM-based methods

used in the Metrichor base caller by the device manufacturer on R7.3 data. Our approach

extends to R9 data, where we achieve accuracy similar to Nanonet RNN-based tool provided

by Oxford Nanopore. It is also possible to trade speed for accuracy by changing number of hid-

den units in our RNN, according to the needs of the application.

Fig 4. Abudances for repetitive 6-mers.

https://doi.org/10.1371/journal.pone.0178751.g004

Table 3. Accuracy and running time on R9 data. The results of base calling were aligned to the reference using BWA-MEM [28]. The first column reports

the percentage of reads that aligned to the reference on at least 90% of their length. The accuracy was computed as the number of matches in the alignment

divided by the length of the alignment. The speed is measured in events per second.

Aligned reads Accuracy Speed

Nanonet 83.2% 83.2% 2057 ev/s

DeepNano (100 hidden units) 81.1% 81.0% 4716 ev/s

DeepNano (50 hidden units) 79.3% 78.5% 7142 ev/s

https://doi.org/10.1371/journal.pone.0178751.t003
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While the architecture of DeepNano and Nanonet share some similarities, the two methods

are distinct. DeepNano uses gated recurrent units, while Nanonet uses long short-term mem-

ory. Moreover, Nanonet predicts a posterior distribution over k-mer labels for each event, and

these predictions are then combined into a single base call by additional pass through the

sequence. In contrast, DeepNano’s output layer predicts for each event a bigram over a stan-

dard DNA alphabet extended with a ‘-’ symbol, which allows each event to represent zero,

one, or two bases, and the result of the output layer is directly used as a basecall. We conjecture

that significantly smaller output layer of DeepNano and the absence of the additional pass to

assemble the predictions into the final basecall may give DeepNano an advantage in requiring

smaller amount of data to train the network and being more robust with respect to calling

homopolymers. However, we have not systematically evaluated these issues.

To further improve the accuracy of our tool, we could explore several well-established

approaches for improving performance of neural networks. Perhaps the most obvious option

is to increase the network size. However, that would require more training data to prevent

overfitting, and both training and base calling would get slower.

Another typical technique for boosting the accuracy of neural networks is using an ensem-

ble of several networks [10]. Typically, this is done by training several neural networks with

different initialization and order of training samples, and then averaging their outputs. Again,

this technique leads to slower base calling.

The last technique, called dark knowledge [29], trains a smaller neural network using train-

ing data generated from output probabilities of a larger network. The training target of the

smaller network is to match output probability distributions of the larger network. This leads

to an improved accuracy for the smaller network compared to training it directly on the train-

ing data. This approach would allow fast base calling with a small network, but the training

step would be time-consuming.

Perhaps the accuracy of base calling can be futher improved by a different event segmenta-

tion or by using more features from the raw signal besides signal mean and standard deviation.

We tried several options (signal kurtosis, difference between the first and second halves of the

event, etc.), but the results were mixed.

At present, the DeepNano repository includes all the tools and parameters necessary for

working and training on R7.3, R9, and R9.4 data. This includes event data detection function-

ality, replicating methods used in Nanonet. DeepNano can be used either independently of

Oxford Nanopore tools, or it can use third party scaling parameters or event detection results

(e.g. those generated through Nanonet or Albacore base callers).
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