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Abstract

Significant progress has been made in recent years for computer-aided diagnosis of abnormal 

pulmonary textures from computed tomography (CT) images. Similar initiatives in chest 

radiographs (CXR), the common modality for pulmonary diagnosis, are much less developed. 

CXR are fast, cost effective and low-radiation solution to diagnosis over CT. However, the subtlety 

of textures in CXR makes them hard to discern even by trained eye. We explore the performance 

of deep learning abnormal tissue characterization from CXR. Prior studies have used CT imaging 

to characterize air trapping in subjects with pulmonary disease; however, the use of CT in children 

is not recommended mainly due to concerns pertaining to radiation dosage. In this work, we 

present a stacked autoencoder (SAE) deep learning architecture for automated tissue 

characterization of air-trapping from CXR. To our best knowledge this is the first study applying 

deep learning framework for the specific problem on 51 CXRs (≈ 76.5%, F-score) and a strong 

correlation with the expert visual scoring (R=0.93, p =< 0.01) demonstrate the potential of the 

proposed method to characterization of air trapping.

1. INTRODUCTION

Chest radiographs (CXRs) are the most commonly used imaging technique for pulmonary 

diagnosis; primarily because of speed of acquisition, low cost, portability, and low-radiation 

dosage compared to other medical imaging modalities such as computed tomography (CT) 

and magnetic resonance imaging (MRI). However, the progress of adopting computer-aided 

diagnosis (CAD) methods in the analysis of CXRs has not been as significant as in other 

modalities. So far the majority of research in the development of CAD techniques for CXRs 

is mainly focused on lung nodule detection [1]. Nodules are a rare find in lungs, particularly 

in pediatrics. On the other hand, CXR is the mainstay imaging modality in general, and 

particularly certain population groups particularly in pediatrics. Air trapping is often used as 

a surrogate signature of airway obstruction in asthma [2] The use of CAD techniques for air 

trapping tissue characterization from CXR can translate into clinical settings as an 

inexpensive, readily available, and safer tool since CXRs are performed routinely in 

children. Fig. 1 shows typical manifestations of air trapping in CXR which is an increasingly 

recognized biomarker correlating with clinical severity in asthma [2], and chronic 

obstructive pulmonary disease [3].
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In this work, we propose a fully automated method for the tissue characterization of air 

trapping from CXR using the stacked autoencoder (SAE) hierarchical deep learning 

architecture [4, 5]. Our proposed framework is aimed at leveraging the untapped potential of 

the deep learning framework as a sensitive and reliable extractor of imaging biomarkers for 

lung diseases. To the best of our knowledge, this the first major study on characterizing air 

trapping textured pulmonary abnormalities in pediatrics using CXR and the first study 

exploring the potential of deep learning architecture in pulmonary tissue characterization 

from CXR. The proposed automatic characterization method consists of the following major 

steps: (1) the lung field is segmented (excluding the the retrocardiac space) and the 

intensities of the CXR are standardized. (2) a probability image map of pixels belonging to 

air trapping within the lung field is obtained using SAE, (3) differential diagnosis is 

performed by mapping the SAE probability to the severity score based on the area and 

density of air trapping. The rest of the paper describes the steps in detail.

2. METHODS

Recent literature has presented deep learning methods for texture classification in the 

medical imaging after their successful performance for large scale color image classification 

[6]. For instance, in [7], a modified restricted Boltzmann machine was used for feature 

classification of lung tissue in CT images. The work in [8] used a convolutional neural 

network with one convolutional layer and three dense layers to classify lung image patches 

from CT images. Recently, the authors of [9] proposed a design of convolutional neural 

network for the classification of interstitial lung disease patterns in CT scans. Specific to 

CXR, most recently [10] expanded the potential of deep architectures for pathology 

detection (pleural effusion, enlarged heart, and normal versus abnormal) using CXR.

Our proposed framework for tissue characterization from CXR using the deep learning 

framework is shown in Fig. 2. The method consists of lung field delineation and intensity 

standardization as pre-processing steps followed by tissue classification using the SAE 

framework. The lung field is then partitioned into four quadrants per lung and mapped to an 

air trapping severity score based on expert training. The details of individual modules of the 

proposed method are discussed in greater details in the following subsections.

2.1. Data

Fifty-one pediatric posterior-anterior CXRs from patients with viral chest infections were 

collected at Children’s National Health System using multiple scanners. The radiographs 

had dimensions ranging from 660×987 to 660×4240 pixels having a spatial resolution ranges 

between 0.1mm×0.1mm to 0.14mm×0.14mm and a digital resolution of 12-bits. The ground 

truth of air trapping was performed through visual inspection by two expert pulmonologists. 

Each lung was divided into 4 regions (distal/proximal, upper/lower) and the severity of air 

trapping was recorded on a scale of 0–2 (0 = no air trapping, 1 = mild air trapping, and 2 = 

dense air trapping) for each region. The ground truth for training the deep learning classifier 

was prepared manually by two experienced raters using the ITK-Snap interactive software 

(http://www.itksnap.org/).
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2.2. Lung Field Segmentation using Weighted Partitioned ASM

The first step in our proposed framework is the delineation of lung field from CXR. For air 

trapping tissue characterization task, we excluded the the retrocardiac space (region of the 

lung field behind the heart) from the lung field, since air trapping and other pathological 

patterns are not clearly discernible in those regions using CXR. For the lung field 

segmentation, we used our previous method described in [11]. Briefly, the method uses a 

weighted-shape partitioning approach by dividing the lung field into a set of partial shapes 

and learning a statistical shape model for each partition separately. The approach allows 

local flexibility in the model to adapt to shape variability. Then, the lung field landmarks are 

divided into various shape and appearance consistent partitions using fuzzy c-means 

clustering. Next, a local appearance model consisting of three appearance features is 

constructed for every partition: (i) normalized intensity derivatives, (ii) three class fuzzy c-

means, and (iii) elongated rib structure probability using the vesselness filter. The presence 

of pathologies and various acquisition parameters makes certain shape landmarks less 

reliable than others; therefore, each landmark is assigned a relative weight based on their 

reliability calculated using the local appearance features. At the next step, statistical shape 

model fitting is performed individually for each partition and the optimal position for each 

landmark was determined by minimizing the Mahalanobis distance. Lastly, the final lung 

field segmentation is computed by adding the different partitions and averaging the shape 

parameters of the overlapping landmarks.

2.3. Image Intensity Standardization

Due to the non-standard nature of CXR image intensities, images collected using different 

scanners and protocol settings exhibit different intensity ranges that pose a challenge for 

automated classification techniques. Using intensity standardization (mapping the acquired 

data to a predefined intensity profile) as a pre-processing step can alleviate this challenge. In 

[12], we presented a generic method for the intensity standardization of 2D/3D medical 

images using the multiscale curvelet transform [13]. During the training phase, the reference 

data are first decomposed into scale and orientation localized subbands using the multiscale 

curvelet transform, followed by calculating a reference energy value for each subband. 

During the testing stage, the localized energy of each subband is iteratively scaled to the 

reference localized energy value from the training stage. In our proposed approach for air 

trapping tissue characterization, we use the method to standardize the intensity of test CXRs 

within the extracted lung field region only.

2.4. Stacked Autoencoder Hierarchical Deep Learning

A deep learning paradigm begins by learning low-level features and hierarchically building 

up comprehensive high-level features in a layer-by-layer fashion. SAE is a deep neural 

network consisting of multiple layered sparse autoencoders (AE) in which the output of 

every layer is wired to the input of the successive layer. An AE consists of two components: 

the encoder and the decoder. The encoder aims to fit a non-linear mapping that can project 

higher-dimensional observed data (f (xn)∈ ℝn) into its lower dimension feature 

representation. The decoder aims at recovering the observed data  from the feature 
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representation with minimal recovery error. For a detailed description of AE, SAE, and 

related deep learning concepts, reader is encouraged to review [4,5].

The encoder step—Given an L–dimensional observed data , the encoder maps 

 to an M –dimensional activation vector ,  through a 

deterministic mapping , where W∈ ℝM×L is the mapping matrix 

is the bias vector, and σ is the logistic sigmoid function .

The decoder step—The activation vector  is decoded back to the observed data vector 

 using the reverse deterministic mapping, i.e.,  where 

en∈ ℝM is reconstruction error and  is the bias vector. Furthermore, sparsity 

constraints on the M hidden nodes can lead to a set of compact representative features. By 

switching, a hidden node m as “active” if hn(m)→1 or “inactive” if hn (m) → 0, a compact 

set of input can be achieved for each training input . Finally, by integrating the sparsity 

constraint, the objective function for AE can be formulated as an optimization problem:

(1)

where  is the average activation of hidden layers and β denotes the strength of sparsity 

constraint.

2.5. Image Patch Sampling and Augmentation

Next we extract patches from the intensity standardized lung field for training the SAE. The 

training patches are divided into two categories: (1) a positive category, if the center pixel 

belongs to the air trapping region according to the ground-truth label and (2) a negative 

category from areas of lung field not belonging to air trapping. Since negative samples 

outnumber the positive samples, the class imbalance is accommodated using the random 

sampling. Moreover, data augmentation is employed in the feature classification literature to 

artificially enlarge the dataset. In our framework we performed augmentation by extracting 

patches and their horizontal reflection from the training [6].

2.6. Severity Scoring

One of the main reason most CAD methods do not translate to clinical settings is their 

inability to fit into existing clinical practices and nomenclatures. For instance, air trapping 

pathologies in CXR are assessed in clinics using subjective visual scores on the scale of 0–2 

for each lung quadrant [14]. In order to provide a translation of air trapping tissue 

characterization performed by our framework to expert visual score, we translate the severity 

characterization to visual score (0–2) per lung quadrant using the training data and based on 

the area of detected air trapping as shown in Fig. 3.
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3. RESULTS

Our method was implemented using MATLAB-based Toolbox for Deep Learning (https://

github.com/rasmusbergpalm/DeepLearnToolbox). Routines not involving deep learning were 

also implemented using MATLAB. All experiments were performed on 64-bit Windows 7 

operating system using a machine with Intel E5-1607 CPU @3.00 GHz and 16.0 GB of 

RAM.

To test our framework, the dataset was split randomly at patient level to 31 training and 20 

validation CXRs. An average Dice similarity coefficient (DSC) of 0.91±0.17 was obtained 

for lung field segmentation. For air-trapping characteization, the patch size was set to 11×11 

for both training and validation and 3 layers of SAE were employed. The sparsity penalty 

was set to 0.1 and the number of epochs used were 100. The image patch size as well as the 

parameters of the SAE classifier were adjusted based on the empirically obtained best 

performance on the training data set. Fig. 3(a) shows the probability maps of air trapping 

obtained using the proposed method and overlaid over the CXR image. Fig. 3(b) shows the 

box plots of expert visual scores against the amount of air trapping detected using the 

proposed method over the entire CXR validation data. A correlation coefficient R = 0.93 

with the expert visual assessment of air trapping from CXR was obtained. Furthermore, the 

proposed configuration yielded an average F-score of 0.7648 based on two classes (air 

trapping and everything else within the lung field).

(2)

where  and 

4. CONCLUSION

We demonstrated the use of stacked autoencoder hierarchical deep learning architecture for 

the automated pulmonary tissue characterization from chest radiographs (CXR). The study 

is the first in proposing the use of low-radiation CXR images with image processing to 

detect and classify air trapping as an alternative to commonly used CT scans. Our study 

identified that regional air trapping can be detected and quantified in infants using CXRs 

with image analysis. Moreover, the proposed framework, evaluated against the expert visual 

score, showed promising results for the air trapping characterization and holds great 

potential to be extended to additional textural pulmonary patterns. Our future work include 

performing an extensive investigation on the correlation of quantification obtained using the 

proposed framework with CT data and extending the framework to other pulmonary 

pathologies.
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Fig. 1. 
Examples of air trapping manifestation (pointed with red arrows) in CXR image. Air 

trappings appear as dark lung areas that correspond to abnormal retentions of air that is not 

fully exhaled.
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Fig. 2. 
The pipeline for automated tissue characterization from CXR (localization and severity 

quantification).
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Fig. 3. 
(a) Lung field air trapping tissue characterization from CXR using our method. The 

quantified air trapping is shown as a color map with colors indicating the density of air 

trapping. (b) Box plots demonstrating the correlation between the air trapping area obtained 

using the proposed deep learning framework and the expert pulmonologist visual score.
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