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Abstract

In this study, we present a new theory of partitioning of disease prevalence and incidence-based 

mortality and demonstrate how this theory practically works for analyses of Medicare data. In the 

theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease 

incidence and survival after diagnosis supplemented by information on disease prevalence at the 

initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is 

calculated with minimal assumptions. The resulting expressions for the components of the trends 

are given by continuous functions of data. The estimator is consistent and stable. The developed 

methodology is applied for data on type 2 diabetes using individual records from a nationally 

representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent 

concordance between empirical estimates and theoretical predictions. Evaluated partitioning 

model showed that both prevalence and mortality increase with time. The primary driving factors 

of the observed prevalence increase are improved survival and increased prevalence at age 65. The 

increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in 

time-periods and age-groups outside of the range of the data used in the study. Finally, the 

properties of the new estimator, possible statistical and systematical uncertainties, and future 

practical applications of this methodology in epidemiology, demography, public health and health 

forecasting are discussed.

1. Introduction

Prevalence is an epidemiologic characteristic which is easily measured using survey data or 

medical records. Analyses of prevalence trends play an influential role in health policy 

planning and are widely used to assess the extent to which a given health problem affects the 

population. However, conclusions about the relative success or failure of a health policy 
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change cannot be made directly from trends of disease prevalence because temporal changes 

in age-adjusted prevalence rates are the result of two simultaneously occurring competing 

processes: i) changes in incidence and ii) changes in survival. Health interventions and 

disease treatment guidelines are usually aimed at decreasing the incidence and increasing the 

survival rate for a disease. If successful, these measures will push the observed prevalence in 

different directions. A related quantity of interest is the mortality rate by cause or more 

generally, the mortality for individuals after the onset of a specific disease. This is also 

known as the incidence-based mortality rate(Chu et al. 1994). The time trend of incidence-

based mortality (Mozaffarian et al. 2016; Smith et al. 2013; Thun et al. 2013) is defined by 

the same factors that define the time trends in the disease prevalence rate, as well as trends in 

mortality in the general population. In contrast to disease prevalence, improvements in 

incidence and survival push the observed incidence-based mortality for a specific disease in 

the same direction, because improved incidence reduces the total number of people with the 

disease and improved survival further reduces the number of deaths associated with the 

disease.

In this paper, we develop a new methodological approach for the decomposition of trends in 

disease prevalence and incidence-based mortality into their constituent components (such as 

trends in incidence, survival, and prevalence prior to observation) and for the evaluation of 

the strength and the direction of the contribution of each respective component. The 

methodology described in this study offers a number of distinct strengths: i) computation of 

disease prevalence and incidence-based mortality as well as their partitioning through a set 

of exact formulas without making simplifying assumptions, ii) evaluation of the individual 

contributions of each component to the total time trend by direct calculation using exact 

formulas applied to real data, iii) a set of natural generalizations including applications to 

medical costs, complications of a specific disease, the incorporation of disease risk factors 

and the use of the historical trends of each of the model components beyond the region 

directly measured in data.

The only previously existing methodological approach of this type was developed by 

Tunstall-Pedoe for the partitioning of mortality trends through the use of an approximate 

formula for the simple decomposition of the annual percent change (APC) for mortality as a 

sum of APC’s of cardiovascular disease incidence and case fatality (percentage of 28-day 

fatalities)(Tunstall-Pedoe et al. 1999). This approximation is valid only for events (disease 

onset and death) occurring within a short time of each other and requires that the APC be 

small and the disease of interest be the primary cause of death. Other methods of 

decomposition used in demography and epidemiology (see refs.(Canudas-Romo 2003; 

Horiuchi, Wilmoth and Pletcher 2008; Vaupel and Romo 2003) for a comprehensive review) 

are not related to the decomposition of prevalence into its constituent components.

Although the primary focus of this paper is to introduce the methodology and describe the 

mathematics involved in its execution, an example involving type 2 diabetes mellitus is also 

considered. The application of the methodology to disease prevalence and mortality is 

intended to address an aspect of a current Public Health problem—with some notable 

exceptions such as cardiovascular disease (Will, Yuan and Ford 2014), the prevalence rate of 

many chronic diseases including diabetes has been increasing with time (Akinbami et al. 
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2012; Bauer et al. 2014; Coresh et al. 2007; Egan, Zhao and Axon 2010). Understanding the 

contribution each individual component makes to the overall effect on disease prevalence 

and mortality and how these contributions have changed over time in response to changes in 

health policy, population age-structure and epidemiologic characteristics could be of great 

use in identifying likely targets for pro-active policy interventions.

2. Theory

2.1 Mathematical formalism

Data collected in an observational study represent information on eligible individuals over 

given periods of age and time. In this study, we use a nationally representative 5% sample of 

the U.S. Medicare population provided for research as restricted access public use files by 

the Centers for Medicare and Medicaid Services. This database provides individual heath 

related information on U.S. Medicare beneficiaries after age 65 from 1991 to 2013. The long 

time period and level of detail provided by such data allow us to calculate disease prevalence 

and mortality at any point after a certain look-back period (12 months is used in this study) 

necessary to collect individual information for evaluation of disease presence. Figure 1 

presents the Lexis diagram in the plane over age (in years; denoted by x) and calendar time 

(in years; denoted by y). Each of the dashed lines in the Lexis diagram uniquely corresponds 

to a birth cohort with the birth time yb =y−x for any point (x,y) belonging to the cohort-

specific dashed line. Therefore, epidemiologic characteristics at a given point of time are 

defined by the history of the cohort represented by a leftward move along the respective line 

in the Lexis diagram down to bounds of the available region. The bound is defined by an 

initial year (y00) or minimal age (x0) observed in the data. These two subareas are separated 

by the bisecting line defined as y=y00+x− x0. Above the bisecting line, the starting point is 

defined by the initial conditions y=y00 with various ages while below the line the initial 

point is defined by boundary condition x=x0 with various years. The cohort-specific 

bounding point is defined as x̄0 = max(x0, y00 − yb) and ȳ0= yb+ x̄0. Definitions of ages and 

times as well as functions of survival analyses used in the paper are collected in Table 1.

The idea for the representation of the formulas for prevalence is based on that the probability 

of being prevalent Pc(x, yb) at age x in cohort c with birth time yb requires either

i. being prevalent (represented by initial prevalence Pc(x̄0, yb)) in the initial age x̄0 

(and year ȳ0) for the cohort and surviving to age x (represented by the survival 

probability S̄(x − x̄0, x̄0, ȳ0) of a patient diagnosed no later than x̄0), or

ii. being incident at an earlier age τ, x̄0 < τ ≤ x (represented by incidence density 

function Ic(τ, yb)) and having survival longer than x − τ (represented by survival 

probability S(x−τ, τ, yd) of a patient diagnosed at age τ and year yd).

Therefore

(1)
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where we integrate over all possible ages at diagnosis. Similarly, for mortality (we consider 

incidence-based mortality, i.e., mortality after disease onset) the probability of dying in the 

age interval (x,x +dx) requires having death in the interval (x,x + dx) and either being 

prevalent at the boundary point (x̄0,ȳ0) for this cohort or being incident at an earlier age x − 

τ. Death is represented by a respective density function Mc(x, yb) such that

(2)

The densities f̄c (x−x̄0, x̄0, ȳ0) and fc (x−τ, τ, yd) in (2) are related to respective survival 

functions in (1):  and , where derivatives are taken in respect to the 

first argument. Details of derivation of eqs. (1) and (2) and some properties of the 

contributed functions are given in Appendix A.

The exact definition of Pc(x, yb) is the fraction of individuals born in year yb and living with 

the disease at age x of the total number of individuals born in year yb. Similarly, Ic(τ, yb) and 

Mc(x, yb) are the cohort incidence and mortality densities defined through the number of 

new incident and death cases per cohort size (i.e., the number of individuals born in year yb). 

However, the cohort size for the studied population is not usually known with sufficient 

accuracy. What is known (or can be estimated) is the current population at risk i.e., the 

population currently living in the same age and calendar year (denoted as y = yb + x) or 

calendar year of diagnosis (denoted as yd = yb + τ). Therefore, we avoid dealing with cohort 

prevalence and incidence/mortality densities and use their standard definitions involving the 

population at risk rather than birth cohort size. Within these definitions, the cohort 

prevalence and incidence/mortality densities are expressed through accepted definitions of 

prevalence and hazard functions of incidence and mortality: Pc(x, yb) = P(x, y)St(x, 0, yb), 

Mc(x, yb) = M(x, yd) St (x,0, yb), and Ic(τ, yb) = I(τ, yd) St (τ,0, yb), where St (x,0, yb) is the 

survival function of the cohort born during year yb. Using these expressions in eq. (1) results 

in occurrence of three survival functions in the right hand side which can be combined in the 

relative survival functions (i.e., the ratios of survival probabilities for individuals with the 

disease and general population):

(3)

The resulting expression for age-specific prevalence is:

(4)

where ȳ0 = yb + x̄0 = y−x+x̄0 and yd = y−x+τ.
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Combining survival probabilities for mortality results in the ratio of density fc (or f̄c) to the 

survival probability in the general population, that can be further transformed as

(5)

The function μ(x,y) is the mortality hazard function in the general population. Note because 

, we have 

. We see that all terms at μ(x,y) give the 

prevalence and finally we obtain the incidence-based mortality in terms of μ(x,y) and 

functions previously derived.

(6)

Explicit representation (i.e., avoiding a function maximum used in the definition of x̄0) of 

prevalence and mortality as functions of x and y that allows for expressing prevalence and 

mortality in terms of x, y, and constants, requires considering two regions below and above 

the bisecting line, i.e., the regions defined by inequalities y ≥ y00 + x − x0 and y < y00 + x − 

x0. Thus

(7)

for y< y00 + x − x0 and

(8)

for y≥y00 + x− x0. The formulas (7) and (8) coincide for y=y00 + x − x0. In these formulas 

we denote the age at y00 as x00 = y00 − y+x and year at x0 as y0 = y−x+x0.

The quantity of interest is the time trend of age adjusted prevalence (over the age region 

(x0,xmax)) and mortality as well as their partitioning. Age-adjusted prevalence and 

incidence-based mortality based on (7) and (8) are:
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(9)

and

(10)

where I() is the indicator function and p(x) is the density of age distribution in a standard 

year. Recall, x00 = y00 − y+x, yd = y− x+τ, and y0 = y−x+x0 are functions of y and the 

integration variables x and τ. Age-adjusted prevalence and mortality are functions of three 

and four contributing factors, respectively:

(11)

The derivative of P(y) with respect to y represents the time trend of age-adjusted prevalence 

and are determined by trends in the respective components including initial prevalence (i.e., 

prevalence at x0 or y00), incidence rates, relative survival after disease onset and in patients 

with the disease at initial point of observation. Explicit differentiation results in seven terms 

(note that max(x0, x00) depends on y because of x00). Thus,

(12)

with explicit expressions for terms

(13)
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Derivative of mortality includes nine terms

(14)

with

(15)

Non-trivial technical aspects of derivation of the derivatives (13) and (15) are discussed in 

Appendix B.

2.2. Interpretation of partitioning components

The three terms contributing to disease prevalence in eq. (11) correspond to the contributions 

of individuals with disease onset i) before x0 = 65 (the age of eligibility for Medicare 

coverage for the majority of the general population) for the cohorts with y≥y00 +x− x0 (i.e., 

cohorts below the bisecting line the Lexis diagram in Figure 1), ii) before y00 = 1992 for the 

cohorts y<y00 +x− x0 (i.e., cohorts above the bisecting line in Figure 1), and iii) after x0 = 65 

and after y00 = 1992 (i.e., in the shaded area in the Lexis diagram in Figure 1). Mortality in 

eq. (11) has four terms, MPμ(y) and three others: M0(y), M00(y), and Mis(y) which have the 

same meaning as the three equivalent terms in prevalence. These three terms represent the 

mortality rates of individuals with disease onset before x0, before y00, and after both x0 and 

y00 respectively. These terms are expressed in terms of relative survival and therefore 

represent the mortality of individuals with the disease relative to the mortality in the general 

population. The additional term in eqs. (11), MPμ(y), represents mortality for the prevalent 

population with the mortality rate as in the general population. In sum, eq. (11) models two 

components of mortality: i) the effect of prevailing trends in the general population and ii) 

the effect of relative mortality in individuals with the disease.

The time trend of disease prevalence, represented by the first derivative of the age-adjusted 

prevalence, has seven terms. The main contributions are Tinc(y) and TS(y) that reflect effects 

of trends in disease incidence and survival after the disease onset. Occurrence of five other 

terms reflects the fact that we observe individual follow-up not from their birth date. They 

can be combined in two terms reflecting the effects on two bounds x=x0 and y=y00: T0 (y) = 
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Tp0(y) + TS̄(y) and T00(y) = Tp00 (y) + TS̄00(y) + TX00(y), respectively. The terms Tp0(y)and 

TS̄(y) reflect the effects of time trends in initial prevalence (i.e., prevalence at x0 = 65) and 

trends in survival of these individuals. The contributions of these terms can be considered 

separately if the respective hypotheses are of interest. The three terms contributing to T00 (y) 

(i.e., Tp00(y), TS̄00(y), and TX00(y)) are the only terms contributing to disease prevalence 

that survive in the limit y→y00. They are responsible for the reconstruction of the correct 

derivative in the region of y~y00. Specifically, the first and second terms characterize the 

time trend in initial prevalence and survival for y=y00, respectively. The last term equals age-

adjusted incidence rate in the limit y→y00. Its occurrence reflects the lack of information 

about incidence before y00. With time the fraction of unknown information about incidence 

goes down and the contribution from this term to the total time trends decreases.

Similarly, seven of the nine terms in the decomposition of mortality can be combined into 

four terms: T̂
inc (y) and T̂

S(y)represent the effects of incidence and survival for individuals 

diagnosed after x0 and y00, while T̂
0 (y) = T̂

p0(y) + T̂
S̄(y) and T̂

00(y) = T̂
p00(y) + T̂

S̄00(y) + 

T ̂
X00(y) reflect the effects on two bounds x = x0 and y=y00. Two additional terms occurring 

in the formula for mortality are T̂
μ(y) and T̂

P (y). They reflect the effects of trends in 

mortality in the general population and in prevalence of the given disease.

3. Statistical Estimation of Model parameters from observational data

The quantities of interest (i.e., T(y) and T̂(y)) are expressed in terms of derivatives of 

survival analysis functions in respect of time. In our approach, we use explicit analytic 

parameterization for all functions for which derivatives are needed. An alternative approach 

based on numerical differentiation would require us to deal with numerical instabilities 

typical for numerical evaluation of derivatives. Since integration is performed numerically, 

the integrand must be calculated with maximal accuracy—this condition is satisfied by our 

approach involving analytic differentiation of the parametric models of these functions. 

Specifically we need to develop and estimate three disease-specific models for a specific 

disease which are involved in the expressions for prevalence and mortality as well as their 

derivatives: i) models for prevalence at x0 (i.e., prevalence at the starting age of observation) 

and all years y≥y00, and prevalence at y00 (i.e., at the beginning year of observation) and all 

ages x≥x0, ii) the model for the incidence rate for all x≥x0 and y≥y00; and iii) models for 

relative survival of individuals prevalent at x0, prevalent at y00, and incident at x>x0 and 

y>y00. Furthermore, for the modeling of incidence-based mortality, models for mortality in 

the general population need to be developed.

We use individual medical records from a nationally representative 5% sample of Medicare 

beneficiaries age 65+ to estimate the model parameters for the models enumerated above. 

Medicare data provide individual records for individuals above age 65 (i.e., x0 = 65) and 

starting in 1992 (i.e., y00 = 1992). Collection of all records with the disease-specific ICD-9-

codes for an individual allows us to reconstruct individual disease-specific trajectories and 

then create the following datasets for further analyses using the methods from Akushevich et 

al. (Akushevich et al. 2012):
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D1 Prevalence rates for boundaries of the region (Figure 1), i.e., one-year-specific 

prevalence rates i) for x0 and all years y≥y00 and ii) for y00 and all ages x≥x0.

D2 Incidence rates in one-year groups over age and year.

D3 Individual survival times. The dataset contains individual records including age 

and year at the first record interpreted as incident or prevalent cases and time to 

death/censoring. For prevalent cases x=x0 or y=y00.

D4 Prevalence and mortality in one-year groups over age and year. This dataset will 

be only used for comparison to the results of modeling of these measures.

Estimation strategy of model parameters involves B-splines in order to evaluate y - and x00 -

dependences occurring in the expressions for prevalence, mortality, and their derivatives. An 

important feature of B-splines necessary for our study is that they allow for the calculation 

of derivatives explicitly and without additional simplifying assumptions. Other dependencies 

such as age-dependencies of incidence, survival, and mortality in the general population as 

well as survival time dependence are modeled by appropriate (known or empirically based) 

models adopted for them, such as the linear model of disease incidence, the Gompertz model 

for age patterns for mortality in the general population, and the Weibull model for survival 

time distribution.

3.1. Model for prevalence at boundaries

First, the y0-dependence of initial prevalence (dataset D1) are modeled using B-splines as 

P(x0, y0) = ΣiαiBi,n(y0), where n is the degree of B-splines (n = 3 in our analysis) and i runs 

over all B-splines the number of which is defined by the number of used knots. The 

functions Bi,n(y0) are polynomial functions completely known when the sets of knots are 

fixed and parameters αi are subject for estimation. The first derivative of P(x0,y0) is then 

explicitly calculated because  is represented in terms of B-splines of a lower degree 

for that we also have explicit representation. Note also that the approach gives the derivative 

of P(x0, y0) with respect to y0, however since y0 = y−x+x0 it is equal to the derivative with 

respect to y: dP(x0,y0)/dy0 = dP(x0,y0)/dy. Similarly, B-splines provide the fit for x00 (where 

x00 = y00 − y+x) dependence of P(x00,y00) together with the first derivative in respect of x00 

thus providing the derivative in respect of y : dP(x00,y00)/dx00 = −dP(x00,y00)/dy. Empirical 

estimates and the B-spline models for both y0 - dependence of P(x0,y0) and x00-dependence 

of P(x00,y00) are shown in Figure 2.

3.2. Model for incidence

Assume that for each yd the age-dependence of incidence rates I(τ, yd) from dataset D2 is 

explicitly parameterized through the sets of model parameters  dependent 

on yd (e.g., linearly , and yd -dependence of each parameter 

 is fitted by B-splines providing the first derivative . 

Thus
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Figure 3 presents the age- dependence of age-specific rates for two selected years (left 

panel) and yd - dependence of age-adjusted incidence rates (right panel) together with the B-

spline models fitting yd - dependences of age-specific rates with subsequent age-adjustment 

for the second case. The results presented in Figure 3 justify the choice of the linear model 

for the age-specific rates of diabetes (another model can be chosen for another disease). 

Note that the age adjusted rates can be represented by a linear model only approximately and 

the spline approximation that provides partial smoothing of this effect could be an 

alternative.

3.3. Models for survival

The models describing age- and survival-time-dependences for the three specific relative 

survival functions S̄r(x−x0, x0,y0), S̄r(y−y00,x00,y00), and  have to be 

specified, parameterized, and estimated. We use the approach based on maximizing the 

likelihood for individual survival data (Dickman et al. 2004), which can be outlined in 

general terms as follows and specified for the three relative survival functions below. An 

individual i in dataset D3 is characterized by i) the age of diabetes diagnosis or initial age of 

follow-up (x0i), ii) final age of follow-up (xi), and iii) the death/censoring indicator di at age 

xi. Denoting survival function for an individual i as S(xi,x0i)and using the standard 

likelihood for total survival L = ∏i (h(xi))diS(xi, x0i) and the definitions of relative survival, 

S(xi, x0i) = St(xi, x0i) Sr = (xi, x0i; β), and respective hazard functions h(x) = ht(x) + hr(x,β), 

we construct the log likelihood as

(16)

Here β is the set of parameters for the relative survival and respective hazard. The first term 

does not depend on β and therefore can be omitted. The only item that we need to know 

about the general population is the population hazards at the age of death for all individuals 

in the datasets. This information is obtained from the Human Mortality Database.

Specific parameterization is required to describe the age- and survival time dependences of 

relative survival functions. We assume that the Weibull model is flexible enough (Carroll 

2003; Zhu et al. 2011) and can be applied for the three relative survival functions involved in 

(7) and (8).

For S̄r(x−x0,x0,y0) we use S̄r (x−x0,x0, y0) = exp(−exp(σ−1 (log(x−x0) − μ))) in which 

parameters μ = μ(y0)and σ = σ(y0) are estimated for each y0 using maximizing the likelihood 

(16), and then y0 - dependences of μ and σ are fitted by B-splines providing derivatives 

dμ/dy0 = dμ/dy and dσ/dy0 = dσ/dy. Thus,
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The partial derivatives are calculated explicitly and derivatives of μ and σ in respect to y0 are 

provided by B-splines.

Similarly, we use S̄r(y−y00, x00, y00) = exp(−exp(σ−1 (log(y−y00) − μ))), and parameters μ = 

μ(x00) and σ = σ(x00) depend on x00 and are estimated using (16). The dependences are 

given by B-splines and dμ/dx00 = dμ/dy and dμ/dx00 = −dμ/dy. Now the relative survival 

function depends on y explicitly, therefore

Finally, we use Sr(x − τ, τ, yd) = exp(−exp(σ−1(log(x − τ) − μ))) where the dependence of μ 
and σ on τ are explicitly represented through the quadratic function of τ with the sets of 

parameters  and  and each parameter  is yd-specific (i.e., estimated for 

each year yd). Then yd dependence of each parameter  is fitted by B-splines providing 

respective derivatives . Therefore,

Figure 4 presents the results for the relative survival functions. Projections of time survival 

for selected ages and years are shown for all three survival functions involving in (7) and (8). 

Note that empirical estimates of relative survival are not necessary for our modeling so they 

are not presented in Figure 4.

4. Partitioning for Diabetes Prevalence and Mortality and Their Time Trends

Application of estimated models to 5%-Medicare data resulted in predicted age-adjusted 

prevalence, P(y), and incidence-based mortality, M(y), according eqs. (9) and (10). Their 

patterns are presented by thick lines in the upper panels of Figure 5; the actual empirical 

patterns (dots) are provided for comparison. The three terms (P0(y), P00(y), and Pis(y)) 

contributing to prevalence and four terms (MPμ(y), M0(y), M00(y), and Mis(y)) contributing 

to the mortality rate according to eq. (11) are also shown. The curves in these plots are 

marked by labels corresponding to subscripts of the respective contributions from eq. (11). 

Excellent agreement between the theoretical predictions and the empirical estimates are 

detected for both prevalence and the incidence-based mortality of diabetes.

The term with the double integral in eq. (9), Pis(y), that contains the product of incidence 

and relative survival gives the most essential contribution to diabetes prevalence. The 
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contribution of prevalence at 1992, P00(y), decreases with time because of two reasons: i) 

mortality of individuals prevalent at 1992 is larger than mortality in the general population 

and ii) the relative contribution of the region above the bisecting line to the integral with 

respect to x (see Figure 1) decreases with time. In contrast the contribution of prevalence at 

age 65, P0(y), goes up because of increased prevalence at 65 with time (Figure 2) and the 

increased contribution of the region below the bisecting line to the integral with respect to x 
in (9). The major contribution to the incidence-based mortality is the term containing the 

product of prevalence and mortality in the general population (i.e., MPμ(y). This term would 

be the only contribution if the mortality rates of individuals with diabetes and of the general 

population are the same. The gap between this term and mortality, given by the thick line 

(i.e., M(x, y)), is due to three remaining contribution terms showing the effects of the 

individuals prevalent at the boundaries (M0(y) and M00(y) represented by the curves ‘0’ and 

‘00’) and the individuals diagnosed during follow-up (Mis(y) and the curve ‘is’). The 

patterns of these curves reproduce those observed for prevalence and are explained by the 

same reasoning.

Both prevalence and mortality increase with time so their derivative over calendar time is 

positive. Explicit calculations allowed us to evaluate time patterns of the components 

responsible for these trends of prevalence (12),(13) and mortality (14),(15). The total 

derivative of prevalence (  and thick curve) largely reproduces the shape of the curve 

marked by ‘inc’, that is the total prevalence trend is defined primarily by the dynamics of 

diabetes incidence. The term containing the derivative of incidence, Tinc(y), is negative, i.e., 

incidence is decreasing over time driving the prevalence downwards. The effect of survival 

(TS(y) and the curve marked by “S”) pushes the prevalence upwards reflecting increased 

life-span of patients with diabetes. The curve marked by “0” contains two contributions, 

T0(y) = Tp0(y) + TS̄(y), the first representing prevalence at 65 is dominant and increasing 

driving the total prevalence up. Another contribution TS̄(y) reflecting survival of patients 

prevalent at 65 is positive (similarly to TS(y)) and small. The remaining contribution marked 

by “00” comprises all effects related to the boundary at y00, i.e., T00(y) = Tp00(y) + TS̄00(y) 

+ TX00(y). This contribution is largely technical because it reflects the fraction of the effects 

coming from incidence and survival trends before 1992. As expected this fraction decrease 

with time. In sum, the total prevalence increases over time as the three contributions pulling 

the prevalence up overpower the downward effect of incidence.

The presentation of the partitioning of mortality trends (Figure 5d) largely reflects the 

picture obtained for prevalence in Figure 5c. The most important contribution to the 

mortality trend is the term containing the derivative of prevalence T̂
P(y) (marked by “P”, 

thick dashed curve). Its shape reproduces the shape of total prevalence change (thick line in 

Figure 5c) and deviates only because of the factor containing the mortality rate in the 

general population which is time dependent. Other curves on Figure 5d reflect the effects of 

relative survival and respective mortality. Although the size of the effects is not large (as 

follows from Figure 5b), they can have significant contributions to the mortality time trend 

(Figure 5d). Their signs, sizes, and time trends reflect what we observed for prevalence with 

the exception of the terms reflecting survival that change sign. For example, incidence and 

survival results in decreasing mortality. However, mortality still increases. This is a 
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consequence of negative tendencies in past (i.e., before 1992) that are represented by the 

term “00”, i.e., T̂
00(y) = T̂

p00(y) + T̂
S̄00(y) + T̂

X00(y).. An additional term, T̂
μ(y), is marked 

by μ (dashed curve), this reflects the effect of the general change in mortality in the general 

population, that is the mortality of patients with diabetes not related to diabetes itself (i.e., 

death due to other causes) is going down just as in the general population.

5. Discussion and Conclusion

In this study, we developed an approach for the modeling of disease prevalence and 

incidence-based mortality (i.e., mortality for individuals who had a diagnosis earlier in life). 

The model provides analytical expressions for these epidemiologic characteristics which 

allows for the analysis of the relative contributions of incidence and survival as important 

components of total prevalence and incidence-based mortality.

The approach provides expressions for the partitioning of the time trends of these quantities. 

All of the components that are responsible for trends in disease prevalence and mortality are 

evaluated through explicit expressions. These components include disease incidence and 

survival as well as effects at the boundaries of the region available for analysis (in the case 

of 5%-Medicare we observe the effects after 1992 for individuals aged 65+). For mortality, 

additional information about the mortality rate in the general population is required.

The results of the partitioning analyses are presented in Figure 5 and described in detail in 

“Partitioning for Diabetes Prevalence and Mortality and Their Time Trends” earlier in this 

text. Based on this analysis we can conclude that i) the theory describes empirical estimates 

for prevalence and mortality with good accuracy, ii) among the possible contributions T(y) 

and T̂(y) in eq. equation (12) and (14), the contributions of incidence and survival after age 

65 have the greatest effect on diabetes prevalence and diabetes-related mortality, and iii) the 

dynamics of diabetes prevalence and mortality are generated by causes consistent with 

improvements in population health: decreased incidence and improved survival.

Use of our methodology offers new opportunities in public health. Researchers obtain the 

opportunity to clearly identify the sources of observed processes at the level of disease 

prevalence and mortality. The methodology presented in this paper provides a formal 

method for the decomposition of an observed trend in prevalence and incidence-based 

mortality into their constituent parts. Practically, this can be used as a public health planning 

tool, to identify areas of concern which, either due to the size of the effect, the direction of 

the trend, or the observed rate of change, require targeted attention from health agencies. 

Furthermore, over time improvements in diagnostic technology and the body of knowledge 

on the pathological characteristics of a disease lead to improved ascertainment (i.e. the 

ability to identify the presence of a disease) and more tightly defined guidelines for making 

a valid diagnosis. Improved ascertainment is likely to lead to an increase in the incidence of 

a disease as individuals who were previously left undiagnosed are identified. The effect of 

changes in diagnostic guidelines is more ambiguous as depending on whether elements were 

added or removed from the definition of a valid diagnosis incidence and by extent 

prevalence could be pushed in either direction. A standardized method for the partitioning of 

an existing prevalence trend into the time-trends of its components and, more importantly, 
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the relative strength of the contribution of each component over time, will aid in both 

correctly assessing the relative success of a health intervention and identifying time-periods 

of special interest for more in depth analysis (e.g. a sharp spike in the relative strength of the 

contribution associated with incidence could indicate either an area of public health interest, 

or an improvement in ascertainment).

Our approach lends itself to multiple natural generalizations allowing for the estimation and 

partitioning of quantities such as i) the effects of disease-specific medical costs (respective 

costs are added into integrand) (Akushevich et al. 2011; Akushevich et al. 2016), ii) the 

effects of recovery and/or long-term remission (respective survival functions have to be used 

as additional factors) (Akushevich et al. 2013b), and iii) the effects of complications for 

patients with a specific disease (specific patient selections and respective changes in 

mathematical formalism have to be included) (Akushevich et al. 2013a; Yashkin, Picone and 

Sloan 2015). The expressions for prevalence and mortality can also be used in improving the 

accuracy of future projections in health forecasting.

The components contributing to time trends are obtained not using a fitting procedure and/or 

maximum likelihood, but direct calculation using expressions representing each component 

as continuous functions of available data. Statistical estimates of parameters characterizing 

the time patterns of prevalence at the bounds, incidence and survival are obtained using B-

splines. Since B-splines provide consistent estimates of model parameters (Strawderman and 

Tsiatis 1996) and the trend components are continuous functions of the B-spline parameters, 

the estimates of the trend components are consistent. The estimates are largely model 

independent; therefore, the risk of model misspecification is minimal. The only model we 

use is the Weibul model for survival time. The model is quite flexible and its choice is not 

critical for the estimation procedure: two-dimensional splines for survival can be used 

instead.

The level of detail our approach provides is highly dependent on the length and scope 

present in the data. When Medicare data or a dataset of a similar size is used, statistical 

uncertainties are not expected to be large. In the general case the statistical uncertainty has to 

be estimated using a bootstrapping approach or through analytic estimates of error 

propagation. However, systematic uncertainties (biases) could be noticeable. Possible 

sources for the systematical uncertainties include i) the possibility of non-precise separation 

of incident and prevalent cases, ii) the effect of time trends in the fraction of individuals 

covered by Medicare Advantage (a private alternative to traditional Medicare which does not 

contribute data to Medicare datasets), and/or iii) changes in the structure of the population of 

Medicare beneficiaries due to specific events such as initiation of Medicare coverage of Part 

D in 2006. Separate research to evaluate the contributions of these factors to the total 

systematical error is required. In sum, the estimation of the time trend components is 

consistent and stable, however further investigation of systematic uncertainties would 

improve overall accuracy of the estimates.

In summary, notable strengths of our approach include: i) modeling of all components used 

in our models using explicit expressions; ii) lack of simplifying assumptions; iii) stability 

and consistency of the resulting estimates; and iv) wide availability of large administrative 
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health data like that used in the study. The application of this approach to the case of 

diabetes found that both its prevalence and incidence-based mortality increases with time. 

The primary driving factor of the observed prevalence increase is improved survival and 

increased prevalence at age 65. The increase in diabetes-related mortality is driven by 

increased prevalence and unobserved trends beyond the region observed in the data.
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Appendix A. Derivation of expressions for prevalence (1) and mortality (2)

The formulae (1) and (2) can be understood in terms of the numbers of individuals. Let N0 

be the size of a birth cohort and NI (τ)Δτ be the number of individuals with disease onset 

within the age period Δτ. The total number of sick (and alive) individuals at age x(Nd(x)) is 

the sum of all individuals who survived to age x after diagnoses at τ over all age periods, 

i.e.,

where S(x − τn, τn) is the survival function of individuals diagnosed at age period [τn, τn + 

(Δτ)n] who survived to age x. Considering infinitely small age periods (i.e., Δτ → 0) and 

defining Pc(x, yb) = Nd(x)/N0 and Ic(τ, yb) = NI(τ)/N0, we obtain the formula 

. Then the formula (1) is obtained when we split the 

integration region in two parts (from 0 to x̄0 and from x̄0 to x) and use respective notation for 

the first part: . Exactly the 

definition of S̄(x − x̄0, x̄0, ȳ0) is:

The survival function in the numerator can split as S(x − τ, τ, yd) = S(x − x̄0, x̄0, ȳ0|τ)S(x̄0 − 

τ, τ, yd). The function S(x − x̄0, x̄0, ȳ0|τ) is the survival function for a cohort of patients 

formed at age x̄0 and time ȳ0 and diagnosed at age τ, τ < x̄0. If the dependence on τ is weak 

for a disease, we can put S(x − x̄0, x̄0, ȳ0|τ) ≈ S(x − x̄0, x̄0, ȳ0), and therefore obtain S̄(x − 

x ̄0, x̄0, ȳ0) ≈ S(x − x̄0, x̄0, ȳ0). Thus, the difference between empiric estimates or estimated 
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models for the two survival functions reflects the force of dependence of S(x − x̄0, x̄0, ȳ0|τ) 

on τ.

Let the number of individuals diagnosed at the age interval [τ, τ + Δτ] and then died during 

age interval [x, x + Δx] is NIM(τ, x). The total number of individuals died in the age interval 

[x, x + Δx] is defined through the density of the incidence-based mortality M(x, yb) and 

equals:

Considering infinitely small age periods (i.e., Δτ→0 and Δx→0) and defining 

 we obtain the formula 

. Splitting the integration region and using 

definitions of f̄c(x − x̄0, x̄0, ȳ0) similarly as in the case of disease prevalence considered 

above we obtain eq. (2)

Appendix B. Derivation of the derivatives of prevalence and mortality

In this Appendix technical aspects of derivation of the derivatives (13) and (15) are 

discussed. Rewrite eq. (9) by rewriting integration limits explicitly:

(17)

Derivation of the right hand side is based on the Barrow’s Fundamental Theorem of 

Calculus which can be adopted for our case as: , i.e., 

when we need to differentiate a function over an argument that is both in the integration 

limits and in integrand we have the two terms with and without integration. Differentiation 

of the first term in P(y) results:

The second term of P(y) gives
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As we see first terms of these two contributions cancel in the sum resulting in Tp0(y) + TS̄(y) 

+ Tp00(y) + TS̄00(y).

Differentiation of the third term in eq. (17) results:

(18)

The last term in the expression for P(y) contains y in integration limits for both first and 

second integral, therefore the Barrow’s theorem has to be applied twice resulting:

(19)

First terms of (18) and (19) cancel, second terms of (19) is TX00(y), and sum of remaining 

terms (last two terms of (18) and (19)) gives Tinc(y)+ TS(y). The sum of surviving terms 

gives finally the right hand side of eq. (12).

The calculation for derivative of mortality is similar.
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Fig. 1. 
The two dimensional diagram (Lexis diagram) to show the age-time area in which data are 

available and represent events (such as disease onset or deaths) that occur to individuals 

belonging to different cohorts. Calendar time is represented on the horizontal axis, while age 

is represented on the vertical axis. Dashed lines show time/age points for specific cohorts. 

Information about a cohort is available starting from bounding lines, i.e., either y00 = 1992 

or x0 = 65. Calculation of age-adjusted rates for a specific time requires integration over all 

ages starting from x0, so regions both below and above bisecting line contribute to the 

integral for any y > y00.
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Figure 2. 
Prevalence at 65, P(x0, y0) vs. y0, (left panel) and at 1992, P(x00, y00) vs. x00, (right panel) 

of diabetes: empiric estimates (dots) and B-spline model (solid line).
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Figure 3. 
Incidence rate of type 2 diabetes I(τ, yd): age pattern for selected years of diagnosis (left 

plot) and year-at-diagnosis patterns for age-adjusted rate (right panel). Dots show empiric 

estimates and curves show the models: linear model for age-patterns (left plot) and B-spline 

model for age-adjusted rates (right plot).
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Figure 4. 
Relative survival functions for selected ages and years at diagnoses. Specifically, a) relative 

survival vs. time after 65 for individuals prevalent at 65 for three y0 (years at x0 = 65), b) 

relative survival vs. time after x00 for individuals prevalent at 65 for three x00 (age at y00 = 

1992), c) relative survival vs. time after diagnosis for individuals diagnosed at age 75 in 

three years of diagnosis yd, and d) relative survival vs. time after diagnosis for individuals 

diagnosed in 2000 in three ages of diagnosis τ.
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Figure 5. 
Prevalence and incidence-based mortality, their time trends as well as partitioning of these 

measures: a) type 2 diabetes prevalence, b) incidence-based mortality, c) time trend of 

prevalence and d) time trend of the incidence-based mortality. Dots in upper plots show 

empiric estimates for prevalence and mortality. Thick curves show theoretical predictions 

given by eqs. (9), (10), (12)–(13), and (14)–(15), respectively. Thin curves represent 

components of the theoretical predictions (eqs. (11)–(15)). Label for each thin curve exactly 

corresponds to the subscript of respective term in eqs. (11) for upper plots and (13),(15) for 

lower plots.
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Table 1

Summary of Mathematical Functions

Ages and calendar times used as arguments in the survival functions

x Current age in years y Current (calendar) time in years

x0
Minimal age observed in data (see 
Figure 1)

y00 Initial time in data (see Figure 1)

x̄0 = max(x0, y00 − yb) The cohort-specific bounding 
(minimal) age

ȳ0 = yb + x̄0 The cohort-specific bounding (minimal) time

τ, x̄0 < τ ≤ x Age at diagnosis yd = y − x + τ Time of diagnosis

x00 = y00 − y + x The cohort specific age at y00 y0 = y − x + x0 The cohort-specific time of reaching age x0

yb = y − x Time of birth for a cohort

Survival analysis functions for age-specific prevalence and mortality

Pc(x, yb) Probability of being prevalent at age x in cohort with birth time yb

Ic(τ, yb) Incidence density function for birth cohort yb. The normalization rule for the 

density is 

Mc(x, yb) Mortality density function for birth cohort yb. The normalization rule for the 

density is 

Survival function and respective density function of a patient group formed at 
age x̄0 and time ȳ0, diagnosed before x̄0, and survived to x (i.e., living x − x̄0 

years after cohort forming)

Survival function and respective density function of a patient group diagnosed 
at age τ and time yd, and survived to x (i.e., living x − τ years after cohort 
forming)

St(x − τ, τ, yd) and μ(x, y) Survival function and respective mortality hazard function in the general 
population for the cohort formed at age τ and yd, i.e., St(0, τ, yd) = 1.

Survival analysis functions for age-adjusted prevalence and mortality

P(x, y) Prevalence at age x and time y

I(x, y) Incidence hazard function at age x and time y

M(x, y) Incidence based mortality hazard function at age x and time y

P(y) Age-adjusted prevalence at time y

M(y) Age-adjusted Incidence-based mortality hazard function at time y

Relative survival and respective density function of a patient group diagnosed at 
age τ and year yd, and reached age x (i.e., living x − τ years after diagnosis and 
cohort forming)

Relative survival and respective density function of a patient group function of a 
patient group formed at age x̄0 and time ȳ0, diagnosed before x̄0, and survived 
to age x (i.e., living x − x̄0 years after cohort forming)

p(x) the density of age distribution in a standard year

T(y) and T̂(y)
Specific contributions to the time trends of age-adjusted disease prevalence and 
incidence-based mortality (discussed in detail in Interpretation of partitioning 
components)
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