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Abstract

Notch receptor activation initiates cell fate decisions, and is distinctive in its reliance on 

mechanical force and protein glycosylation. The 2.5 angstrom crystal structure of the extracellular 

interacting regions of Notch1 complexed with an engineered, high-affinity variant of Jagged1 

(Jag1) reveals a binding interface that extends ∼120 angstroms along five consecutive domains of 

each protein. O-Linked fucose modifications on Notch1 EGF domains 8 and 12 engage the EGF3 

and C2 domains of Jag1, respectively, and different Notch domains are favored in binding to Jag1 

compared to those that bind to the Delta-like 4 ligand. Jag1 undergoes conformational changes 

upon Notch binding, exhibiting catch bond behavior that prolongs interactions in the range of 

forces required for Notch activation. This mechanism enables cellular forces to regulate binding, 

discriminate amongst Notch ligands and potentiate Notch signaling.
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The Notch pathway specifies cell fate decisions in all meta-zoans. In mammals, Notch 

signals are transmitted when transmembrane ligands Jagged1 (Jag1), Jagged2 (Jag2), Delta-

like 1 (DLL1) or Delta-like 4 (DLL4) stimulate Notch receptor paralogs (Notch1-4) on the 

surface of adjacent cells. The prevailing model for canonical Notch activation includes 

forces that pull on the Notch-ligand complex as a result of receptor or ligand endocytosis (1, 

2). A few piconewtons (pN) of molecular tension activate Notch (3–5) by unfolding its 

negative regulatory-region (NRR) to expose a cryptic S2 proteolytic site (6), cleavage of 

which releases the Notch ICD (NICD) to translocate to the nucleus and serve as a 

transcriptional co-factor (7–9). It is presently unclear whether applied forces, such as those 

encountered under conditions of shear between cells, induce structural changes in Notch or 

its ligands, and how these forces propagate from the ligand binding site of Notch to the 

membrane proximal NRR.

Notch, Jag and DLL proteins encode large extracellular domains (ECDs) with modular 

architectures. Notch ECDs comprise up to 36 epidermal growth factor-like (EGF) domains 

followed by an autoinhibitory NRR that protects the S2 cleavage site (Fig. 1A) (6, 10, 11). 

Several Notch EGF domains are modified with O-linked glycans that influence receptor 

sensitivity to ligand stimulation (12–16). Jag1 and DLL ECDs consist of an N-terminal C2 

domain that has been implicated in lipid binding (17), a Delta-Serrate-Lag-2 (DSL) domain, 

6 to 16 EGF domains, and a cysteine-rich domain (CRD) present only in Jag1 and Jag2 (Fig. 

1A) (10, 18). Jag and DLL bind Notch1 primarily through EGF domains 11 and 12 (19), and 

co-crystal structures of Notch1 and DLL4 revealed that the N-terminal DSL and C2 domains 

of DLL4 engage Notch EGF11 and EGF12, respectively (20). However, additional regions 

of Notch may contribute to differential recognition of DLL and Jag ligands (16, 21, 22).

Here, we report the structure of a Notch1-Jag1 complex encompassing a newly visualized 

interaction site. Molecular force measurements show that Jag1 and DLL4 have different 

tension thresholds for receptor activation, and both form ‘catch bonds’, or bonds whose 

lifetimes are prolonged upon the application of tensile forces (23). Notch1-ligand catch bond 

behavior stands in contrast to ‘slip bond’ behavior (bond lifetimes diminished by tensile 

forces) and may potentiate signaling by low affinity Notch-ligand interactions in response to 

intercellular forces.

Structural studies of Notch-ligand interactions are impeded by the low affinities between 

Notch and Jag or DLL ECDs (10, 18, 20, 22). We therefore used in vitro evolution to 

engineer a high-affinity Jag1 variant to stabilize Notch1-Jag1 complexes. Jagged variant 1 

(Jag1JV1) was generated using an unbiased error-prone mutant library of Jag1 spanning from 

the N terminus to EGF3 [Jag1(N-3)] on the surface of yeast cells, followed by enrichment of 

Notch1 binders over several rounds of selection. Sequencing individual clones revealed 

S32L, R68G, D72N, T87R and Q182R mutations in the C2 domain of Jag1JV1 (Fig. 1B and 

fig. S1). Enhanced binding of Notch1 to Jag1JV1 relative to that of wild-type (WT) Jag1 was 

confirmed in a flow cytometry-based assay (Fig. 1B). To investigate the role of each 

mutation, we reverted mutated residues to the WT sequence and performed a binding assay. 

Only two of the five mutations, S32L and T87R, strongly affected the affinity of Jag1JV1 

(fig. S2).
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We determined that Jag1JV1(N-3) bound to Notch1 EGF domains 8 to 12 [Notch1(8-12)] 

with a KD of 0.81μM and to Notch1 EGF domains 11 and 12 [Notch1(11-12)] with a KD of 

5.4μM (Fig. 1C), a 6.4-fold difference in affinity, indicating that EGF8-10 contributes to 

Jag1JV1-Notch1 binding energetics (Fig. 1C). On the other hand, Notch1(8-12) and 

Notch1(11-12) bound to DLL4(N-3) with KD values of 9.7μM and 12.8μM, respectively, 

indicating that EGF8-10 had a minimal role in Notch1-DLL4 engagement (Fig. 1C). 

However, Notch1 domains 8 through 10 are required for maximal DLL4-mediated Notch1 

activation in cellular assays (22). Jag and DLL ligands thus appear to have different 

energetic requirements for various Notch1 domains.

We determined the 2.5Å x-ray crystal structure of the complex of Notch1(8-12) and 

Jag1JV1(N-3) proteins, revealing an elongated binding surface that extends for ∼120Å across 

all five domains of each construct (Fig. 1D and table S1). The Notch1 EGF domains formed 

a curved structure modified with O-linked fucose, glucose, and N-acetylglucosamine 

moieties, and calcium ions were bound by EGF domains 9, 11, and 12 (Fig. 1D and fig. S3). 

Notch1 EGF domains 12, 11, and 10 interacted with the C2, DSL, and EGF1 domains, and 

the Notch1 EGF9 and EGF8 domains bound to Jag1 EGF2 and EGF3 (Figs. 1D and 2A).

The interface between the Jag1 C2 domain and Notch1 EGF12 contained a functionally 

important Notch1 Thr466 O-fucose modification (Fig. 2A) (24), which formed a hydrogen 

bond (H-bond) with the backbone carbonyl of Tyr82 of the Jag1 C2 domain, and formed Van 

der Waals (VDW) interactions with the side chains of Glu81 and Tyr82, and with main chain 

atoms of Tyr82 and Gln84 (Fig. 2A and table S2). Elongation of the Thr466 O-fucose to a 

disaccharide by Fringe glycosyltransferase enzymes is known to enhance ligand binding to 

Notch1(11-13) (25). The engineered T87R mutation, present at the C2-EGF12 interface, 

may enhance affinity by creating a VDW contact between the extended Arg87 side chain and 

Pro480 of Notch1. At the Jag1 DSL-Notch1 EGF11 interface, prominent contacts included 

an H-bond and salt bridge formed between Glu424 of Notch1 and Tyr210 and Arg203 of Jag1, 

and a hydrophobic peg generated by insertion of Jag1 Phe206 and Phe207 side chains into a 

pocket in Jag1 (Fig. 2A and table S2). The interface formed between Notch1 EGFs 10, and 9 

and Jag1 EGFs 1and 2, respectively, is anchored by Jag1 residues Tyr255, His268, Pro269, 

Trp280 and Leu292, which protrude outward from the bent “elbow” between EGF domains 1 

and 2 to fill a cavity along Notch1 EGF domains 9- and 10 (Fig. 2A). Tyr255 of Jag1 is not 

conserved in DLL1 and DLL4, and thus could function as the selectivity filter that facilitates 

the biased engagement of this surface by Jag1 (fig. S3).

An O-linked fucose modification on Thr311 of Notch1 EGF8 contacted EGF3 of Jag1 by 

forming an H-bond with the side chain of Jag1 Asn298 (Fig. 2A and table S2), raising the 

possibility that distinct glycan signatures can exert combinatorial effects on ligand 

responsiveness (16, 26). On the opposing side of the interface, the O-fucose modification of 

Thr311 of Jag1 EGF3 formed a minor VDW contact with His313 of Notch1 EGF8 (Fig. 2A). 

Also present at the Notch1 EGF8-Jag1 EGF3 interface was a conserved Val324 residue that, 

when mutated to a methionine (termed the “jigsaw” mutation), selectively ablates Notch1-

Jag1 interactions (Fig. 2A and fig. S3) (21).
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To elucidate the relative functional contributions of Notch1 interface O-fucose moieties, we 

measured binding and receptor activation in cells that expressed either WT or Notch 

receptors lacking O-fucose modifications. Reporter cells were generated in which fucose-

modified Notch1 residues EGF8 Thr311, EGF12 Thr466, or EGF8 Thr311 and EGF12 Thr466 

were mutated from threonine to valine (fig. S4). Cells lacking both EGF 8 and EGF12 

fucose moieties exhibited a pronounced decrease in Jag1 binding but a similar decrease in 

activation to that seen in cells lacking only the EGF8 fu-cose (P<0.0001) (Fig. 2B). Thus, 

the O-fucose of Notch1 EGF8 appears to be of greater functional importance than the 

EGF12 modification in the context of Jag1, and both O-glycans appear to be required for 

optimal receptor engagement.

When comparing the binding interfaces of the Notch1(11-13)-DLL4SLP(N-1) and 

Notch1(8-12)-Jag1JV1(N-3) complexes, the former buries ∼200 Å2 more surface area than 

the analogous interface on Jag1 (Fig. 2C). The smaller Notch EGF11 and 12 binding surface 

of Jag1 is compensated by additional contacts with Notch1 EGF8 through 10 (Fig. 2C and 

table S2).

We examined the mechanical requirements for Notch activation with a tension gauge tether 

(TGT) assay. Cells were exposed to ligands tethered to a surface through rupturable tethers 

(3, 5) with estimated tension tolerances of 4 pN, 12 pN and 54 pN (Fig. 3). WT Jag1 

activated Notch when it was linked to the surface through the 12 pN and 54 pN TGTs but 

not through the 4 pN TGT. Thus, Notch activation through WT Jag1, like that through DLL1 

(5), appears to require tension larger than 4 pN but smaller than 12 pN. These data are 

consistent with the requirement of 5 pN force for NRR conformational change and cleavage 

(4). In contrast, Jag1JV1 activated Notch even with the 4 pN TGT (Fig. 3). We attribute the 

differential tension requirements to the difference in the frequency of events that expose the 

NRR cleavage site. The probability that a Notch receptor is engaged with a lig-and during 

the period of cellular tension application to the receptor will be higher if the affinity is 

higher. Therefore, JagJV1 would allow a higher frequency of pulling events than would WT 

Jag1, and even through the 4 pN TGTs, a sufficient number of NRRs may experience the ∼5 

pN tension needed for their cleavage and signaling activation (Fig. 3). In support of this 

model, we observed a differential tension requirement when we changed ligand density 

instead of affinity (fig. S5).

Notch-ligand affinity is determined by association (kon) and dissociation (koff) rate 

constants, and the latter may also be a function of tension. We therefore used biomembrane 

force probe (BFP) force-clamp spectroscopy to measure lifetimes of single Notch1(8-12)-

Jag1(N-3) bonds in a range of tensile forces (27). At “low” tension values below 9 pN (the 

tension range relevant to Notch activation according to the TGT analysis), the lifetime of the 

bound state was longer for JagJV1 than for Jag1, suggesting that much of the higher affinity 

of JagJV1 at zero force may reflect a lower koff (Fig. 4A). The bond lifetime became 

comparable between Jag1 and Jag1JV1 at forces of 9 pN or greater, probably because of 

tension-induced changes in lifetimes, which increased for Jag1 (a ‘catch bond’) but 

decreased for JagJV1 (a ‘slip bond’) (Fig. 4A). Therefore, JagJV1 appears to adopt a high 

affinity conformation at low forces, whereas WT Jag1 adopts the high affinity conformation 
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only under tension, which is consistent with a conformational switch we observe in the 

Notch1-JagJV1 structure (see below).

DLL4 binds Notch with higher affinity than does Jag1 (Fig. 1C and fig. S6), and may even 

activate Notch at tensions as low as 1 pN (4). TGT experiments with DLL4 indicated that 

Notch was activated even with the 4 pN TGT, in contrast to Jag1, which required tension 

above 4pN (Fig. 3), suggesting that mechanical tuning through affinity modulation may also 

occur in natural systems. BFP experiments revealed that DLL4 had a similar bond lifetime 

vs. tension profile to that of Jag1, indicating that the higher affinity of DLL4 results from its 

higher kon (Fig. 4A).

A hallmark of catch-bond forming proteins is a hingelike motion of domains involved in 

ligand binding (28, 29). In the Notch1-Jag1 complex, several Jag1JV1 domains undergo 

hinge-like movements, the most dramatic of which is a 32° pivot about the C2-DSL linker 

that shifts the position of EGF3 51Å between the bound and unbound structures (Fig. 4B 

and fig. S7). The S32L substitution in the Jag1JV1 linker region (fig. S1) may enhance 

affinity by favoring the “flexed” conformation observed in the Notch1-Jag1JV1 structure 

(Fig. 4C and fig. S7).

The formation of a catch bonds has broader repercussions within the context of cellular 

Notch signaling. For Notch to become activated, the initial, low affinity ligand interaction 

must persist long enough not only to propagate cellular forces to the NRR, but also to 

maintain the NRR in an unfolded state until its S2 site may be cleaved by an ADAM 

protease. We found applied force to extend Notch-ligand bond lifetimes (Fig. 4A), which 

would increase the probability of satisfying the above requirements such that a receptor can 

become activated (Fig. 4C). The apparently different force requirements needed to activate 

Notch signaling by different ligands may be a mechanism, perhaps in concert with lipid-

binding (17), for Notch-expressing cells to tune their sensitivity and discriminate between 

the multitude of Notch ligands.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Engineering of high-affinity Jag1 proteins and crystal structure of the Notch1-Jag1JV1 
complex
(A) Schematic of Notch1 and Jag1 ECD architecture. Shaded domains represent constructs 

used for co-crystallization. (B) In vitro evolution of Jag1(N-3) led to the isolation of the 

high-affinity Jag1JV1 variant containing S32L, R68G, D72N, T87R, and Q182R mutations. 

Flow cytometry dot plots depict the increased binding of yeast displayed Jag1JV1(N-3) 

relative to that of WT Jag1(N-3) upon staining with Notch1(8-12) tetramers. Surface 

expression was detected with an antibody to the c-Myc tag on displayed constructs. (C) 

Binding isotherms were obtained by surface plasmon resonance. Curves were fitted to a 1:1 

binding model to obtain Kd values indicated in the table. (D) Crystal structure of 

Notch1(8-12) (magenta) bound to Jag1JV1(N-3) (green) represented as the interaction may 

occur on the surface of two cells. Fuc: fucose; Glc: glucose; GlcNAc: N-acetylglucosamine.
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Fig. 2. Molecular determinants of the Notch1-Jag1JV1 interface
(A) Structure of the Notch1(8-12)-Jag1JV1(N-3) complex with selected interface contacts 

visualized in zoom windows. Polar contacts are depicted as grey dotted lines. The affinity-

enhancing Jag1JV1 T87R mutation is marked with an asterisk. (B) Jag1-Notch1 binding and 

signaling assays were performed using WT Notch1 expressing cells, or cells expressing 

Notch1 proteins lacking interface O-fucose modifications in EGF8 (8V: Notch1 T311V), 

EGF12 (Notch1 T466V) or EGF8/EGF12 (8V12V: Notch1 T311V/T466V). Flow cytometry 

histograms depict the binding of Notch1 and Notch1 mutants to Jag1-Fc that was pre-

clustered using a secondary antibody to the Fc region of human IgG. Bar graphs show the 

reporter activity of Notch1 or Notch1 mutant reporter cells stimulated by co-culture with L 

cells, or with L cells expressing Jag1 (J1 cells). Statistical significance of WT Notch1 versus 

each mutant was determined using one-way ANOVA. Bar graph shows mean +/- SD; two 

independent experiments n = 6 were analyzed. ***P < 0.0001; **P < 0.001; *P < 0.01; EV: 
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empty vector. (C) Notch1-Jag1JV1 and Notch1-DLL4SLP complexes are depicted in an 

“open book” view, with residues colored according to percent buried surface area.
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Fig. 3. Different molecular tension thresholds for receptor activation by various Notch ligands
Molecular tension requirements for Notch activation were determined using a TGT assay (3, 

5). Fc-tagged Jag1(N-3), Jag1JV1(N-3) and DLL4(N-3) were attached to surfaces using 

tethers calibrated to rupture upon application of 4, 12 or 54 pN of tension. Binding to 

surfaces was mediated by Fc-capture with protein G (ProG). Cells expressing Notch1 with 

the NICD replaced by a Gal4 activator and a H2B-YFP-reporter controlled by an upstream 

activator sequence (UAS) (30) were cultured on the surfaces and reporter activity was 

monitored. Each panel shows an example composite image of micrographs of adhered cells 

with YTF fluorescence and a YFP intensity histogram.
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Fig. 4. Conformational changes in Jag1 domains implicate a catch bond in Notch1 engagement
(A) BFP force-clamp spectroscopy was used to measure the average bond lifetimes between 

Notch1(8-12) and WT Jag1(N-3), Jag1JV1(N-3) or DLL4(N-3) as a function of applied 

force. Lifetimes were binned into different force groups and represented as the average 

lifetime in each bin associated with the standard error of the mean of the lifetimes in that 

bin. (B) The C2 domains of Jag1JV1(N-3) (green) in complex with Notch1(8-12) (pink) and 

unbound Jag1(N-3) (yellow, PDB ID: 4CC0) were aligned to highlight hinge-like motions 

that occur upon Notch1 binding (17). Steric clashes predicted to occur between the apo 

conformation of Jag1 and Notch1 are colored red. (C) A possible model for a catch bond in 

Notch-ligand engagement. Unbound, “stiff” Jag1 incurs molecular force, either due to 

endocytosis or intercellular shearing, and then becomes “flexed” so that it may optimally 

engage Notch1. The catch bond may then extend the Notch1-Jag1 bond lifetime such that 

the force may be permeated to the NRR to drive activation.
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