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A method is proposed to estimate the surface impedance of a large absorptive panel from free-field

measurements with a spherical microphone array. The method relies on the reconstruction of the

pressure and the particle velocity on the studied surface using an equivalent source method based

on spherical array measurements. The sound field measured by the array is mainly composed of an

incident and a reflected wave, so it can be represented as a spatially sparse problem. This makes it

possible to use compressive sensing in order to enhance the resolution and the quality of the estima-

tion. The results indicate an accurate reconstruction for angles of incidence between 0� and 60�,
and between approximately 200 and 4000 Hz. Additionally, experimental challenges are discussed,

such as the sample’s finiteness at low frequencies and the estimation of the background noise.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4983756]
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I. INTRODUCTION

The sound absorption properties of materials, which are

typically characterized by the surface impedance ZS or the

absorption coefficient a, are an indispensable input to acous-

tic simulations and predictions, e.g., in room acoustics, out-

door sound propagation, or the acoustics of vehicle cabins.

The two existing standardized measurement methods, the

impedance tube method1 and the reverberation chamber

method,2 yield limited information, especially in terms of

angle dependence. The absorption coefficient is determined

at normal incidence with the impedance tube method and at

random incidence with the reverberation chamber method.

However, information on the phase and angle dependence of

absorption is needed in various applications, such as phased

room acoustic simulations.3 Another example is the use of

the absorption coefficient at 45� incidence in order to approx-

imate in situ the random incidence value.4 The constraints

imposed by laboratory measurements in terms of equipment

or sample size have led to the development of various in situ
measurement methods, as summarized in Ref. 5. Some tech-

niques are based on characterizing the sound field above the

sample in order to infer the impedance on the surface, by

measuring the pressure at two close points6 or the pressure

and the particle velocity at the same point.7 Alternatively, the

absorption coefficient can be derived from the comparison of

the incident and the reflected fields. The separation of these

two components can be done temporally8 or spatially.9,10

Various approaches have been proposed to achieve this spa-

tial separation, such as the use of a spatial Fourier transform,9

a directional microphone array,10 or the study of the direc-

tions of arrival from a spherical array.11

This paper presents an impedance estimation method based

on array measurements and sound field reconstruction.12,13 We

consider a sample on which an incident wave impinges at a

given oblique angle. The sound field is measured with a

spherical microphone array. The array is a rigid sphere, which

is omnidirectional, and its scattering effect on the sound field

can be compensated for.14–17 The measured sound field is

expressed as a sum of elementary waves, following an equiva-

lent source method based on spherical array measurements

(S-ESM).18 This wave decomposition is used to reconstruct

the pressure and the normal particle velocity on the surface of

the absorber. The surface impedance is then derived from

these two reconstructed quantities. Furthermore, the sound

field is mainly composed of an incident and a reflected wave,

so that it is spatially sparse and can be represented with a few

elementary waves. For such a sparse problem, the use of com-

pressive sensing (CS)19 is well-suited, and improves the qual-

ity of the reconstruction.20,21

Like other methods in the literature,6–11 the proposed

methodology can estimate the angle dependence of the sur-

face impedance, which cannot be measured with the standard-

ized methods.1,2 The particularity of the present technique is

that it is based on the reconstruction of the actual sound field

(pressure and particle velocity) on the surface of the sample.

Although this study focuses on free-field measurements, the

method can be used to measure the surface impedance of

materials in situ, in more complex acoustic environments. The

design of the method is based on a simplified representation

of the sound field, in free-field conditions, assuming specular

reflection on the material, and disregarding the influence of

the sample’s finiteness. Still, these effects occur in a measured

sound field and have an impact on the results.

This paper is organized as follows: the theoretical

aspects and the methodology are first presented in Sec. II,

then two simulation examples are treated in Sec. III. Section

IV presents measurements performed in an anechoic room.

Finally, the strengths and limitations of the proposed method

are discussed in Sec. V.a)Electronic mail: apar@elektro.dtu.dk
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II. THEORY

A spherical coordinate system r ¼ ðr; h;uÞ is used,

where r is the radius, h the polar angle, and u the azimuth

angle, as defined in Fig. 1. The notation X ¼ ðh;uÞ is used

for simplification. The time convention is implicit and cho-

sen as ejxt. The medium (air) is characterized by a constant

density q and a speed of sound c.

The measurements are performed with a rigid spherical

array of radius a, positioned at the origin of the coordinate

system (r¼ 0). The array contains K flush-mounted micro-

phones. The method makes use of these measurements to

reconstruct the sound field on a studied surface. The imped-

ance of this surface is derived from the reconstructed pres-

sure and particle velocity.

A. S-ESM and sparsity framework

The S-ESM18 and its application to compressive sens-

ing20,21 are summarized. The pressure is measured at K
known microphone positions on the rigid spherical array and

is expressed as the sum of L elementary waves, using a set of

orthogonal functions Ym
n ðXÞ, i.e., spherical harmonics.14 The

elementary waves are spherical waves originating from L
equivalent point sources, situated at (r0,l, X0,l), l¼ 1,…, L. In

the general case, the method is used to model a homoge-

neous and source-free volume (all acoustic sources are out-

side of it). It is thus common practice to place the equivalent

sources outside the volume (to avoid their singularity), and

distribute them uniformly, so that it is possible to model

waves traveling in any direction.18 The choice of equivalent

source positions used in this study is explained further in

Sec. II B. The measured pressure at a position (a, X) on the

sphere takes the expression18

pt a;Xð Þ ¼ �
XL

l¼1

jqcQl

a2

X1
n¼0

Xn

m¼�n

h 2ð Þ
n kr0;lð Þ
h0 2ð Þ

n kað Þ
� Ym

n Xð ÞYm�
n X0;lð Þ; (1)

where Ql is the volume velocity of the lth point source, k is

the wave number, and hð2Þn is the spherical Hankel function

of the second kind. This expression includes the scattering

by the rigid sphere. When Eq. (1) is computed, it is neces-

sary to truncate the infinite sum to an order N, which should

satisfy the condition (Nþ 1)2�K for uniformly distributed

microphones.16,22 Equation (1) shows that pt is a linear com-

bination of a set of unknown volume velocities Ql.

Therefore, the vector of measured complex pressures pt at

the K microphone positions can be expressed in a matrix

form,

pt ¼ Hq; (2)

where q is the vector of the unknown volume velocities of

the equivalent sources. The number of equivalent sources is

usually much larger than the number of measured points,

making Eq. (2) an underdetermined system, which requires

regularization.

Solving Eq. (2) for q leads to an estimate of the volume

velocities of the equivalent sources ~q, which can be used to

reconstruct the sound pressure at M arbitrary points with18

~pr ¼ G~q; (3)

where G is a free-field transfer matrix of size M� L. Note

that the scattering by the rigid sphere does not appear in the

reconstructed field as it is not included in the matrix G. It is

also possible to reconstruct the particle velocity from ~q by

applying Euler’s equation to Eq. (3).18

Assuming that the chosen equivalent sources cover all

directions of arrival, a spatially sparse sound field composed

of waves from a few directions is represented by a sparse

vector q with a few non-zero coefficients. In that case, the

sparsity of the solution of Eq. (2) can be favored with

‘1-minimization,19,20,23 by solving

~q ¼ argmin
q

jjqjj1 subject to jjHq� ptjj2 � e; (4)

where e is an estimate of the noise floor of the measurement.

This equation is valid if the solution is sparse and the matrix

H has incoherent columns.19 This approach is referred to as

CS. Equation (4) is a convex optimization problem that we

solve with a package called CVX.24 The optimization prob-

lem can also be expressed in an unconstrained form, known

as LASSO.25

If spherical spreading can be neglected, it is possible to

expand the sound field as a sum of L plane waves originating

from the directions X0,l. In that case, Eq. (1) is replaced by26

pt a;Xð Þ¼�
XL

l¼1

4pp0;l

kað Þ2
X1
n¼0

Xn

m¼�n

jnþ1

h0 2ð Þ
n kað Þ

Ym
n Xð ÞYm�

n X0;lð Þ;

(5)

where p0,l is the amplitude of the lth plane wave. Note that if

a point source expansion is used, as in Eq. (1), the solution

vector consists of the volume velocities Ql, whereas when a

plane wave expansion is used, Eq. (5), the solution vector

consists of the amplitudes p0,l.

B. Single reflection in free-field

The wave expansion method presented in Sec. II A is

used to estimate the surface impedance of a large horizontal

sample. The sound field originates from a single wave at obli-

que incidence, which is reflected on the studied sample. The

spherical array is placed close to the surface of the sample,FIG. 1. Spherical coordinate system.
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with the distance between the array’s center and the surface

denoted as d. The sample is approximated as an infinite plate

so that diffraction from the edges is ignored. This approxima-

tion is commonly made in most previous methods.6–11 We

expect the sound field to be spatially sparse, consisting mainly

of an incident wave and a reflected wave. For instance, it is

common to model the reflection of a point source with a vir-

tual image source, which is symmetrical to the primary source

with respect to the sample, as seen in Fig. 2.

We consider either Eq. (1) or Eq. (5) as a wave expan-

sion, depending on the nature of the sound field. Although the

plane wave formulation is simpler, equivalent point sources

make it possible to account for spherical spreading and to

describe the near-field term of the particle velocity, which is

physically more correct if the sound source is close to the

sample. The chosen elementary waves have uniformly distrib-

uted directions of arrival to ensure that a spatially sparse

sound field can be represented with a sparse vector. In more

complex environments, it also makes it possible to localize

and eliminate unwanted noise, such as scattered waves or sec-

ondary reflections. In addition, for the point source expansion,

the equivalent sources are placed on a sphere centered on the

sample, so it contains the position of the source and the image

source, as shown in Fig. 2. When measuring an actual sound

field, the equivalent sources are expected to represent fairly

well the reflection, especially in terms of position of the

source and the image source. However, additional effects can

appear, such as edge diffraction or scattering on the surface.

The sound field is reconstructed on the sample,18 as

shown in Fig. 2. In the examples given in Secs. III and IV,

the pressure and the normal component of the particle veloc-

ity are calculated on M¼ 21� 21 points positioned on a

square grid of 10� 10 cm2 centered on the z axis. The posi-

tion of the grid is chosen to minimize the backpropagation

distance in order to improve the accuracy of the reconstruc-

tion. The normalized surface impedance on the material can

be calculated with

ZS rið Þ ¼ �
1

qc

p rið Þ
uz rið Þ

; i ¼ 1;…;M: (6)

Note that the surface impedance is generally a differential

operator due to wave propagation and surface effects,27 so

Eq. (6) is an approximation. The material’s estimated surface

impedance ~ZS is taken as the spatial average of all the results

from Eq. (6) over the grid,

~ZS ¼ hZSðriÞii¼1;…;M: (7)

The spatial averaging h�i is done in order to eliminate the

effect of random errors, and to obtain a single number for ZS.

The grid is small enough to ensure not too large spatial var-

iations of ZS in the frequency range of interest. Finally, the

estimated absorption coefficient is obtained using28

~a ¼ 1�
����

~ZS cos wð Þ � 1

~ZS cos wð Þ þ 1

����
2

; (8)

where w is the angle of incidence. This equation was estab-

lished in the case of plane wave incidence on an infinite sam-

ple,29 but it is used here as an approximation, even for

spherical wave incidence and finite samples.

Previous studies16,18 show that the scattering of the

reflected field by the array is negligible, even when the sur-

face is fully reflective.18

III. NUMERICAL RESULTS

The simulated sample is an infinite plate of porous

material. Miki’s model30 is used to calculate the sample’s

characteristic impedance Zc and propagation constant c from

its flow resistivity r and its thickness h. Under a plane wave

assumption and with a rigid backing, the surface impedance

is obtained as31

ZS ¼ �jZc
k

kn
cot knhð Þ; (9)

where kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 � k2 sin2ðwÞ

q
. Note that ZS varies with the

incidence angle w, which shows that this is not a locally

reacting model. In this section, we use h¼ 10 cm and

r¼ 12 900 Nsm–4, which correspond to the tested sample in

Sec. IV.

The method is tested for an incident plane wave (Sec.

III A) and an incident spherical wave (Sec. III B). Gaussian

noise is added to the simulated pressure with a signal-to-

noise ratio (SNR) of 30 dB. The array has a radius

a¼ 9.75 cm and 64 uniformly distributed microphones. For

such an array, the minimum truncation order is N¼ 7. The

distance between the array’s center and the sample is

d¼ 19.75 cm (10 cm distance between the array’s surface

and the material). The studied frequencies are the center fre-

quencies of 1/24 octave bands spanning from 100 to

4000 Hz, which concurs with the array’s working range.16

256 elementary waves with uniformly distributed directions

are used, as a compromise between spatial resolution and

computation speed. The noise floor e in Eq. (4) is calculated

for each frequency as

e ¼ jjptjj2 � 10�ðLSNR=20Þ: (10)
FIG. 2. Measurement principle to determine the surface impedance of a

given sample using S-ESM.
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A. Case 1: Plane wave incidence

First, the method is tested for incident plane waves, at

incidence angles of 0�, 30�, and 60�.
For an incident plane wave of amplitude p0, the reflected

field is also a plane wave of amplitude p1 with a symmetrical

direction of arrival with respect to the sample’s surface. The

amplitude of the reflected wave is characterized by a plane

wave reflection coefficient defined by

R ¼ p1

p0

¼ ZS cos wð Þ � 1

ZS cos wð Þ þ 1
: (11)

In this particular example, the incoming sound field on the

array is only composed of plane waves. Thus, a plane wave

model, following Eq. (5), is used in this section, instead of a

point source model, as in the rest of the paper.

Examples of estimated coefficients at 125 and 500 Hz

are shown in Fig. 3. The magnitude of the coefficients is rep-

resented in dB. The scale covers 30 dB, and its maximum

corresponds to the incident pressure amplitude. In general, a

sparse solution is obtained where both the directions of the

incident and reflected waves are clearly identified, as illus-

trated at 500 Hz. However, the estimation becomes less

accurate at low frequencies and large incidence angles. At

125 Hz, the localization is still effective at 0� and 30�, but it

loses accuracy at 60�. This is due to the wavelength being

much larger than the array’s dimensions, making the

recorded information redundant across the microphones. In

addition, at higher angles of incidence, the angular distance

between the incident and the reflected wave is reduced, mak-

ing it more difficult to separate these two components.

The sound field is reconstructed on the sample (z¼ –d),

at 21� 21 points on a square grid of dimensions 10� 10 cm2

centered on the z axis. The quality of the reconstruction is

assessed with the relative reconstruction error, defined for

pressure as

�p ¼
jj~p � ptruejj2
jjptruejj2

; (12)

where ~p is the vector of the reconstructed pressures at each

point of the grid and ptrue is the vector of the true pressures

at the same points. This error is also expressed in a dB scale

using

L�;p ¼ 20 log10ð1þ �pÞ: (13)

FIG. 3. (Color online) Magnitude of

the estimated coefficients in dB re.

20 lPa at 125 and at 500 Hz for the

simulation of an incident plane wave.

The crosses indicate the directions of

the incident wave and the reflected

wave. (a) 125 Hz, 0�; (b)500 Hz, 0�;
(c) 125 Hz, 30�; (d) 500 Hz, 30�; (e)

125 Hz, 60�; (f) 500 Hz, 60�.
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Analogous expressions are used for the particle velocity and

the impedance errors.

Figure 4 shows the relative pressure, velocity, and imped-

ance errors as a function of frequency, in percentage and in

decibels. The black dashed line corresponds to the noise floor,

given by 10�ðLSNR=20Þ ¼ 3:2%. At 0� and 30�, the pressure

error is lower than the noise floor for frequencies below

2000 Hz, and the velocity error for frequencies between 150

and 1000 Hz. Both the pressure and velocity errors increase at

higher frequencies for the three incidence angles, due to the

backpropagation distance becoming larger than the wave-

length. At low frequencies, the pressure is accurately esti-

mated, as Eq. (4) minimizes the error in pressure on the array,

and the reconstruction distance is much smaller than the

wavelength. Conversely, the poorer estimation of the plane

wave coefficients observed in Fig. 3 affects the reconstruction

of the particle velocity, especially at 60�. Indeed, the particle

velocity is a relatively small quantity at low frequencies, as

dependent on the pressure gradient, which makes it more sen-

sitive to noise.18,32 In addition, the quantity of interest is the

normal component of the particle velocity, which is mainly

reconstructed from the elementary plane waves with normal

directions. This becomes problematic at larger angles of inci-

dence, where the sound field is represented by waves with a

small normal particle velocity component. In that case, Eq.

(6) is close to a singularity, for uz ! 0. For instance, in Fig.

3(e), the incident and the reflected field are represented by

three waves each. The directions closer to the normal predom-

inate in the calculation of uz, although they do not correspond

to actual sound field components. This amplifies the estima-

tion error. Finally, the resulting error in impedance remains

below 20% for 0� and 30� incidence with a slight rise at low

frequencies, but it is consistently higher at 60�—the imped-

ance error is below 20% only between 250 Hz and 1800 Hz.

The impedance error is mainly ascribed to the errors in the

particle velocity estimation.

The estimated impedance and absorption coefficient can

be seen in Fig. 5. The surface impedance calculated from

Miki’s model shows very little variation with the incidence

FIG. 4. (Color online) Relative reconstruction error on pressure (a), normal

component of particle velocity (b), and surface impedance (c) for plane

wave incidence in the presence of noise (SNR 30 dB). Angles of incidence

0� (—), 30� (� � �), and 60� (- - -).

FIG. 5. Surface impedance and absorption coefficient for plane wave incidence, from Miki’s model (–) and from the simulation (� � �). (a) Surface impedance.

Real part in black, imaginary part in gray. (b) Absorption coefficient.
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angle up to 60�, which indicates that a local reaction approx-

imation could be valid in this simulation. The method suc-

ceeds to give accurate estimates of the material’s impedance

and its absorption coefficient between 200 Hz and 4 kHz.

The estimation presents small deviations at high frequencies

due to errors in the field reconstruction. The presence of

noise affects mostly the low frequencies and the larger

angles of incidence. Furthermore, although more important

errors appear at 60�, the estimation still follows the same

trend as the reference value.

B. Case 2: Spherical wave incidence

The impedance estimation method is tested with a sound

field originating from a point source. The source is placed

1.5 m from the array’s center at different polar angles h0 (0�,
30� and 60�); the corresponding angles of incidence w are

0�, 24� and 48�. Equivalent point sources are used for the

sound field reconstruction, following Eq. (1). The simulation

of the sound field follows a formulation described by

Wenzel33 and Thomasson.34 The procedure to obtain the

sound field scattered by the spherical array is described in

the Appendix.

The reconstruction is done on a square grid at z¼ –d, of

dimensions 10� 10 cm2, consisting of 21� 21 points and

centered on the z axis. The relative reconstruction errors of

the sound field quantities are calculated using Eq. (12) and

plotted in Fig. 6 as a function of frequency. The pressure

error increases with frequency, especially at 60�. Indeed,

using equivalent point sources increases the ill-posedness of

the problem as the pressure decay with distance needs to be

accounted for. The particle velocity error also becomes

larger at low frequencies. Indeed, the particle velocity is

reconstructed as the sum of the particle velocities of equiva-

lent spherical waves, which have a large nearfield term at

low frequencies. This tends to amplify errors in the estima-

tion of the source strengths.18 In any case, the impedance

error is similar to the plane wave case (Fig. 4), with an error

around the noise floor level at 0 and 30� above 200 Hz. The

FIG. 6. (Color online) Relative reconstruction error for spherical wave inci-

dence with a SNR of 30 dB. (a) pressure, (b) normal component of particle

velocity, and surface impedance (c). Angles of incidence 0� (—), 30� (� � �),
and 60� (- - -).

FIG. 7. Surface impedance and absorption coefficient for spherical wave incidence. Miki’s model (–), estimation from the simulation (� � �). (a) Surface imped-

ance. Real part in black, imaginary part in gray. (b) Absorption coefficient.
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60� case presents an error greater than 20% outside the range

250–1600 Hz, and a minimum of 6%, which is still above

the noise floor.

Figure 7 shows the resulting estimation of both the

impedance and the absorption coefficient at the three angles

of incidence. The result is accurate and quite robust to noise

above 200 Hz, with larger discrepancies appearing for a

polar angle of 60�, although the trend is similar.

In summary, these two examples (Secs. III A and III B)

demonstrate that the surface impedance of a given material

can be properly estimated, with limitations appearing at 60�.
The frequency range of validity decreases when the angle of

incidence increases. The quality of the estimation depends

on the accuracy of the reconstructed pressure and velocity. It

was also shown that the particle velocity is more prone to

errors, especially at low frequencies, which is in accordance

with previous findings.18,32,35

IV. EXPERIMENTAL RESULTS

The proposed method is tested experimentally with a

similar setup to the simulation in Sec. III B. The measure-

ments take place in a large anechoic room at the Technical

University of Denmark, with an approximate volume of 1000

m3, ensuring free field conditions down to 50 Hz.36 The exper-

imental setup is presented in Fig. 8. The tested sample is a

large plate of mineral wool of dimensions 1.8 m� 2.4 m,

thickness 10 cm, and flow resistivity 12900 Nsm–4. This

sample is placed on a rigid backing plate with a surface of

about 14 m2. The rigid spherical array has a radius of 9.75 cm

and 64 prepolarized 1
4

in. microphones, which are uniformly

distributed over the surface. The array’s center is positioned

above the sample under test at a height d¼ 19.75 cm. The

sound source is an OmniSource Loudspeaker type 4295 pro-

duced by B&K (Nærum, Denmark) driven with white noise.

The source is placed on a half-circle of radius 1.5 m centered

on the backing plate. Three source positions are studied, at 0�,
30�, and 60� from the normal, as presented in Fig. 8(b); the

corresponding incidence angles w are 0�, 28�, and 57�. The

data are processed by a B&K PULSE analyzer, where the fast

Fourier transform (FFT) of the signal is calculated with a fre-

quency resolution of 1 Hz and a bandwidth of 6400 Hz. A

Hanning window is used and at least 200 averages are

taken with 75% overlap. The sound field reconstruction is car-

ried out using a point source expansion as in Eq. (1). As in

Sec. III, the reconstruction points are distributed on a square

grid of dimensions 10� 10 cm2 with 21� 21 points on the

specimen.

The determination of the parameter e in Eq. (4) is cru-

cial to estimate q in Eq. (2), as it serves as a stopping crite-

rion in the optimization algorithm. If e is greater than the

actual noise floor in the measurement, there is a risk of dis-

carding the reflected wave as noise. If it is lower than the

actual noise floor, then the solution is contaminated by noise

and may present additional components. However, in the

experimental setup, other sources of error add up to the pres-

ence of background noise, such as positioning errors or mis-

match between the transducers. As a result, the single

transducer SNR may not correspond to the true noisefloor as

in Eq. (10). In addition, the measured SNR is mostly around

45 dB but with important frequency variations, which indi-

cates that e is also frequency dependent. In this study, a

choice of e corresponding to a SNR of 28 dB—mostly above

the actual noise floor—yields a spatially sparse wave config-

uration, with visible incident and reflected directions only.

The optimal choice of e has been addressed in the litera-

ture23,37 and is out of the scope of this paper.

Examples of equivalent source coefficients at 500 Hz

and 1000 Hz are shown in Fig. 9. At 500 Hz, for the three

source positions, the non-zero components of ~q are found

close to the source and image source locations. At 60�, the

representation of the reflected field does not match with the

image source, which may indicate that reflection approach-

ing grazing incidence is no longer specular. At 1000 Hz,

deviations appear at 30� and 60�. Especially at 60�, the

reflected field is not detected, probably due to a too high

absorption. However, it is difficult to determine if the

observed deviations are due to actual physical phenomena or

to a faulty source strength estimation.

The measured surface impedance and absorption coeffi-

cient are presented in Fig. 10. A simulation with an infinite

sample is also plotted, where the sample’s surface imped-

ance is derived from Miki’s model. The estimates from the

simulation are the average of 10 runs with different noise

realizations. We use the surface impedance and the absorp-

tion coefficient derived from Miki’s model for reference. At

0�, we also include the absorption coefficient measured in an

FIG. 8. (Color online) Measurement setup in DTU’s large anechoic chamber.

The spherical array and the omnidirectional source are hung above the rectan-

gular sample. The three studied positions are shown in the drawing (b).
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impedance tube as additional reference. First, in Fig. 10(b) at

0�, the impedance tube measurement and Miki’s model dif-

fer. Above 300 Hz, the microphone array measurement is

actually closer to the impedance tube result than to Miki’s

model. This indicates that Miki’s model is not an ideal refer-

ence. It is an empirical model, which relies on assumptions

including the isotropy of the material. It also depends on the

quality of the flow resistivity measurement. In both Figs.

10(a) and 10(b) at 0�, the simulation follows Miki’s model,

except at low frequencies, due to the reconstruction errors

discussed in Sec. III B. The measured surface impedance and

absorption coefficient follow globally the same trend as the

simulation. In addition, we observe oscillations below

300 Hz in the experimental curves, due to diffraction from

the edges of the sample. The obtained absorption curves are

similar to other studies made on finite samples, which also

showed oscillations at low frequencies.38 At 30�, Figs. 10(a)

and 10(b) show again a good agreement between the simula-

tion and Miki’s model, with errors appearing below 250 Hz.

As in the normal incidence case, the measurement results

generally follow the simulation and present oscillations

below 250 Hz. The 60� case illustrates the limits of the

method. As discussed in Sec. III B, more important recon-

struction errors limit the accuracy of the estimated imped-

ance. In Fig. 10(a), the simulated result at 60� is much less

accurate than for smaller angles of incidence, especially

below 250 and above 3000 Hz. The measured surface imped-

ance shows a larger deviation and even more pronounced

oscillations. These oscillations are attributed to edge diffrac-

tion at low frequencies. Additionally, on the whole fre-

quency range, the normal component of the particle velocity

is smaller towards grazing incidence, and therefore more

sensitive to noise.

In summary, a good agreement is found between the

measured impedance and the available references for the

angles 0� and 30� and for frequencies above 300 Hz. At

lower frequencies and larger angles of incidence, edge dif-

fraction effects, which were not accounted for, dominate and

disrupt the results.

V. DISCUSSION

The numerical and experimental results prove the validity

of the presented method for angles below 60� and between

200 and 4000 Hz. It is possible to estimate an angle-

dependent surface impedance, which cannot be obtained with

neither of the two standardized methods. Moreover, the differ-

ent sound field components can be easily determined, in terms

of their amplitudes and directions of arrival, as shown in Figs.

3 and 9. This makes it possible to detect, in principle, other

sound field components such as reflections, diffraction from

edges and extraneous sources.

FIG. 9. (Color online) Magnitude of the

estimated equivalent source coefficients

at 500 Hz and 1000 Hz from experimen-

tal measurements, in dB relative to the

maximum. The crosses indicate the

positions of the source and the image

source. (a) 500 Hz, 0�; (b) 1000 Hz, 0�;
(c) 500 Hz, 30�; (d) 1000 Hz, 30�; (e)

500 Hz, 60�; (f) 1000 Hz, 60�.
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Another particularity of the method is that the imped-

ance is inferred directly from the reconstructed sound field

on the material’s surface, whereas methods such as in Refs.

8–11 rely on the estimation of the reflection coefficient.

Finally, it should be noted that not much prior information

on the setup is used in the processing, apart from assuming

spatial sparsity (i.e., few waves). The method could be

improved by including such information; for instance the

knowledge of the source positions,16,39 or ensuring that the

incident power is larger or equal to the reflected one. The

method can be used in situ, where the measurement takes

place in an ordinary room. It should be noted that in this

case, the sound field is fundamentally different, due to the

presence of secondary reflections, and especially due to the

modal behavior of the sound field at low frequencies.

Limitations in terms of frequency and incidence angle

were identified. At high frequencies, the backpropagation

distance limits the accuracy of the result. Reducing this dis-

tance, for instance using transducers close to the surface of

the sample, would be beneficial. The largest errors occur

when the trace wavelength in the normal direction is much

larger than the array, namely at low frequencies and at graz-

ing incidence, where the amplitude of the normal particle

velocity is smaller. Indeed, the impedance estimation is par-

ticularly affected by errors in the normal particle velocity

estimation. It can be noted that a more robust reconstruction

of particle velocity is possible using velocity sensors.40

In addition, a better knowledge of the sound field could

improve the method. In particular, the finiteness of the sam-

ple has a considerable impact on the experimental results at

low frequencies, as shown in Fig. 10. If one wants to

characterize the material independently of its size and shape,

the influence of edge diffraction should be identified and

compensated for. For instance, it is possible to formulate the

effect of finiteness as a radiation impedance29 and include it

in the absorption calculation.41 This approach does not rely

on the estimation of the normal particle velocity, which

might be beneficial. Nevertheless, it relies on the quality of

the model used to characterize edge diffraction, which also

makes it more case dependent. Furthermore, the sphericity

of the wave front should be included in the calculation of ZS

and a.

Finally, the actual impedance and absorption coefficient

values are only partially known, which complicates the vali-

dation of the experimental results. At normal incidence, the

impedance tube method can be used as a reference, but at

other incidence angles Miki’s model, which is empirical,

was used due to the lack of experimental reference data.

Miki’s model assumes an isotropic material, but it is not the

case of the tested sample, which is fibrous.

VI. CONCLUSION

This paper shows how microphone array measurements

can be used to estimate a sample’s surface impedance by

sound field reconstruction. In particular, the use of S-ESM18

and CS lead to an accurate sound field reconstruction,20,23

which enhances the quality of the impedance estimation,

especially at mid and high frequencies.

The simulations presented in this study show the valid-

ity of the method between 200 and 4000 Hz (the operating

frequency range of the array). Discrepancies appearing at

60� incidence also illustrate the difficulty to estimate the

FIG. 10. (Color online) Estimated surface impedance and absorption coefficient from experimental measurements (—) and from simulations (� � �) at 0�, 30�,
and 60� incidence. Comparison with Miki’s model (- - -) and an impedance tube measurement (� -). (a) Surface impedance. The real part is positive and the

imaginary part negative. (b) Absorption coefficient.
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surface impedance approaching grazing incidence, due to

the trace wavelength being much larger than the array and

the normal component of the particle velocity being smaller.

Experimental results in laboratory conditions show a

good agreement with reference data above 300 Hz and for

angles below 60�. Challenges still to be addressed are the

finiteness of the studied samples, the estimation close to

grazing incidence, and the characterization of the measure-

ment noise.
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APPENDIX: CALCULATION OF THE SOUND FIELD
ORIGINATING FROM A POINT SOURCE

In the simulation, Sec. III B, a model for the reflection

of spherical waves by an infinite plane is needed. A spherical

reflection factor formulation42 was initially tested, but the

resulting pressure proved to be inaccurate at low frequencies

and larger angles of incidence. Instead, an expression pro-

posed by Wenzel33 is used,

p ¼ jxqQ

4pR1

e�jkR1 þ jxqQ

4pR2

e�jkR2 þ pR: (A1)

The two first terms correspond to an equal contribution from

a point source and an image source. The term pR is a correc-

tion term, which is calculated as

pR ¼
qck2�

2p

ð1
0

je�mh

m jk� � mð Þ J0 jrð Þdj; (A2)

with

m ¼ ðj2 � k2Þ1=2; ReðmÞ � 0; (A3)

h ¼ zþ z0; (A4)

r ¼ ðx� x0Þ2 þ ðy� y0Þ2
h i1=2

; (A5)

(x, y, z) being the coordinates of the receiver point and (x0, y0,

z0) the ones of the source. Thomasson proposed an efficient

way of computing this integral using a steepest-descent con-

tour.34 The formulation proposed by Thomasson is a series of

equations [Eqs. (32) to (41) in Ref. 34], one of them including

a semi-infinite integral from 0 to infinity. This term is evalu-

ated numerically using the MATLAB function integral, which is

a global adaptive quadrature algorithm, with an absolute toler-

ance of 10–10 and a relative tolerance of 10–6.

The scattering by the spherical array is expressed by

expanding the incident field in spherical harmonics, but the

spherical harmonic expansion of Eq. (A1) is not trivial.

Therefore, a plane wave approximation of the incident field

is used. This field is assumed to be composed of 1000 uni-

formly distributed plane waves of unknown amplitudes and

is computed at 1000 points on the sphere using Eq. (A1) and

Eq. (A2). This leads to the system

pinc ¼ HPWAPW; (A6)

where pinc is the vector of the calculated incident pressures

on the sphere, APW the unknown plane wave amplitudes and

HPW a transfer matrix of size 1000� 1000. APW is estimated

by using the pseudo-inverse of HPW, due to the high condi-

tion number of the matrix. The high spatial density of the

calculated pressures on the sphere ensures that the sound

field is well represented on the spherical array.

Once the plane wave amplitudes APW are determined, the

scattered pressure at the microphone positions on the sphere

can be derived as a superposition of scattered plane waves,

pt ¼ H2APW: (A7)

This equation follows exactly the same idea as Eq. (2),

where H2 is a transfer matrix between the 1000 plane waves

and the K measurement points and includes the scattering by

the sphere.
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