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Abstract

Purpose—To investigate whether qualitative magnetic resonance (MR) features can distinguish 

leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and assess the feasibility of texture 

analysis (TA).

Methods—This retrospective study included 41 women (ALM=22, LMS=19) imaged with MRI 

prior to surgery. Two readers (R1, R2) evaluated each lesion for qualitative MR features. 

Associations between MR features and LMS were evaluated with Fisher's exact test. Accuracy 

measures were calculated for the four most significant features. TA was performed for 24 patients 

(ALM=14, LMS=10) with uniform imaging following lesion segmentation on axial T2-weighted 

images. Texture features were pre-selected using Wilcoxon signed-rank test with Bonferroni 

correction and analyzed with unsupervised clustering to separate LMS from ALM.

Results—Four qualitative MR features most strongly associated with LMS were nodular borders, 

haemorrhage, “T2 dark” area(s), and central unenhanced area(s) (p≤0.0001 each feature/reader). 

The highest sensitivity [1.00 (95%CI:0.82-1.00)/0.95 (95%CI: 0.74-1.00)] and specificity [0.95 

(95%CI:0.77-1.00)/1.00 (95%CI:0.85-1.00)] were achieved for R1/R2, respectively, when a lesion 

had ≥3 of these four features. Sixteen texture features differed significantly between LMS and 
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ALM (p-values: <0.001-0.036). Unsupervised clustering achieved accuracy of 0.75 (sensitivity: 

0.70; specificity: 0.79).

Conclusions—Combination of ≥3 qualitative MR features accurately distinguished LMS from 

ALM. TA was feasible.

Keywords

Magnetic Resonance Imaging; Uterine Leiomyosarcoma; Uterine Leiomyoma; Atypical Uterine 
Leiomyoma; Texture Analysis

Introduction

Uterine leiomyomas (LM) are very common, observed in nearly 40% of reproductive-age 

women [1; 2]. Whereas traditionally symptomatic LM were treated with hysterectomy or 

myomectomy, currently they may be managed with standard surgery or minimally-/non-

invasive methods such as uterine artery embolization, MRI-guided high-intensity focused 

ultrasound, or hormonal therapy [3]. While the latter techniques offer obvious benefits of 

faster recovery and organ-preservation, they do not provide histopathologic confirmation and 

could therefore allow leiomyosarcoma (LMS) to go unrecognized. LMS are rare, highly 

aggressive tumours that require prompt radical resection [4-6]. Unfortunately, distinguishing 

LMS from LM clinically is often impossible due to the similarity of the symptoms and 

laboratory data they produce [4-6].

MRI is the best imaging modality for assessing uterine masses before intervention [7]. Most 

LM are easily recognized as well-circumscribed, homogenous low-T2-signal-intensity (SI) 

masses with avid post-contrast enhancement [7]. However, the appearance of LM may be 

affected by degeneration, oedema, and/or unusual patterns of growth, making their 

differentiation from LMS difficult [8; 9]. Conflicting results from prior studies have led to 

uncertainty regarding the value of qualitative MRI features for differentiating LMS from 

unusual/atypical LM (ALM) [9-18]. These studies had small numbers of patients with LMS, 

included few ALM, and grouped various uterine sarcomas (leiomyosarcoma, endometrial 

stromal sarcoma, carcinosarcoma, etc.) into one category despite their often having distinct 

MR features and clinical outcomes.

Furthermore, we are unaware of any published studies regarding the value of quantitative 

MR texture features for the differentiation of LMS from ALM. Texture analysis (TA) 

extracts local variations in pixel intensities using well-established mathematical formulas 

and provides a set of quantifiable metrics that may supplement radiologists' qualitative 

image interpretations. Research suggests that TA may be of particular value for the 

differentiation of tumours with similar imaging characteristics on conventional imaging 

[19-23].

Thus, the aims of our study were to investigate whether qualitative magnetic resonance 

(MR) features can distinguish leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and 

assess the feasibility of texture analysis (TA).
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Materials and Methods

The Institutional Review Board approved this retrospective, HIPAA-compliant study and 

waived written informed consent.

Eligibility

We retrospectively searched our institutional database to identify all consecutive patients 

who 1) underwent myomectomy and/or hysterectomy, 2) had contrast-enhanced MRI within 

6 months of surgery, and had either 3) histopathologically-proven leiomyosarcoma, high-

grade spindle cell neoplasm, smooth muscle tumour of uncertain malignant potential 

(STUMP), highly cellular or cellular leiomyoma, mitotically active leiomyoma, “atypical” 

leiomyoma, leiomyoma with hydropic changes, myxoid leiomyoma (leiomyoma with 

myxoid stromal changes), epithelioid leiomyoma, or intravenous leiomyomatosis or 4) had 

≥1 of the following keywords in their MRI report: atypical/unusual uterine/myometrial 

mass, cellular leiomyoma/fibroid, or leiomyosarcoma. The above electronic search of our 

institutional database yielded 144 patients with surgically resected myometrial masses 

between 1/1/2007 and 12/31/2013. One-hundred and three patients were excluded due to 

lack of MRI examination prior to the surgery, MRI examination obtained without 

intravenous contrast administration or only partial coverage of the myometrial mass. The 

final study population consisted of 41 patients with histopathologically-confirmed diagnoses 

(ALM=22, LMS=19), none of whom had STUMP. As uniform acquisition parameters are 

required for machine learning methods, scans were excluded from TA if any of the following 

were present on the subjective assessment of axial T2-weighted imaging (T2WI): 1) fat 

saturation (ALM=2, LMS=2), 2) motion artefacts (ALM=2, LMS=5), 3) pixel size >1 

standard deviation from the mean (ALM=4, LMS=2). Thus, TA was performed on the scans 

of 24 patients (ALM=14, LMS=10).

Histopathology

Histopathologic diagnoses rendered by fellowship-trained gynaecologic oncologic 

pathologists at the time of the initial surgical specimen evaluation served as our reference 

standard. These diagnoses were based on the Stanford criteria, supplemented by the World 

Health Organization's Classification of Tumors of the Breast and Female Genital Organs 

[24; 25].

MR Imaging Protocol

MRIs were obtained at our institution (13/41, 32%) or elsewhere (28/41, 68%) and digitized 

into our picture archiving and communication system (Centricity PACS; GE Medical 

Systems, Milwaukee, WI). At our institution, MRIs were acquired on ≥1.5-Tesla systems 

(GE Medical Systems, Milwaukee, USA) using pelvic phased-array coils for signal 

reception. At a minimum, each study included axial and sagittal T2-weighted fast spin-echo 

images (repetition time msec/echo time msec, 3500–4500/85-120; bandwidth (BW), 16-32 

kHz; section thickness (ST), 4 mm; intersection gap, 1 mm; field of view (FOV), 20–24 cm; 

≥256 × 192 matrix), axial T1-weighted spin-echo images (typical parameters: 400-650/

minimum; BW, 32 kHz; ST, 5 mm; intersection gap, 1 mm; FOV, 32–36 cm), and fat-

suppressed three-dimensional spoiled gradient-recalled echo T1-weighted images (typical 
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parameters: flip angle, 12°; BW, 62.5-83.3 kHz; ST, 3 mm with no intersection gap; FOV, 

20-24 cm) obtained before and 1, 2, 3, and 4 minutes after intravenous administration of 

gadopentetate dimeglumine (Magnevist; Berlex Laboratories, Montville, NJ) at a dose of 0.1 

mmol/kg of body weight.

All 28 outside MR imaging examinations (performed at 24 different imaging centres) met or 

exceeded standards agreed to by the investigators. These standards required ≥1.5-Tesla 

systems, phased-array surface coils, acquisition of axial and sagittal T2-weighted images, 

and spin-echo or gradient-echo axial T1-weighted images obtained before and after 

intravenous contrast agent administration. With the exception of one MRI examination, all 

contrast-enhanced sequences were obtained with fat saturation. For all sequences, the 

parameters were the following: field of view, 20–34 cm; section thickness, 6 mm or less; and 

256 × 192 or greater matrix. We could not determine the type of the intravenous contrast 

agent administered or the timing protocol used at the outside institutions.

Qualitative MR Feature Analysis

One radiologist (D.F., not involved in MR feature interpretation) reviewed all MRI scans. 

For each of the patients with more than one myometrial mass (16/41, 39%), this radiologist 

correlated MRI and relevant histopathologic findings and marked one index lesion per 

patient for both qualitative and quantitative assessment. Two blinded radiologists (Y.L. and 

J.C.) with 7 and 6 years of experience in oncologic MR imaging independently interpreted 

all MRI scans.

Each reader evaluated the following qualitative MR features in each lesion: 1) borders 

(smooth or nodular), 2) haemorrhage, 3) SI relative to the outer myometrium on T2WI, 4) 

heterogeneity on T2WI, 5) presence/location of cystic alteration(s) on T2WI (SI equal to that 

of urine), 6) fluid-fluid level(s) on T2WI, 7) flow voids on T2WI (round and/or serpiginous 

low SI vessels that enhance after contrast administration), 8) SI relative to the myometrium 

on contrast-enhanced images, and 9) presence/location of unenhanced areas (central versus 

none or non-central) on contrast-enhanced images (Figure 1). As cystic or myxoid 

degeneration cannot be distinguished from necrosis on T2WI and contrast-enhanced images, 

we recorded the presence and location of well-demarcated unenhanced areas on contrast-

enhanced images [12]. Majority of the above qualitative MR features were selected for the 

assessment because they were evaluated in the prior published reports [9-12; 15; 16]. Each 

reader also recorded the presence of pelvic fluid, peritoneal implants, and pelvic 

lymphadenopathy (i.e., short axis ≥0.8 cm).

Quantitative MR Texture Feature Analysis

Image pre-processing—Using Insight ToolKit (ITK) software, the same two radiologists 

in consensus manually contoured all lesions (one lesion per patient in a total of 24 patients 

(ALM=14, LMS=10). [26]. On all axial T2WI with visible tumour, they traced the outer 

edge of each mass to segment the entire lesion and generate regions of interest (ROIs) 

(duration of measurement: ≤5 minutes per mass). The ROIs were drawn in the median on 17 

slices for ALM (interquartile range: 8-21) and 18 slices for LMS (interquartile range: 13-27) 

to cover the lesion. Any variations in the scanners and acquisition parameters led to the 
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images having different intensity (gray-level) ranges. To ensure a comparable range of 

intensities (gray-levels) across the patients, all images were standardized through histogram 

matching using an in-house developed C++ wrapper around the 

HistogramMatchingImageFilter available in ITK [27].

Texture feature extraction—We employed in-house software implemented in MATLAB 

(MathWorks, Natick, MA) to extract a total of 21 texture features from each ROI. First, 

histogram-derived gray-level mean, standard deviation (SD), kurtosis, and skewness were 

computed from each T2-weighted intensity image, resulting in 4 texture features. Second, 

Gabor filters at two orientations (0°,90°) and a single bandwidth (g=1.4) were used to 

generate 2 Gabor edge images [28] (Supplementary Materials). Third, gray-level co-

occurrence matrices (GLCM) were constructed from 1 T2-weighted intensity image and 2 
Gabor edge images. Finally, Haralick texture features comprised of energy, contrast, 

homogeneity, correlation, and entropy were computed from GLCM, yielding an additional 5 
intensity image-based (Figures 2 and 3) and 12 Gabor edge image-based texture features 

(Supplementary Materials) [29; 30].

Texture feature selection and self-tuning spectral clustering—First, differences in 

texture features between LMS and ALM were assessed using the Wilcoxon signed-rank test. 

P-values were adjusted using Bonferroni correction to correct for the 21 comparisons.

Sixteen texture features that differed significantly between the two groups were selected for 

further analysis with self-tuning spectral clustering, a form of unsupervised clustering [31]. 

Making no assumptions regarding the form of data clusters, self-tuning spectral clustering 

separates the data into distinct groups using eigen decomposition of the affinity matrix. The 

self-tuning approach automatically identifies the ideal number of data clusters by analyzing 

the eigen vectors of the affinity matrix (Supplementary Materials).

Following the clustering, cluster labels from all ROIs belonging to the same lesion were 

pooled together and each lesion was assigned a cluster label using a majority-voting 

approach. For example, if a lesion had 20 ROIs with cluster label 1 and 5 ROIs with cluster 

label 2, the final lesion label was cluster 1.

We repeated the above process of unsupervised clustering with only intensity image-based 

texture features (6/16) and only Gabor edge image-based texture features (10/16) to compare 

the performance of various sets of texture features (intensity image-based, Gabor edge 

image-based or both).

Statistical Analysis

Continuous variables were summarized with means and ranges; categorical variables were 

described with frequencies and percentages. Relationships between clinical characteristics, 

pathologic findings, and LMS were assessed with the Wilcoxon rank-sum test for continuous 

variables and Fisher's exact test for categorical variables. The associations between 

qualitative MR features and LMS were evaluated with the Fisher's exact test. Four MRI 

features—nodular borders, haemorrhage, “T2 dark” areas, and central unenhanced areas—

had the strongest statistical associations with LMS for both readers (i.e. lowest p-values) and 
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were therefore included in further analysis. Multivariate logistic regression analysis was not 

possible since reliable parameter estimates could not be calculated because of the relatively 

small number of patients with LMS.

For each lesion, a qualitative MR feature score was determined by counting how many of the 

4 most significant features (mentioned above) were present in the lesion. For each reader, 

diagnostic accuracy measures with exact 95% CI were calculated using the presence of ≥1, 

≥2, ≥3, and 4 features in a lesion as different cut-offs for diagnosing LMS.

Inter-reader agreement was assessed with the Cohen's kappa (k) and interpreted as follows: 

1) 0-0.20, slight agreement; 2) 0.21-0.40, fair agreement; 3) 0.41-0.60, moderate agreement; 

4) 0.61-0.80, substantial agreement; and 5) 0.81-1.00 almost perfect agreement [32]. P 

values less than 0.05 were considered statistically significant. All statistical analyses were 

performed using SAS 9.4 (SAS Institute, Cary, NC).

Results

Patients

Patient and lesion characteristics are summarized in Table 1. Patients with ALM were 

younger than those with LMS (p=0.0068). Median tumour diameters at histopathology were 

similar (p=0.12) between patients with ALM (median: 9.25 cm, range: 2.0-20.4 cm) and 

LMS (median: 11.4 cm, range: 7.0-20.0 cm). Most common symptoms leading to MRI 

examinations were lower abdominal pain/pressure (17/41, 41.5%), dysmenorrhea/ 

menorrhagia (11/41, 27%), or both of the above (4/41, 10%).

Qualitative MR Imaging Features

As shown in Table 2, for both readers, the following seven qualitative MRI features were 

observed significantly more frequently in LMS than in ALM: 1) nodular borders (p≤0.0001), 

2) intra-lesional haemorrhage (p<0.0001), 3) “T2 dark” area(s) (p<0.0001), 4) flow voids 

(p≤0.0041), 5) unenhanced area(s) (p≤0.0041), 6) heterogeneity on contrast-enhanced 

images (p=0.0041), and 7) central unenhanced area(s) (p<0.0001). For both readers, four of 

the above 7 features (presence of nodular borders, intra-lesional haemorrhage, “T2 dark” 

area(s), and central unenhanced area(s) demonstrated the strongest statistical association 

with LMS (p≤0.0001 each feature and reader).

For both readers, pelvic fluid, lesional SI and heterogeneity on T2WI, intra-lesional cystic 

alterations and their location, intra-lesional fluid-fluid levels, and lesional SI on contrast-

enhanced images did not differ significantly between LMS and ALM (p-value range: 

0.05-0.54). No patients had peritoneal implants or lymphadenopathy.

Diagnostic accuracy measures for the four most significant MR features (lesion borders, 

haemorrhage, “T2 dark” area(s), and location of unenhanced area(s)) are summarized in 

Table 3. When the presence of ≥3 of the 4 most significant MR features was used to 

diagnose LMS, the highest combined sensitivities (R1/R2: 1.00[95%CI:0.82-1.00]/

0.95[95%CI:0.74-1.00]) and specificities (R1/R2:0.95 [95%CI:0.77-1.00]/1.00[95%CI:

0.85-1.00]) were observed (Table 4).
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Inter-observer Agreement

Inter-reader agreement regarding qualitative MR features was substantial to almost perfect 

(Table 5). In particular, agreement levels for lesion borders, haemorrhage, “T2 dark” area(s), 

and location of unenhanced area(s) were almost perfect (Table 5).

Quantitative Texture Features

Comparison of texture feature values—Of the 21 extracted texture features, 16 (6 

intensity image-based and 10 Gabor edge image-based) features differed significantly 

between LMS and ALM (p-values: <0.001-0.036) (Table 6).

In comparison to ALM, LMS were associated with higher intensity image-based and Gabor 

edge image-based contrast, lower energy, and lower homogeneity (p<0.001 for each feature); 

furthermore, LMS had higher SD and lower kurtosis (p<0.001 for both features), indicative 

of less peaked and more variable distribution of intensities. Taken together, these findings all 

suggested greater textural heterogeneity of LMS.

Interestingly, LMS demonstrated lower Gabor edge image-based entropy compared to ALM 

(p-values: 0.029-0.036). Intensity-based entropy did not differ significantly between ALM 

and LMS (p=0.092).

Self-tuning spectral clustering—Self-tuning spectral clustering selected the ideal 

number of clusters by identifying the cluster groupings with the least cost. The cost 

measures for various data groupings were 1.04, 1.09, 1.03, and 1.07 for 2, 3, 4 and 5 

clusters, respectively. Therefore, four clusters (1 ALM and 3 LMS clusters) were selected 

(Figure 4). Self-tuning spectral clustering grouped the lesions with accuracy of 0.75, 

sensitivity of 0.70 (95%CI:0.35-0.93, 7/10 LMS), and specificity of 0.79 (95%CI:0.39-0.95, 

11/14 ALM).

When only intensity image-based texture features were analyzed, self-tuning spectral 

clustering identified 4 clusters (2 ALM and 2 LMS) and achieved accuracy of 0.71, 

sensitivity of 0.7 (95%CI:0.35-0.93, 7/10 LMS) and specificity of 0.71 (95%CI:0.42-0.92, 

10/14 ALM). When only Gabor edge image-based texture features were included, self-

tuning spectral clustering selected 4 clusters (2 ALM and 2 LMS) and categorized the 

lesions with accuracy of 0.58, sensitivity of 0.60 (95%CI:0.26-0.88, 6/10 LMS), and 

specificity of 0.57 (95%CI:0.29-0.82, 8/14 ALM).

Discussion

Accurate diagnosis of LMS is a clinical challenge. LM are much more common than LMS, 

and patients with these entities tend to present at similar ages and with similar clinical 

symptoms [33]. While rapid mass enlargement, particularly after menopause, may signify 

malignancy, it may also be observed with cellular or degenerating LM [33]. Furthermore, 

establishing the rate of tumour growth may not be possible when a large myometrial mass is 

discovered at the initial encounter. Serum markers such as LDH and LDH isozyme type 3 

can be elevated not only with LMS but also with cellular and degenerated LM [11]. 

Similarly, CA-125 levels may overlap between LM and early-stage LMS [33; 34].
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Our study first examined the ability of qualitative MRI features to differentiate LMS from 

atypical LM (ALM). The four qualitative MR features that had the strongest statistical 

associations with LMS—nodular borders, haemorrhage, “T2 dark” area(s), and central 

unenhanced area(s)—were reproducible between the two readers and accurately 

distinguished LMS from ALM. When the presence of ≥3 of these 4 features in a lesion was 

used as the criterion to diagnose LMS, the highest combined sensitivities (range: 95-100%) 

and specificities (range: 95-100%) were achieved. If externally validated, our results may 

help gynaecologic surgeons to better plan their surgical approaches and counsel women 

presenting for management of presumed leiomyomas.

Similarly to Sahdev et al., Schwartz et al. and Tanaka et al., we found that LMS appeared as 

large masses with ill-defined/nodular (rather than smooth) borders, heterogeneous iso-

hyperintensity on T2WI, intralesional haemorrhage, and unenhanced areas on contrast-

enhanced images [9; 10; 12]. Assuming that a combination of T1 and T2 hyperintensity and 

unenhanced areas signified malignancy, Tanaka et al. achieved moderate sensitivity (73%) 

and high specificity (100%) in differentiating benign and malignant smooth muscle tumours 

[12]. We attained higher sensitivity (95-100%) and similarly high specificity (95-100%) for 

distinguishing LMS from ALM by using the presence of ≥ 3 features to diagnose LMS.

Our findings contrast with those of Cornfield et al., who studied 17 ALM and 9 malignant 

mesenchymal tumours (4 LMS, 2 STUMP, 2 endometrial stromal sarcoma [ESS], 1 mixed 

ESS and smooth muscle tumour) and were unable to distinguish between these two groups 

of lesions using qualitative MR features [16]. Although they found the presence of ill-

defined borders and reader “gestalt” (i.e., overall impression) to have the highest sensitivity 

and specificity, sensitivity was moderate at best (44-56%). However, their study neither 

evaluated the location of unenhanced areas nor examined MR features other than lesion 

hyperintensity on T2WI.

Our study found high inter-observer agreement; however, it was based on the comparison of 

two readers from the same institution with similar levels of sub-specialty training and a 

common exposure to a large volume of gynaecologic oncologic examinations at a tertiary 

care cancer centre. It is possible that different results would have been obtained with other 

readers.

The second part of our study evaluated texture analysis (TA), where the only user activity 

was manual lesion segmentation. In comparison to ALM, LMS were associated with higher 

contrast and SD but lower energy, homogeneity, and kurtosis. These results indicate that 

LMS were more texturally heterogeneous than were ALM. Although higher entropy is 

typically associated with more heterogeneous tumours, we found Gabor edge imaged-based 

entropy of LMS to be lower than that of ALM. Furthermore, intensity image-based entropy 

did not differ significantly between LMS and ALM. The small differences in entropy we 

found may be explained by the fact that we focused on ALM rather than typically 

homogenous, T2-hypointense classic LM.

We computed both intensity image-based and Gabor edge image-based texture features 

because we hypothesized that Gabor filters, with their superior edge detection properties, 
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might be more sensitive to the inter-group differences in lesion borders, frequency of 

intralesional haemorrhage, and presence/location of necrosis. Using unsupervised clustering, 

we found that a combination of intensity-based and Gabor edge image-based texture features 

yielded the highest accuracy of 0.75, while Gabor edge image-based texture features alone 

had the lowest accuracy 0.58. Thus, while edge-based texture features alone were 

insufficient to accurately capture the textural differences between LMS and ALM, the 

addition of edge-based to intensity-based texture features improved lesion categorization.

Our study had several limitations. First, it was retrospective, and we only included patients 

with surgically resected tumours and preoperative MR imaging, introducing a selection bias. 

This was necessary to ensure accurate image-pathology correlation. Second, only LMS and 

ALM were evaluated that makes our conclusions less applicable to a broader patient 

population with various myometrial masses. This was intentional and justifiable given 

characteristic imaging features of typical LM and the limited data on the ability of MRI to 

distinguish LMS from ALM. Third, our cohort lacked STUMP. Forth, we were unable to 

retrospectively correlate qualitative MRI findings to histopathologic findings on a per-

feature-basis secondary to the lack of histopathologic whole-tumour step-section tumour 

maps. Fifth, we could not perform multivariate logistic regression analysis for the selection 

of qualitative MR features because of the small sample size. Sixth, we were unable to assess 

the role of diffusion-weighted imaging (DWI) because few MRIs (13/41, 32%) included it. 

Furthermore, available studies with DWI could not be compared meaningfully due to 

differences in acquisition parameters and scanner manufactures. Seventh, the acquisition 

parameters were relatively heterogeneous between the scans since many studies were 

performed elsewhere. As uniform acquisition parameters are required for radiomics and 

machine learning methods, a number of patients were excluded from texture analysis. Only 

T2WI were used for TA because of their robustness and least variation in acquisition 

parameters. We anticipate that the performance of TA may improve with the inclusion of 

textural information from additional sequences such as DWI and contrast-enhanced images. 

Lastly, a larger sample size and a distinct validation set are required to determine the 

efficacy of supervised machine learning for differentiating LMS from ALM. While TA has 

the potential to assist in the differentiation of tumours in the daily clinical practice, this 

would require the development of user-friendly tools for robust automated lesion 

segmentation and efficient extraction of texture features.

In summary, we identified four qualitative MRI features that had the strongest statistical 

association with LMS and found that the presence of ≥3 of them could accurately 

distinguish LMS from ALM; in addition, we found texture analysis to be a feasible semi-

automated approach for lesion categorization. Future studies are needed to externally 

validate our results and to further evaluate the ability of machine learning techniques to 

correctly classify LMS and ALM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations and Acronyms

ALM atypical leiomyoma

BW bandwidth

CI Confidence interval

DWI Diffusion-weighted imaging

FOV field of view
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GLCM gray-level co-occurrence matrices

HIPAA Health Insurance Portability and Accountability Act

LM uterine leiomyomas

LMS leiomyosarcoma

MR magnetic resonance

MRI Magnetic resonance imaging

NPV negative predictive value

PPV positive predictive value

ROIs regions of interest

SI signal-intensity

ST section thickness

T2WI T2-weighted image

TA texture analysis
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Key Points

• Four qualitative MR features demonstrated the strongest statistical association 

with LMS.

• Combination of ≥3 these features could accurately differentiate LMS from 

ALM.

• Texture analysis was a feasible semi-automated approach for lesion 

categorization.
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Figure 1. 
Illustrations of the four qualitative MR features that demonstrated the strongest statistical 

associations with LMS at histopathology. A. Sagittal T2-weighted image shows a large 

uterine mass with nodular superior and posterior borders (white arrows). B. Sagittal T2-

weighted image demonstrates “T2 dark” area in the myometrial mass (white arrow). C. 

Noncontrast T1-weighted fat-saturated image illustrates the presence of intra-lesional 

haemorrhage (white arrow). D. Sagittal contrast-enhanced T1-weighted fat saturated image 

shows the presence of central unenhanced areas (black arrow).
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Figure 2. 
A. Axial T2-weighted image illustrates ALM. B - F. Illustration of the intensity-based 

texture features (energy, contrast, homogeneity, correlation, and entropy) overlaid on the 

axial T2-weighted image.
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Figure 3. 
A. Axial T2-weighted image illustrates LMS. B - F. Illustration of the intensity-based 

texture features (energy, contrast, homogeneity, correlation, and entropy) overlaid on the 

axial T2-weighted image.
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Figure 4. 
A plot demonstrating the results of self-tuning spectral clustering. To facilitate the ease of 

illustration, only three of 16 texture features with statistically significant difference between 

LMS and ALM were used to generate this figure. Self-tuning spectral clustering identified a 

total of four distinct data clusters (C1 though C4) that comprised of one ALM (star) 

grouping and 3 LMS (blue, orange, and purple circles) groupings.
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Table 1
Patient and lesion characteristics

ALM (N=22)
Median (Range or %)

LMS (N=19)
Median (Range or %)

p-value

Median patient age (years) 40.1 (16.4-71.4) 51.3 (34.6-91.6) 0.0068

Median histopathologic tumour size (cm) 9.25 (2.0-20.4) 11.4 (7.0-20.0) 0.12

Histology 22/41 (53.7) 19/41 (46.3) NA

Histopathologic diagnosis of ALM: NA NA

 • Cellular leiomyomas 4/22 (18.2)

 • Leiomyoma with unusual features 1/22 (4.5)

 • “Atypical” leiomyomas 2/22 (9.1)

 • Intravenous leiomyomatosis 1/22 (4.5)

 • Leiomyoma with hydropic changes 1/22 (4.5)

 • Leiomyomas with edematous changes or various forms of degenerationa 7/22 (32)

 • Leiomyoma with histological features suggestive of Hereditary 

Leiomyomatosis and Renal Cell carcinoma Syndromea
1/22 (4.5)

 • Leiomyomasa 5/22 (22.7)

Surgery type: 0.0014

 Myomectomy 10 (45.5) 0

 Hysterectomy 12 (54.5) 19 (100)

Days between MRI and surgery 31.5 (6.0-168.0) 20.0 (1.0-131.0) 0.0134

MR scanner strength: 0.42

 1.5 Tesla 17 (77.3) 17 (89.5)

 3.0 Tesla 5 (22.7) 2 (10.5)

Note: ALM atypical leiomyoma, LMS leiomyosarcoma, MRI magnetic resonance imaging, MR magnetic resonance

a
Included because interpreted as unusual/atypical myometrial mass in the official preoperative MRI report
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Table 5
Inter-reader agreement with regard to the qualitative MR features

Qualitative MR features N Kappa 95%CI Interpretation

Borders 41 0.85 0.69-1.00 Almost perfect

Haemorrhage 41 0.81 0.62-1.00 Almost perfect

Signal intensity on T2WI 41 0.80 0.64-0.96 Substantial

Heterogeneity on T2WI 41 0.81 0.55-1.00 Almost perfect

Cystic alteration(s) on T2WI 41 0.82 0.63-1.00 Almost perfect

Location of cystic alteration(s) 28 0.84 0.67-1.00 Almost perfect

Fluid-fluid level(s) 41 1.00 1.00-1.00 Almost perfect

“T2 dark” area(s) on T2WI 41 0.85 0.69-1.00 Almost perfect

Flow voids on T2WI 41 0.80 0.58-1.00 Substantial

Signal intensity on contrasted images 41 0.72 0.52-0.93 Substantial

Heterogeneity on contrasted images 41 0.84 0.64-1.00 Almost perfect

Unenhanced area(s) 41 0.93 0.78-1.00 Almost perfect

Location of unenhanced area(s) 41 0.90 0.76-1.00 Almost perfect

Note: MR magnetic resonance, CI confidence interval, T2WI T2-weighted image
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Table 6
Comparison of texture feature values between LMS and ALM using a Wilcoxon signed-
rank test with Bonferroni correction for multiple variables

Texture features LMS Median (range) ALM Median (range) p-value

Gabor(0,1.4)Energy 0.04 (0.01-0.14) 0.08 (0.01-0.38) <0.001

Gabor(0,1.4)Contrast 1.67 (0.37-6.06) 0.76 (0.17-7.23) <0.001

Gabor(0,1.4)Homogeneity 0.64 (0.48-0.82) 0.76 (0.45-0.88) <0.001

Gabor(0,1.4)Correlation 0.68 (0.19-1) 0.57 (0.1-1) 0.011

Gabor(0,1.4)Entropy 0.89 (0.41-0.96) 0.91 (0-0.98) 0.036

Gabor(0,1.4) Intensity 131.95 (92.32-163.91) 129.85 (101.61-162.34) 1.000

Gabor(90,1.4)Energy 0.09 (0.02-0.36) 0.13 (0.01-0.56) <0.001

Gabor(90,1.4)Contrast 1.59 (0.3-5.18) 0.87 (0.03-3.39) <0.001

Gabor(90,1.4)Homogeneity 0.68 (0.48-0.83) 0.74 (0.03-0.88) <0.001

Gabor(90,1.4)Correlation 0.62 (0.16-0.99) 0.51 (0-0.98) 0.335

Gabor(90,1.4)Entropy 0.63 (0.42-0.78) 0.65 (0-0.82) 0.029

Gabor(90,1.4) Intensity 131.71 (100.36-157.39) 136.17 (112.79-163.18) <0.001

Energy 0.08 (0.02-0.37) 0.15 (0.01-0.49) <0.001

Contrast 1.62 (0.29-4.62) 0.7 (0.01-4.7) <0.001

Homogeneity 0.67 (0.46-0.84) 0.77 (0.02-0.89) <0.001

Correlation 0.6 (0.12-0.96) 0.47 (0-0.99) 0.002

Entropy 0.65 (0.42-0.79) 0.66 (0-0.81) 0.092

Intensity 79.86 (34.27-119.88) 83.48 (20.27-129.38) 1.000

SD 16.05 (5.62-46.84) 10.21 (4.58-34.24) <0.001

Kurtosis 3.23 (1.64-16.8) 4.01 (1.71-13.9) <0.001

Skewness -0.15 (-2.53-2.05) -0.32 (-2.11-2.86) 1.000

Note: LMS leiomyosarcoma, ALM atypical leiomyoma
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