Skip to main content
. 2017 Jun 5;7:2792. doi: 10.1038/s41598-017-03026-y

Table 2.

GLMM model results showing the relationship between project effectiveness and a variety of biophysical and socio-economic variables.

Coefficients p
Fixed effects
(Intercept) 1.03 0.102
temperature −0.739 0.625
precipitation −3.427 0.006**
farmland quality index 1.996 0.269
population density −0.886 0.212
GDP 0.625 0.501
road density −2.262 0.003**
distance to city −1.562 0.070*
elevation −1.357 0.050**
slope −1.911 0.059*
shape 1.132 0.343
area 2.034 0.037**
factor (land exploitation) −0.180 0.483
factor (and land reclamation) −0.418 0.520
Random effects Variance Std.Dev.
Province (Intercept) 0.07 0.25

The dependent variable is binary (code 1 = projects showing significant increasing NDVI trends, code 0 = all the remaining projects).