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An individual-based model for collective cancer cell migration
explains speed dynamics and phenotype variability in response
to growth factors
Damian Stichel1,2, Alistair M. Middleton1, Benedikt F. Müller3, Sofia Depner2,4, Ursula Klingmüller2,4, Kai Breuhahn3 and
Franziska Matthäus1,5,6

Collective cell migration is a common phenotype in epithelial cancers, which is associated with tumor cell metastasis and poor
patient survival. However, the interplay between physiologically relevant pro-migratory stimuli and the underlying mechanical
cell–cell interactions are poorly understood. We investigated the migratory behavior of different collectively migrating non-small
cell lung cancer cell lines in response to motogenic growth factors (e.g. epidermal growth factor) or clinically relevant small
compound inhibitors. Depending on the treatment, we observed distinct behaviors in a classical lateral migration assay involving
traveling fronts, finger-shapes or the development of cellular bridges. Particle image velocimetry analysis revealed characteristic
speed dynamics (evolution of the average speed of all cells in a frame) in all experiments exhibiting initial acceleration and
subsequent deceleration of the cell populations. To better understand the mechanical properties of individual cells leading to the
observed speed dynamics and the phenotypic differences we developed a mathematical model based on a Langevin approach.
This model describes intercellular forces, random motility, and stimulation of active migration by mechanical interaction between
cells. Simulations show that the model is able to reproduce the characteristic spatio-temporal speed distributions as well as most
migratory phenotypes of the studied cell lines. A specific strength of the proposed model is that it identifies a small set of
mechanical features necessary to explain all phenotypic and dynamical features of the migratory response of non-small cell lung
cancer cells to chemical stimulation/inhibition. Furthermore, all processes included in the model can be associated with potential
molecular components, and are therefore amenable to experimental validation. Thus, the presented mathematical model may help
to predict which mechanical aspects involved in non-small cell lung cancer cell migration are affected by the respective therapeutic
treatment.
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INTRODUCTION
Cell migration is essential for morphogenesis or tissue regenera-
tion under physiological conditions.1 However, under patho-
physiological conditions such as tumorigenesis, cell motility may
cause dissemination of malignantly transformed cells, which
correlates with poor survival and early recurrence in many solid
epithelial carcinomas. The relevance of tumor migration and cell
dissemination for patient outcome is indicated by the clinically
important TNM staging system. This system describes the stage of
a tumor based on its size (T0–T4) and the presence of regional
lymph node metastasis (N0–N3) and distant metastasis (M0/1).
Especially the N and M staging are directly linked to the migratory
ability of tumor cells. This staging is not only important for
treatment decisions but also for the prognosis of patients.2, 3

Other studies confirm a positive correlation between the number
of lymph node metastasis, which can only originate from mobile
tumor cells, and a reduction in the 5-year survival rate of patients.

Further, the prognosis of patients after surgery directly correlates
with the number of lymph node metastases,4 and thus the
number of tumor-positive lymph nodes represents an indepen-
dent prognostic marker for non-small cell lung cancer (NSCLC)
patients.5 Very recent findings indicate that next to ‘conventional’
tumor spread through the blood stream, a new mechanism
supporting tumor spread might occur. Spread through air spaces
(STAS) promotes tumor cell dissemination in about 50% of lung
adenocarcinoma patients. Importantly, STAS is significantly
associated with and its occurance correlates with poor overall
survival of adenocarcinoma patients.6 However, controlling
metastasis in a therapeutic setting by targeting individual cellular
processes (i.e. cell adhesion and perturbation of relevant signaling
pathways) is challenging as cancer cells exhibit a large diversity of
mechanisms supporting tumor cell dissemination.1

At the cellular level, epithelial cancer cells exhibit different
modes of motility including sheet migration, migration of smaller
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cell clusters, or of individual mesenchymal-like cells,7 and first
molecular mechanisms discriminating between these phenotypes
have been identified.8, 9 These different types of motility are
induced and modulated by extracellular stimuli including secreted
growth factors (e.g. hepatocyte growth factor (HGF), epidermal
growth factor (EGF)) or extracellular matrix (ECM) components.
Indeed, dysregulation of signaling pathways and subsequent
induction of tumor cell dissemination is frequently observed in
human carcinogenesis.10 Interestingly, pathological examinations
and experimental data illustrated that many epithelial cancers
favor collective cell migration and that tumor cell clusters
exhibited increased metastatic potential.10 However, it is not
fully understood how mechanical properties such as intercellular
forces between tumor cells affect this clinically relevant migratory
phenotype.
Epithelial cancer cells often require intact cell–cell junctions for

survival and efficient migration. In case of collective migration,
usually investigated by lateral migration into a defined gap, the
mechanical stimulation, loss of contact inhibition of marginal cells,
and stimulation by growth factors can induce directed migration
towards cell-free areas. Hereby, marginal cells, forming the tissue
front, are believed to stimulate polarization in subsequent cell
layers,11, 12 the submarginal cells which are adjacent to the
marginal cells, and bulk cells far away from the tissue front. This is
supported by studies showing that cells polarize in the direction of
applied stress.13, 14 In addition, sub-marginal cells have been
shown to extend ‘cryptic’ protrusions underneath their anterior
neighbors15 and to actively contribute to directed migration.16, 17

Studies involving normal and malignantly transformed cell
types illustrate that these effects do not only depend on growth
factor stimulation but also on adhesive forces and cell–cell
contact.10, 18, 19

Several biological processes underlying collective cell migration
have been formulated in terms of mathematical models that
describe cell–cell interactions and the emergence of collective
phenomena. Vicsek et al. proposed a simple model describing the
displacement of cells according to inter-cellular forces and active
migration exhibiting directional persistence.20–22 Recent variations
of this model involved features such as velocity alignment
between neighboring cells,23, 24 force-velocity alignment,25 and
lateral drag.11 Apart from these center-based models, other
approaches explicitly include the cell shape. These comprise
Cellular Potts Models,23, 26, 27 where each cell is represented by a
set of connected points on a lattice, vertex-based models,28 where
the boundary of the cell is given as a set of vectors, or models
based on phase fields with more details on the single-cell level,
such as deformable boundaries, actin-dependence or cell
contraction.29 In general, cell-based models allow for a large
amount of detail, such as the inclusion of signaling network
dynamics, the coupling with external chemical or mechanical
gradients, cell proliferation and apoptosis.30 Because of this, cell-
based models are in general very powerful tools to describe many
different biological processes.
In this study we focused on the variations in the motility of cells

and the cell–cell interactions under different treatment conditions.
The experimental setup involved cells from lung cancer cell lines,
positioned on a 2D surface without ECM coating or external
gradients, which were observed for two to three days. In addition,
proliferation, which might affect the biological read-out of
migrating cells, was blocked in a subset of the experiments using
mitomycin-C. To model this setup, we chose a center-based off-
lattice cell model, in which only the center position of each cell is
considered, and subject to inherent or imposed movement. Even
though the cell shape was not explicitly considered in the model,
it can be derived through a Voronoi tessellation based on the
neighborhood structure given by the Delaunay triangulation. The
model we are presenting here consists of only two equations for
each cell, and 8 parameters. It is thus an extremely simple model

of low computational cost. It allows the modeling of a large
number of interacting cells, and also facilitates mathematical
tractability (see Discussion).
The existing center-based models on collective cell migration

were all designed to reproduce features connected to the
evolution and coordination of the orientation of cellular velocity.
However, a detailed mathematical description of speed dynamics
(e.g. acceleration) induced by physiologically relevant growth
factors or therapeutic perturbation approaches (e.g. receptor
kinase inhibitors) as well as the interplay between stimulation and
mechanical cell–cell interaction was missing.
In our study, we present an individual-based model that is

capable of reproducing stimulus-induced speed dynamics, as well
as diverse front phenotypes observed in experimental data sets
derived from lung cancer cell lines (non-small cell lung cancer;
NSCLC) after stimulation and perturbation of pro-migratory
signaling pathways. The model demonstrates that the existence
of a non-specific mechanotransduction mechanism is necessary
and sufficient for all observed phenomena, but also shows that
the effect of treatment on the individual cells cannot be directly
inferred from the speed dynamics or from the front phenotype.

RESULTS
Stimulation and cell density define the mode of lung cancer cell
migration
To analyze the impact of pro-migratory stimuli (e.g. growth
factors) on the migratory behavior of epithelial cancers and to
generate a corresponding mathematical model we focused on cell
lines derived from human non-small cell lung cancer (NSCLC,
subtype adenocarcinoma) since tumor cell dissemination repre-
sents a clinically relevant prognostic marker for NSCLC patients.31

Different NSCLC cell lines (H1975, H1650) showing predominant
collective migration were selected for the analysis of lateral
migration into a defined 500 µm gap after stimulation with potent
motogens (HGF), (EGF), insulin-like growth factor (IGF)-1, and fetal
calf serum (FCS). The biological effects of these stimuli were
monitored using time-lapse microscopy for up to 72 h. In total,
more than 120 videos of NSCLC cells were analyzed for this study
(Table 1).
Interestingly, we observed different gap closure phenotypes of

the cell monolayers, which were associated with the different
treatments (Table 1). While FCS resulted in a fast and efficient
propagation of straight cell fronts (Fig. 1a), growth factors induced
partial gap closure and formation of cellular bridges between the
major cell populations, as shown for IGF stimulation in Fig. 1b.
When the tumor cells were deprived of growth factors the front
developed an irregular shape and inward migration was restricted
to certain areas resulting in undulating fronts (Fig. 1c). Pseudo-
trajectories (Fig. 1, right panels), derived from particle image
velocimetry (PIV) (see Methods), further illustrate that treatment
with growth factors stimulated coordinated persistent migration
towards the gap area, and that the strength of stimulation was
associated with the activation of a larger fraction of cells (Fig. 2).
After FCS stimulation also bulk cells far away from the monolayer
front engaged in persistent migration, while with IGF treatment
exclusively cells in close proximity to the gap (around 500 μm)
showed active migration (Fig. 2).
All three phenotypes (straight fronts, cellular bridges and

undulating fronts) were exclusively associated to cell migration
since inhibition of proliferation by mitomycin-C did not affect the
observed cell behavior (see Supplementary Materials). Next to the
different treatments, cell density appeared to be an additional
factor determining the migratory behavior. For high cell densities,
straight fronts and effective gap closure were frequently detected.
In contrast, low cell densities were connected with reduced
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migration and the formation of cellular bridges or finger-shapes
(see Supplementary Materials).
In summary, the administration of full cell culture media or with

single pro-migratory growth factors and the cell density define the
front phenotype of lung tumor cells in vitro.

PIV analysis reveals characteristic speed dynamics after stimulation
of NSCLC cell lines
In order to capture a large section of the gap and to avoid
bleaching effects, images were taken at low magnification and
frame rate. This resulted in image sequences, which made
segmentation of individual cell nuclei and single cell tracking
impossible. We therefore used PIV32, 33 to obtain quantitative
information on the spatio-temporal velocity distributions and to
characterize the effects of the different treatments on the
migratory behavior of the cells of the NSCLC cell lines. PIV proved
to be computationally efficient and robust. Because PIV does not
rely on single cell segmentation, also phase contrast movies could
be analyzed.
In all experiments the absolute speeds, averaged over the entire

field of view, increased over a time interval of several hours and
decreased afterwards. Pro-migratory treatment was associated
with a stronger and prolonged acceleration phase (Fig. 3a). The
peak amplitude was also associated with the duration until gap
closure. However, the duration of the acceleration phase was not
determined by (and not correlated to) the timing of gap closure.
The speed dynamics showed peaks also for experiments where
the gap did not close at all (e.g. after treatment with the EGF
receptor inhibitor erlotinib, Fig. 3a).
The spatio-temporal velocity distribution showed high velocity

components directly at the front for early time points, which then
extended towards submarginal and bulk cells (Fig. 3b). The largest
contribution originated from the velocity component perpendi-
cular to the gap. Often, the acceleration wave spread only to some
extent into the monolayer, and bulk cells far away from the front
did not migrate significantly. In summary, different treatments
were associated with different gap closure phenotypes.
However, PIV analysis showed that the spatio-temporal speed

dynamics were qualitatively similar for all experiments with
characteristic initial acceleration and subsequent deceleration.
Also the spatio-temporal speed distribution was similar for all
experiments. These results lead to the following questions: (i)
which features on the single cell level give rise to the
experimentally observed front phenotypes of the cell monolayer?
In particular, can the observed range of migratory behaviors and
the spatio-temporal velocity distribution be explained by simple
assumptions on the (mechanical) properties and interaction of the
individual cells? And (ii) how do treatments affect the properties of
individual cells such that different front phenotypes develop?

Establishment of a mathematical model reflecting different
phenotypes induced by different stimuli
In order to answer these questions, we developed an individual-
based model that defines a small set of cellular features that
reproduce and explain the observed velocity distributions, front
phenotypes and many other features of the collective migration.
Our approach is based on a recently developed simple model of
cell migration, combining random motility and cell-cell adhe-
sion.34 The model is given in dimensionless and scaled variables
(see Supplementary Materials) and describes the displacement of
each cell as a response to external forces exerted from
neighboring cells:

Fi;k ¼ F0 � Fðkx i � xkkÞ x i � xk
kx i � xkk ; ð1Þ

with F0 a positive constant, indicating the strength of the
mechanical interaction, xi = (xi, yi) the position of cell i, and

FðrÞ ¼ 2 � ðe�2aðr�rcÞ � e�aðr�rcÞÞ; r<σrc
0; r � σrc

(
: ð2Þ

With this description the force between two cells is positive
(repulsive) when their distance is below rc, and negative
(attractive) for r > rc. Repulsion accounts for the fact that the cells
are compressible only to a certain degree. Attraction reflects
cell–cell adhesion and yields correlated motion of neighboring
cells. The attractive part of the potential acts only in the
neighborhood σrc of the cell. If cells are further apart from each
other than σrc, they do not exert force on each other and show
uncorrelated migration. The radius r = rc reflects the natural cell
size where attraction and repulsion balance. The parameter a
quantifies cell elasticity: cells are compressible for small a and stiff
for large a. Random motility of cells is modeled by a Wiener
Process ξi with expectation 〈ξi(t)〉 = 0 and covariance 〈ξi(t) · ξj(t′)〉 =
2Dδi,jδ(t−t′), where δi,j denotes the Kronecker delta function, δ(t)
the Dirac delta distribution (i.e. zero autocorrelation and no
correlation between two different cells i and j). In the absence of
any mechanical interactions, the noise term represents diffusion of
the cells where D is the diffusion rate. The dynamics of the cell
position is given as

dx i
dt

¼
X
k;k≠i

Fi;k þ ξ i : ð3Þ

This simple stochastic individual-based model and also the
derived continuous version correctly reflect coordinated motility
characterized by a high correlation in the velocities of adjacent
cells. Simulations based on this model also show that the two
processes, random motility and mechanical short-range interac-
tions, are sufficient to allow gap closure for certain parameter sets,
confirming previous studies.35 Random motility is hereby
restricted by attractive forces between the cells and significant
front propagation is only possible if the initial density of the cells is
higher than the homeostatic cell density where r = rc. The main

Table 1. Phenotype classification for 123 time lapse movies of H1975 and H1650 cells after visual inspection

Starvation 15 11 6 22 
HGF/EGF/IGF 0 8 28 13 

FCS 0 0 1 19 
 No motility Finger Bridges Straight fronts 

Shown are the numbers of time-lapse videos for each category, e.g. the number of replicates for each treatment showing a given phenotype (in 20 replicates
with FCS stimulation, 19 show straight fronts, 1 shows cellular bridges). The gray shading indicates the relative distribution into the different phenotypes for
every treatment (out of 20 FCS 95% of replicates show straight fronts). Dark shading indicates high percentage and vice versa
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contribution to the front propagation is then the relaxation
following tissue compression. However, speed dynamics of
simulations based on Eq. (3) always show a monotonous decay
(Fig. 3c). This is not surprising, as cell displacements are the result
of repulsive forces, which constantly reduce when the cells spread.
This feature of the model is in disagreement with the
experimental data, as we observe for all experimental conditions
(see Fig. 3a) a characteristic speed evolution profile exhibiting an
initial increase in the average speed, a peak and a successive
decline of average speeds. The simple model is thus not able to
capture this qualitative behavior seen in the data. To achieve
speed dynamics with initial acceleration and subsequent decel-
eration, and thus qualitative agreement between model and data,
we extend the model by accounting for the fact that cells polarize

in response to mechanical stretch and then migrate actively with a
certain persistence time.13 We describe this active migration by a
vector-valued velocity x�i ¼ ðx�i ; y�i Þ, which is stimulated by forces
between neighboring cells36 and decays exponentially with a
characteristic constant τ. The extended model then reads:

dx i
dt

¼
X
k;k≠i

F i;k þ x�i þ ξ i ð4aÞ

dx�i
dt

¼ 1
τ
ðA0

X
k;k≠i

Fi;k � x�i Þ; ð4bÞ

with A0≥ 0 determining how strongly active migration is
stimulated through intracellular forces. For simulations the initial
positioning of the cells resembled the situation in a scratch assay.

Fig. 1 Different phenotypes of sheet migration in NSCLC H1975 cells associated with different treatments. (a) Straight front after treatment
with FCS. (b) Cellular bridges after treatment with IGF. (c) Finger shapes/undulating fronts in a control experiment (no stimulation). Snapshots
are showing stained nuclei at time points t = 0, 10, and 19 h (a), and at time points t = 0, 14.5, and 30.5 h (b, c). On the right, pseudo-
trajectories generated from PIV data are shown for each experiment for the entire field of view and an enlarged section. Random coloring of
the trajectories has been chosen for better visibility of the paths of neighboring cell groups. The pseudo-trajectories show clearly that after
stimulation with FCS also bulk cells far from the front engage in directed migration towards the gap. After stimulation with (IGF)-1 cells further
than 500 μm do not engage in directed migration. For unstimulated cells (c) persistent migration towards the gap is almost entirely absent.
Original movies for a, b and c are provided as Supplementary Material

An individual-based model for collective cancer cell migration
D Stichel et al

4

npj Systems Biology and Applications (2017)  5 Published in partnership with the Systems Biology Institute



Cells were seeded randomly in confined regions with xi ∈ [−L:−X]
for the left, and xi ∈ [X:L] for the right monolayer. The middle of
the domain, xi ∈ (−X:X), remained cell-free. Removal of the insert is
associated with mechanical stress and loss of contact inhibition,
which stimulates polarization and migration of marginal cells
towards the gap. This ‘leader cell (pioneer cell) behavior’ has been
reported to be enhanced by treatment with growth factors.19 The
initial stimulation of marginal cells was represented in the
simulations by initial conditions x�i ¼ θ if xi ∈ [−X−ε:−X] or x�i ¼�θ if xi ∈ [X:X + ε], with ε a small positive constant.
In the following we will present simulation results based on the

model system Eq. (4). Please note that since all variables and
parameters are dimensionless and scaled, direct quantitative
comparison between simulations and experimental data is limited,
but we will show that the model captures all experimentally
observed features in a qualitative way. Quantitative comparison
requires rescaling of the variables (see Supplementary Materials)
and parameter fitting (see Discussion).

The extended model reproduces in vitro speed dynamics of
NSCLC cells
The extended model (Eq. 4) yields average speeds showing initial
acceleration and subsequent deceleration (Fig. 3c, showing a
simulation for a parameter set yielding straight fronts and
effectively closed gaps). Acceleration (increase in the average
speed of all cells) is a result of successive stimulation of active
migration in increasing numbers of cells, as in the experiment (see
Fig. 3b). In consequence, a wave of mechanical stimulation of x*

sweeps from the front into the tissue, as shown in the kymograph
(Fig. 3d). Since cell proliferation is not considered, front propaga-
tion is associated with cell density reduction, and an increase in
the surface of individual cells. As the cells are adherent, the front
propagation will eventually be antagonized by adhesive forces
when the distance between neighboring cells becomes larger
than rc. This interplay of forces explains the timing of the peak in
the speed dynamics, also in the case when the gap does not close.
Simulations based on the model are qualitatively in very good
agreement with the experimental data (Fig. 3): (i) the speed
evolution shows the characteristic acceleration–deceleration
profile, (ii) the ratio between the maximal and initial speeds is
similar between simulation (1.5 fold) and experiment (1.5–2 fold),

(iii) the model reproduces the butterfly-shaped activation pattern
seen in the data, (iv) and also the linear dynamics of front closure
are captured. This agreement is very promising, especially since
the model parameters were selected to yield straight fronts and
effectively closed gaps (mimicking FCS treatment), but the model
parameters were not specifically selected to achieve optimal
agreement between simulation and data.

The extended model reproduces different migratory behaviors
Simulations based on (Eq. 4) also show that by varying the model
parameters we are able to reproduce all observed phenotypes of
gap closure, e.g. straight fronts, cellular bridges, and undulating
fronts (Fig. 4a–c and Table 2). Straight fronts develop for instance
when cells are seeded at a high density, where front propagation
results from the relaxation of the cell surface. Stimulation of active
migration by repulsive forces is hereby possible (A0 > 0, τ > 0), and
in effect the speed dynamics show the characteristic peak.
Alternatively, the fronts remain straight if the adhesion forces
are weak (small F0 or small σ) or for strong initial activation
combined with strong stimulation of x* (Fig. 4a). Cellular bridges
(Fig. 4b) and undulating fronts (Fig. 4c) result for very similar
parameter sets, and are indeed a similar phenomenon. Both cases
are associated with the development of finger-like shapes (Fig. 4k).
When the fingers reach the opposing front, cellular bridges are
created (Fig. 4b, d, h). If the initial stimulation of the marginal cells
θ is the same (as for the examples shown in Fig. 4), the cell density
(i.e. rc) determines whether cellular bridges are formed or only
finger-shapes. In our model, finger-like shapes develop without
predefined leader cells. The fingers are a result of counter-acting
forces, with active motion on one hand, restricted by adhesion on
the other. The stochasticity of the model allows that some parts of
the front surface engage in migration, while in other areas
adhesion dominates. The emerging tip cells exhibit features often
associated with a leader cell phenotype in the literature,37, 38 like a
larger size than bulk cells. Also, the finger-shapes in our simulation
display a density profile characterized by large cell–cell distances
(respectively cell size) at the tip and decreasing cell–cell distances
(smaller cells) towards the finger base (Fig. 4g). As the parameters
for all models are the same, this shows that a leader cell-like
phenotype can emerge solely because of the exposed position of
the tip cell. In a previous study, it was found that the inhibition of

Fig. 2 Migration activation pattern derived from PIV for the unstimulated, FCS or IGF stimulated H1975 cells displayed in Fig. 1. The activation
maps show the time average of the spatially resolved x-components of the velocity field for an early time span (averaged over the first 7.5 h)
(a), and a later time span (15–30 h average) (b). These maps illustrate that directed motility is first activated at the front and then back-
propagates into the submarginal and bulk cells. The level of front activation and the degree to which activation spreads into the tissue is
modulated by the treatment
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Rho or ROCK does not inhibit cell motility, but prevents the
formation of fingers.38 As Rho and ROCK are substantial
components regulating cell polarization, this can be represented
in our model by setting x* = 0, where no finger-shapes are
possible.
Apart from this, the model can capture further phenotypes

often observed in the experiments: (a) In the case of the two
monolayers forming cellular bridges we often observed a dynamic
remodeling of these bridges: while new bridges developed, holes
appeared in neighboring areas, where the gap had already closed.
(b) In other cases small round lesions opened in the bulk tissue
behind the propagating front (Fig. 4i). (c) Finally, while the studied
NSCLC cell lines showed predominant collective migration, we
also observed a detachment of individual cells from the front,

which then migrated individually until they re-associated with the
monolayer (Fig. 4j). All these features (a–c) are also inherent
features of the extended model (Fig. 4d–g).

The model can identify possible effects of chemical stimulation on
mechanical properties of individual cells as well as the phenotype
variability seen in experimental replicates
Simulations based on the extended model show that with
sufficient stimulation of marginal cells (high |θ|), intact mechan-
otransduction A0 and not too strong adhesion F0 between the
cells, the monolayer can effectively cover the artificial wound and
achieve a permanent gap closure. Low initial stimulation and weak
mechanotransduction, strong adhesion or mechanical stiffness
yield non-motile or only weakly motile monolayers in the

Fig. 3 Speed dynamics and speed kymographs derived from PIV and simulations. (a) Characteristic speed dynamics of H1975 cells treated
with different doses of iEGFR. Lateral migration of NSCLC cells (H1975) was quantitatively measured for 40 h using time-lapse microscopy after
treatment with full medium (containing FCS) or kinase inhibitors at different concentrations (iEGFR; erlotinib with 50 and 100 nM). Error bars
represent the standard error from three independent replicates. Gap closure intervals (from first contact of the opposite fronts to complete
gap closure) are indicated below. Note that the characteristic speed dynamics, initial increase—peak and following decay, is seen for all
treatments. The movies from which the data is derived are provided in the Supplementary Materials. (b) PIV-derived speed kymographs for an
experiment involving H1975 cells stimulated with FCS. Shown are velocity components perpendicular to the gap displayed as a contour plot.
Colors indicate displacements in x-direction with values ranging from −6 μm/h (negative x-direction, dark red) to 6 μm/h (positive x-direction,
dark blue). White color indicates zero speed, i.e. in the gap area (the white triangle). (c) Typical average speed dynamics of cells in a simulation
with and without directed migration. The simple model without directed motility (Eq. 3) yields only monotonously decaying speeds lacking
the characteristic peak. The extended model including directed motility (Eq. 4) qualitatively reproduces the characteristic profile seen in all
experiments with initial acceleration and subsequent deceleration, and also the relative increase in the speeds with respect to the initial value.
Here speed values are scaled with respect to the initial value at t= 0, i.e. maximal average speeds in the simulation reach 150% of the initial
value, which agrees well with the experimental data. (d) The velocity kymograph (only x-component, red: high velocities in positive x-direction,
blue: high velocities in negative x-direction, white codes for speeds= 0) of simulated cells shows a similar butterfly-shaped spatio-temporal
speed activation as typical in the experiments. Parameters for (c) and (d) were chosen to achieve straight fronts and complete gap closure. In
particular, we used D= 0.001, F0= 1, a= 1.818, rc= 0.0333, σ= 1.2, A0= 20, τ= 0.0988, θ= 1. Note that the images are only intended to show
qualitative agreement between simulation and data, like the acceleration-deceleration profile of the speed evolution, agreement in the
relation between maximal and initial speeds (simulations: 1.5 fold, experiments: 1.5–2 fold), the butterfly-shaped activation pattern, or the
linear dynamics in the gap closure. The velocities in the simulations are not comparable with the data in a quantitative manner, since the
model is given in scaled and dimensionless variables and parameters
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simulation, exhibiting finger structures and undulating fronts. In
experiments, stimulation by FCS or single growth factors (EGF, IGF,
and HGF) usually yields stronger front motility and effective gap
closure with intact monolayers, indicating that cell-cell adhesion is
not weakened by the treatment. Model simulations confirm that
the resulting phenotypes (cellular bridges or complete gap closure
involving straight fronts) can be obtained solely by increased
initial stimulation of marginal cells and enhanced mechanotrans-
duction (higher |θ| and A0, see Fig. 4a and Table 2), which is the
mechanisms through which we believe transition between
undulating fronts to cellular bridges (EGF/IGF/HGF treatment) or
to straight fronts and closed gaps (FCS treatments) occurs.
Alternatively, simulations show that gap closure can be achieved
by disruption of adhesion (see Supplementary Materials).25, 35

Such situation can reflect the gap closure phenotype of cell lines
in which the individual cells avoid cell–cell contacts. In an
experimental setup involving non-adhering cells we would expect
to find straight fronts and monotonously decaying speeds, while

for adherent cells with intact mechanotransduction we expect to
see the characteristic acceleration–deceleration speed profile.
On the other hand, simulations also show that enhanced

motility, complete gap closure and straight fronts can be achieved
by increasing the cell density, or, equivalently, by increasing the
homeostatic cell size rc. To validate this finding experimentally we
selected a set of experiments with strongly varying cell density.
And indeed, in experiments with higher cell density we observed
higher average speeds, straight fronts and fully closed gaps, while
in replicates with lower cell density, speeds were slower, bridges/
fingers and not fully closed gaps were common (see Supplemen-
tary Materials). A density effect is also visible in Fig. 1c. Here the
right front exhibits a higher cell density at t = 0, and a larger
number of finger structures at t = 14.5 h. It is likely that a locally
high density contributes to the development of individual fingers
and bridges.
When straight fronts are caused by high cell density and not by

the absence of cell-cell adhesion, the speed dynamics can show a
peak. Cell density can often not be precisely controlled in this

Fig. 4 Different gap closure phenotypes observed in H1975 cells can be reproduced by the extended mathematical model using different
parameter sets. (a) Straight fronts, here for strong initial stimulation of marginal cells and strong mechanotransduction. (b) Cellular bridges for
more moderate mechanotransduction strength and weaker initial stimulation. (c) Undulating fronts for a smaller homeostatic cell size (resp.
lower cell density). Parameters for (a)–(c) are listed in Table 2. The respective movies are provided as Supplementary Material. Colors encode
cell velocity components perpendicular to the gap (red: fast movement in positive x-direction, blue: fast movement in the opposite direction).
Panels (d)–(i) show further gap closure phenotypes reflected by the extended mathematical model as well as bright field pictures of their
experimental analogs. Cellular bridges in simulation (d) and in unstimulated H1975 cells (h). Formation of small round lesions in simulation (e)
and in H1975 cells treated with 100 ng/ml EGF (i). Detached cells in simulation (f) and for H1975 cells treated with 50 ng/ml IGF (j). The
detachment and independent migration of individual cells or cell groups can occur naturally in the simulation since the connecting forces are
of limited spatial range. (g) Finger-shapes in simulation, and (k) in an experiment involving untreated H1975 cells. Snapshots (e–g) originate
from a simulation yielding undulating fronts with parameters listed in Table 2
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experimental setup. Cell density variability is therefore likely to
contribute to phenotype variability observed in replicates invol-
ving the same treatment (Table 1).

DISCUSSION
We have presented a mathematical model capable of reproducing
many aspects of collective cell migration of NSCLC lung cancer cell
lines under different treatment conditions. In this model we have
identified a very small set of features that are sufficient and also
necessary to produce all phenotypes and spatio-temporal
dynamics observed in the data, as any further reduction or
removal of features would render the model incapable of
reproducing our experimental observations (see Supplementary
Materials). For instance, while a model combining random motility
and adhesion is sufficient to mimic gap closure of a collectively
migrating cell system, the characteristic speed dynamics observed
under all experimental conditions could only be reproduced when
including active migration, stimulated through mechanical inter-
action between neighbors. Simulations based on the extended
model, however, reflect many features seen in the data, such as
the development of holes and finger-shapes, or the detachment
of individual cells.
Many other modeling approaches for collective cell migration

include a term for velocity alignment of adjacent cells21, 24 or
specific design properties to ensure monolayer coherence, like
lateral drag.11 These features are not explicitly included in our
model. However, velocity alignment of neighboring cells emerges
as a result of cell–cell adhesion,34 as well as through stimulation of
directed motion by mechanical interaction. Also monolayer
coherence emerges, to some degree, from the attractive part of
the interaction potential. Specific model terms forcing complete
coherence or lateral drag would prevent the formation of holes
and the detachment of individual cells, which, however, are
processes we wish to capture with the model. A further advantage
of our model is that it is given in terms of plain mechanistic
processes, where the effects of all model parameters can be
associated with potential molecular regulators, e.g. effectors for
mechanotransduction in collectively migrating cells,39 allowing for
experimental validation (see Supplementary Materials), which is
not possible for abstract terms like velocity alignment.
Our model assumes that all cells have an identical molecular

setup, i.e. the model parameters are the same for every cell. This
assumption is justified by the use of lung cancer cell lines that are
expanded under standardized conditions and are only used at low
passage number for the experiments. However, differences in the

motility of individual cells can arise from the specific cell position,
interaction structure, and the included term for random motility.
Simulations based on the model show that further assumptions,
e.g. cell parameter dependence on the spatial position, are not
necessary to explain the obtained experimental observations.
In particular, simulations based on our model exhibit undulating

front instabilities with finger-like shapes without the need to
introduce leader cells with specific properties.24 We observed
undulating front instabilities only in the extended model involving
active migration stimulated by neighboring cells. In a previous
study it was shown that lack of adhesion prevents undulating
front instabilities,25 even though by construction of the model, the
cells still exhibited velocity alignment despite missing adhesion.
Even though the model presented here is able to reflect many

properties of collective cell migration following different treat-
ments, simulations involving different parameter sets show that
the phenotype alone (i.e. straight fronts vs. cellular bridges vs.
undulating fronts and finger shapes) does not always allow to
conclude about the effect of the treatment on the mechanical
properties of individual cells. In particular gap closure involving
straight fronts can be achieved in many ways: (a) when cells are
seeded with high cell density, where repulsion is the major factor
driving migration; or (b) when the cells tend towards larger cell
sizes (due to growth or altered cell-substrate adhesion); (c) by low
adhesion, as discussed above; or (d) when the initial stimulation of
the marginal cells is strong and combined with a strong
stimulation of active migration.
We have shown that the model captures all experimentally

observed features of collective cell migration in the investigated
cell lines in a qualitative way. The most important next step is the
quantitative comparison, which requires rescaling of the model
(see Supplementary Materials) and parameter fitting. Usually,
parameter fitting is very tedious for individual-based models, since
large numbers of simulations have to be conducted to obtain
appropriate statistics. To avoid this, we are currently validating a
mathematical approach made feasible by the simplicity of the
model, which allows the direct estimation of model parameters
based on single-cell tracking data. When successful, parameter
estimation will provide an educated guess about which mechan-
ical features or molecular regulators might differ between
different cell lines, or be affected by a given treatment. Since
the lateral migration assay is a standard and cost-inexpensive
experimental technique, efficient parameter estimation will also
allow the scanning and categorization of the function of a large
number of different treatment approaches.

Table 2. Model parameters leading to different phenotypes during gap closure

Parameter Undulating fronts Cellular bridges Straight fronts 
0.01 0.01 0.01 
1 1 1 
1.818 1.818 1.818 
3.1623 3.1623 3.1623 
2 2 2 
0.03  0.0399 0.0399 
100 100 200
1 1 2

Varied parameters with respect to the default set leading to cellular bridges are shaded in gray
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The model is presently describing cell migration on two-
dimensional surfaces, which represents a popular experimental
setup but not a realistic scenario. However, the model as given in
Eq. (4) can describe cell migration in a three-dimensional domain
without any extensions (using 3D coordinates, and velocities and
forces given by vectors of length 3). Such 3D adaptation can
provide a core model of developmental processes or tumor cell
invasion in tumor spheroids. Since migration is not the only
process important for cancer progression, further extensions
might be required depending on the given experimental data
and biological question addressed. Such additional features could
be cell proliferation and apoptosis, interaction with the ECM, the
response to external chemical or mechanical gradients, or the
connection with internal signaling processes steering cell function.
What are the therapeutic implications of our study? Spatio-

temporal analyses in vitro revealed that perturbation of signaling
pathways relevant for the initiation and maintenance of a
migration front phenotype (e.g. the EGF/EGFR pathway) only
partly reduced tumor cell motility (Fig. 3a). These results are
supported by previous data illustrating that different pathways
cooperate in the regulation of NSCLC cell migration.40 In
accordance with this, stimulations with distinct growth factors
are not sufficient to induce a maximal migratory response (straight
front migration) but instead account for a partial cellular response
(e.g. bridge formation). These results suggest that individual
perturbation approaches such as the inhibition of specific ligand/
receptor combinations via highly selective kinase inhibitors can
not completely shut down migration, which corresponds to the
fact that NSCLC patients treated with single FDA-approved kinase
inhibitors in most cases suffer from tumor remission and
metastasis.41 Since collective cell migration and cluster formation
favor the metastatic potential of epithelial tumor cells,10 our data
suggest that combinations of inhbitors targeting a spectrum of
motogenic factors could be more efficient strategies for the
reduction of tumor cell dissemination.
In summary, we here demonstrate that an integrative approach

combining time-resolved and quantitative measurements of
tumor cells with and without signaling pathway stimulations/
perturbations can be used for the generation of a mathematical
model, which can be used to study possible effects of motogenic
stimulation or inhibition on mechanical cell–cell interaction and
motility. Importantly, only a small set of specific mechanical
parameters are sufficient to describe the spatio-temporal and
phenotypic behavior of highly motile NSCLC cells, illustrating that
these features in combination with the respective extracellular
input information define the mode of tumor cell migration.

METHODS
Cell lines, cell culture, cell stimulation, and perturbation
Human lung adenocarcinoma cell lines H1975 and H1650 were purchased
from ATCC (CRL-5908 and 5883) and were cultivated in Dulbecco’s
modified Eagle’s Medium (DMEM, Lonza) supplemented with 10% FCS
(Gibco), 100 μg/ml streptomycin (Gibco) and 100 U/ml penicillin (Gibco).
The adherent cells were expanded on 10 cm dishes in a humid atmosphere
containing 5% CO2 at a temperature of 37 °C and were only used at a low
passage number for the experiments. To decrease background activation
of signaling pathways by FCS, the cells were growth factor depleted. To
this end, the medium was aspirated and the cells were washed at least two
times with PBS. Subsequently, medium containing 1% BSA (growth factor
depletion medium) was added and the cells were incubated overnight. The
following day, cells were stimulated with different concentrations of (IGF-1)
and/or EGF diluted in growth factor depletion medium (10 ng/ml). For the
perturbation of signaling, the cells were treated with the EGFR inhibitor
erlotinib (iEGFR) using different concentrations (50 and 100 nM).

Lateral migration assay and live cell imaging data acquisition
For migration assays cells were seeded in IBIDI inserts (IBIDI, Martinsried,
Germany) in a 24-well plate (2 × 104 cells in each insert chamber) and left

to attach overnight in the incubator. The inserts were carefully peeled off,
resulting in a gap of 500 μm between the populations. The wells were
washed and subsequently filled with 500 μl of the respective medium. Cell
nuclei were stained with NucBlue Live ReadyProbes (Life Technologies,
Darmstadt, Germany) according to the manufacturers’ protocol. Live-cell
imaging was conducted using an Olympus CellR Live Cell Imaging System
with an IX81 motorized inverted Microscope and a Hamamatsu ORCA-R2
camera, fitted with a climate chamber. Images of lateral migration over
72 h were acquired using the Olympus excellence RT software with four
times magnification in both phase contrast and at 460 nm channels in
intervals of 90min between pictures. Each gap was covered by a vertical
line of five pictures with an overlap of ~20%. Image stacks were stitched
using the stitch grid of images plugin in FIJI, with automated computation
of image overlap.
Only experiments with homogenous distribution of cells were analyzed

in this study to guarantee identical migration conditions for all within the
chambers and to avoid position-dependent biased results.

PIV analysis
Following contrast enhancement in ImageJ,42 we applied particle image
velocimetry 32 using MatPIV,43 which computes cross-correlations between
small interrogation areas on subsequent images. We used interrogation
areas of 64 × 64 pixels with 50% overlap, and fitted a 2D Gaussian to
determine cell displacements with subpixel resolution. Spurious vectors
were removed by applying local, global, and signal-to-noise-ratio filters.
Speeds (absolute velocities, |v|) were computed by dividing the displace-
ments by the inter-frame time interval. Time-resolved speed dynamics
were obtained by averaging the speed over the entire frame. To generate
kymographs each image was divided into rectangular boxes and for each
time-point the respective quantity (e.g. speed, x-component of the
velocity, etc.) was averaged over the entire box. For PIV-derived pathlines
we generated a mask of the initial gap area by manual segmentation of the
first movie frame. Then 5000 random locations in the no-gap area were
chosen as starting points for the trajectories. New positions were then
computed from the PIV displacement field.

Model implementation
The model is given in terms of non-dimensional variables, which were
derived as described previously.34 Simulations of the individual-based
models (Eqs 1–4) were computed using the Euler-Maruyama method
implemented in C++.44 Results were imported into MATLAB for visualiza-
tion. For both models we simulated the collective migration of
approximately 5000 cells, which corresponds to the cell number in the
experimental setup.
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