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Translational learning from clinical studies predicts drug
pharmacokinetics across patient populations
Markus Krauss1, Ute Hofmann2, Clemens Schafmayer3, Svitlana Igel2, Jan Schlender1, Christian Mueller4, Mario Brosch5,
Witigo von Schoenfels3, Wiebke Erhart3, Andreas Schuppert6,7, Michael Block1, Elke Schaeffeler2, Gabriele Boehmer8, Linus Goerlitz4,
Jan Hoecker3, Joerg Lippert9, Reinhold Kerb2, Jochen Hampe5, Lars Kuepfer1 and Matthias Schwab2,8,10

Early indication of late-stage failure of novel candidate drugs could be facilitated by continuous integration, assessment, and
transfer of knowledge acquired along pharmaceutical development programs. We here present a translational systems
pharmacology workflow that combines drug cocktail probing in a specifically designed clinical study, physiologically based
pharmacokinetic modeling, and Bayesian statistics to identify and transfer (patho-)physiological and drug-specific knowledge
across distinct patient populations. Our work builds on two clinical investigations, one with 103 healthy volunteers and one with 79
diseased patients from which we systematically derived physiological information from pharmacokinetic data for a reference probe
drug (midazolam) at the single-patient level. Taking into account the acquired knowledge describing (patho-)physiological
alterations in the patient cohort allowed the successful prediction of the population pharmacokinetics of a second, candidate probe
drug (torsemide) in the patient population. In addition, we identified significant relations of the acquired physiological processes to
patient metadata from liver biopsies. The presented prototypical systems pharmacology approach is a proof of concept for model-
based translation across different stages of pharmaceutical development programs. Applied consistently, it has the potential to
systematically improve predictivity of pharmacokinetic simulations by incorporating the results of clinical trials and translating them
to subsequent studies.
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INTRODUCTION
Knowledge management is a key challenge in any pharmaceutical
development program. It is a plausible hope that a large part of
today’s limitations in pharmaceutical research will be addressed
by knowledge-based translation, curation, and continuous re-
evaluation of information and data along the developmental path
of novel medicines. Thus, the aim of translational systems
pharmacology approaches is to provide support in (i) translation
of preclinical findings from animal models to human healthy
volunteers, (ii) bridging between healthy volunteers and patients,
and (iii) revision of discovery objectives in clinical research
programs.1–5 Another important goal of translational systems
pharmacology is a better understanding of variability in drug
behavior and drug action between individuals in a specific patient
cohort. The mechanistic explanation of such observations in
clinical practice would be a particularly valuable outcome since it
might help to identify potential subgroups of non-responders or
the occurrence of adverse drug events in high-risk subgroups of
patients.1, 6, 7

The main challenge for information management in pharma-
ceutical research is the extraction of information from clinical raw

data in a format that is accessible for translational tasks, ideally in
a continuously growing integrated information repository.6, 8, 9

Physiologically based pharmacokinetic (PBPK) models represent a
possibility to address this need, since they allow the integration of
experimental data from different layers of biological organization
PBPK models are compartmental ordinary differential equation-
based models for a mechanistic description of physiological
processes underlying drug ADME (ADME: absorption, distribution,
metabolization, and excretion).10, 11 As such, PBPK models are
particularly well suited for comprehensive analyses of drug
pharmacokinetics (PK) and, furthermore, for translational
approaches.12 Before, PBPK modeling has been used successfully
among others for drug–drug interaction studies,13 pediatric
scaling,14, 15 patient stratification,16, 17 and risk-assessment.7, 18

Today, PBPK models are routinely used in pharmaceutical
development programs and they are increasingly accepted by
regulatory authorities.19–22

The goal of the present study is to translate physiological
information from healthy volunteers to obese patients, with the
aim of predicting the PK of a candidate drug in the obese cohort.
For that, we introduce a translational systems pharmacology
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workflow (henceforth referred to as translational approach). The
concept aims for an iterative application of a previously
established Bayesian population PBPK approach (henceforth
referred to as Bayesian-PBPK analysis),23, 24 which allows to
acquire the functional origins of interindividual variability in the
physiology of patient subgroups. Furthermore, we compare the
acquired knowledge to patient metadata for further analyses of
pathophysiological alterations in the diseased cohort. Altogether
this proof-of-concept study provides strong evidence for the
impact of systems pharmacology to improve drug development
and translational science.

RESULTS
Translational approach
The presented translational approach consists of three learning
steps and a subsequent prediction step (Fig. 1). In each learning
step, a Bayesian-PBPK analysis extracts knowledge about physio-
logical and physicochemical parameters from experimental data,
taking into account available initial information about correspond-
ing parameters in the PBPK model. Translation of the acquired
knowledge is possible due to the mechanistic representation of
information in PBPK models, as the underlying structure allows to
transfer assessed parameter distributions as initial knowledge in
the subsequent Bayesian-PBPK analyses.
In particular, the four steps of the translational approach are as

follows: in step one, a Bayesian-PBPK analysis is performed using
study data of the reference probe drug midazolam in a cohort of
20 randomly chosen healthy volunteers (phase I study). In step
two, the physiological knowledge acquired in step one is refined
in combination with study data of the candidate probe drug

torsemide in the identical 20 healthy volunteers. Furthermore, the
physicochemistry of the candidate drug is identified. In step three,
the physicochemical knowledge of midazolam acquired in step
one is used with study data of 20 randomly chosen obese
individuals out of the diseased patient cohort (phase II study) to
identify the pathophysiological changes in this population. Finally,
the acquired physicochemistry of torsemide from step two and
the assessed pathophysiology from step three are combined for a
de novo prediction of torsemide population PK in the obese
cohort in step four. Notably, the Bayesian-PBPK analyses generate
individual-specific information in the three learning steps and
simultaneously allow to quantify the population-specific inter-
individual variability (see “Material and methods”).

Evaluation of the clinical study
The translational approach proposed here was applied to a clinical
study, conducted within the Virtual Liver program.25, 26 The study
involved 103 healthy volunteers and 79 diseased patients
scheduled for liver biopsy and visceral surgery. Both cohorts
received the same cocktail of six approved and commonly used
drugs (midazolam, torsemide, talinolol, pravastatin, codeine, and
caffeine) at sub-therapeutic doses.26 For conceptual illustration of
our translational approach, we focused on the PK behavior of
midazolam and torsemide.
The anthropometric features of the individuals and patients are

summarized in Table 1. As expected, the main difference between
the two cohorts was body weight; the median values were 74.5
and 138.0 kg, respectively, which is in line with previous studies
and the high percentage of obesity (72%, Table S1) in the diseased
patient cohort.27, 28

Fig. 1 Schematic illustration of the translational approach. a A learning step contains a full Bayesian analysis where initial knowledge is used
in combination with new experimental data to refine and acquire knowledge about physiological and drug-specific parameters. A translation
step transfers the acquired knowledge to a new investigation where the acquired knowledge is used as initial knowledge in a new Bayesian
analysis. In this illustration, learning starts from the healthy population treated with a reference drug and ultimately leads to prediction of the
effects of a candidate drug in a diseased population. b The presented learning scheme is performed in each step of the translational learning
workflow. The central element is the Bayesian-PBPK analysis. Initial knowledge is updated with new experimental data, and acquired
knowledge on both the drug and population physiology is inferred. Assessed knowledge can then be used for the pharmacokinetic
prediction of a drug in the population of interest and subsequently be compared with experimental data
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Statistics for peak concentration (Cmax) and area under the
curve (AUC) are summarized in Table S2. Due to the negative
correlation of body weight and the PK parameters, values are
normalized to individual weight (Fig. S1A). Significant differences
between the healthy and diseased populations were obtained in
the cases of both midazolam and torsemide, as illustrated in
Fig. 2a. Our initial analysis also revealed some statistical outliers in
both populations, which could partly be explained by specific
clinical metadata for these individuals. In the healthy population,
one PK outlier with high AUC for torsemide and low Cmax for OH-
torsemide is caused by a homozygous variant genotype for the
cytochrome P450 2C9 (CYP2C9)*3 allele, which results in a poor
metabolizer phenotype29 (Table S3). In the diseased population, all
patients identified as outliers with respect to Cmax or AUC were
scheduled to undergo a surgery other than bypass of the stomach,

due to additional diseases such as cancer (Table S1). However,
these patients were neglected for the Bayesian-PBPK analyses.
For the diseased population, correlations revealed significant

associations between body weight and steatosis of the hepato-
cytes. A positive correlation was also obtained for the nonalcoholic
fatty liver disease (NAFLD) activity score (NAS)30 and body weight
of each patient, respectively (Fig. S1B). An analysis of the
proportion of individuals with respect to the level of steatosis
and to the NAS, respectively (Fig. 2b, c), revealed that only 7% of
patients had degenerative steatosis (with more than 60% of the
liver affected), but about 25% had a NAS greater than 3. To assess
the interindividual variability in each cohort and to further analyze
the pathophysiological changes, we next performed the first three
steps of the translational approach.

Table 1. Summary of statistics for anthropometrical parameters in both populations

n Male (#) Age (years) Body weight (kg) Body height (m) Body mass index
[kg/m2]

Median [Min max] Median [Min max] Median [Min max] Median [Min max]

Healthy individuals 103 54 28 [18 56] 74.5 [48.5 113] 1.74 [1.54 1.94] 23.5 [18.8 32.3]

Diseased patients 79 33 45 [20 77] 138 [52 206] 1.75 [1.56 1.92] 47.3 [19.7 67.1]

Fig. 2 Evaluation of experimental PK data and individual metadata for midazolam and torsemide in healthy individuals and diseased patients.
a Boxplots of Cmax and AUC for healthy individuals and diseased patients treated with midazolam or torsemide. b Fractions of individuals
with different levels of steatosis. c Fractions of individuals with different NAS. Blue indicates midazolam data from healthy population (mh);
green torsemide data from healthy population (th); red midazolam data from diseased population (md); yellow torsemide data from diseased
population (td)
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Individual model simulations
As a first qualification of the Bayesian-PBPK analyses, individual
PBPK models were developed and simulations were performed for
each of the three learning steps. All simulations showed good
agreement with the corresponding experimental data for each
individual (Figs. S2, S3). This is illustrated in Fig. 3a exemplarily for
three individuals. Overall, application of the translational approach
resulted in a significantly increased agreement of the experi-
mental data with the simulated PK profiles, relative to the initial
knowledge in a mean value PBPK model representing an average
patient (Fig. 3b). A comparison of the simulations of the initial
state and the simulations after applying the Bayesian-PBPK
analyses revealed a decreased root-mean-square-error (RMSE) of
weighted residuals by 86% for midazolam and by 70% for
torsemide in healthy individuals, respectively, and by 66% for
midazolam in the diseased population. In summary, the individual
simulations served as an initial validation of the Bayesian-PBPK
analyses, and showed that the learning steps of the translational
approach were applied successfully.

Population simulations
The Bayesian-PBPK analyses were next qualified by population
simulations. Figure 4a shows the resulting population simulations
for midazolam and OH-midazolam, together with the experi-
mental data for the remaining 83 healthy individuals at the

original time points. Both simulations are in good agreement with
the experimental data, indicating that the population character-
istics were accurately identified by step one of the translational
approach.
As a qualification of step two of the translational approach,

Fig. 4b analogously compares the results of our population
simulation of torsemide and OH-torsemide PK to experimental
data for the remaining 83 healthy individuals. The population
simulation for torsemide is in good agreement to the experi-
mental data. The PK behavior of OH-torsemide is well described
during absorption and distribution phases; however, the clearance
is slightly overestimated.
After the initial analyses in the healthy population were

completed, midazolam PK in the diseased population was
investigated in a similar manner. The simulation results were
compared with experimental PK data for the 59 remaining
diseased patients of the study (Fig. 4c). During the absorption
and distribution phases, the PK behavior of midazolam was well
described. However, during the terminal phase, the simulation
underestimated the experimental data slightly. In contrast, a
simulation of the PK behavior of the 1′-OH metabolite of
midazolam was in good agreement with the experimental data.
These results served as validation of the acquired knowledge at

the population level and, in combination with the simulations of
the single individuals, indicate that updating of initial knowledge

Fig. 3 Individual model simulations after application of the three learning steps of the translational approach. a Simulations of venous blood
plasma concentration based on parameters with maximum posterior probability are shown for three example individuals. b Comparison of
experimental data of venous blood plasma concentration with simulations of the mean value model (start parameterization) at experimental
time points (gray), and experimental data from simulations with individual-specific parameterized models (based on acquired distributions) at
experimental time points (colored). Blue circles indicate midazolam data from healthy population (mh); green squares indicate torsemide data
from healthy population (th); red triangles indicate midazolam data from diseased population (md)
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Fig. 4 Population simulations and prediction after application of the translational approach. a–c Simulations of venous blood plasma
concentrations a of midazolam in the healthy population (mh), b of torsemide in the healthy population (th), c of midazolam in the diseased
population (md). d Population PK prediction of torsemide venous blood plasma in the diseased population (td). Shown are the 95%
confidence intervals (colored area), the mean value curve (black line), and the experimental data (gray dots connected by light gray dashed lines)
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with the clinical data of healthy individuals and obese patients
with the Bayesian-PBPK analysis was effective.

Pharmacokinetic prediction
The fourth and final step of the described translational approach
was prediction of the PK of the candidate probe drug, torsemide,
in the cohort of obese patients. Notably, no previous Bayesian-
PBPK analysis had been performed for the candidate probe drug
in the obese population at this stage. Instead, we translated the
acquired knowledge characterizing both the population and the
drug from the previous analyses (Fig. 1). Figure 4d shows the
resulting prediction for the PK of torsemide and OH-torsemide for
an obese population in comparison with measured PK data of all
79 diseased individuals. Overall, the prediction described the data
for torsemide well. The absorption phase was slightly under-
estimated and the terminal phase was, in turn, marginally
overestimated. In the case of OH-torsemide, the predicted

population simulation underestimated the PK during the absorp-
tion phase, but accurately described the PK during the terminal
phase.
To assess the quality of the PK prediction of the candidate

probe drug, we performed a retrospective Bayesian-PBPK analysis
for torsemide in the cohort of 20 obese patients. As before, a
population simulation was performed for qualification, thereby
using the knowledge acquired from the retrospective analysis. In
order to obtain a benchmark for quantitative comparisons, a third
population simulation was performed additionally based only on
the initial knowledge as in step one. In each case, the normalized
RMSE was calculated quantifying the agreement between the
median simulation curve and the 79 experimental PK data sets for
both torsemide and OH-torsemide (Table 2).
The normalized RMSE of the predicted simulation improved by

54% for torsemide and by 31% for OH-torsemide compared with
that for the simulation based only on initial information. A further
improvement of the simulation was observed in the retrospective
analysis, in particular for the terminal phase (Fig. S4). The
normalized RMSE for the retrospective analysis was more accurate
by 7% for torsemide and 42% for OH-torsemide compared with
data of the predicted analysis.

Acquisition of knowledge
A key question related to the translational approach is which
parameters have been most informed by the experimental data,
and whether continuous learning can be achieved during the
translational approach. The Kullback–Leibler divergence31 is a

Table 2. Quantitative assessment of PK prediction

Normalized RMSE

Initial Predicted Retrospective

Torsemide 1 0.457 0.390

OH-torsemide 1 0.691 0.273

Fig. 5 Learning progression. Heat map shows Kullback–Leibler divergence (relative entropy) between acquired knowledge and initial
knowledge for each learning step. Color code represents learning progression from blue (learned nothing) to yellow (learned very much).
Hatching indicates that parameters have not been considered in the respective model such that relative entropy could not be determined
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measure of relative entropy and was used to determine the
difference in the obtained parameter distribution of specific PBPK
model parameters between the acquired and the initial knowl-
edge, respectively, for each learning step (Fig. 5). For example,
various active processes characterizing ADME targets in the
healthy population showed a large gain of information already
in the first steps. Further information was gathered when
translating from healthy individuals to obese patients, indicating
that a considerable amount of knowledge could be inferred from
the experimental data during analysis of the diseased population.
Most physiological parameters like organ volumes and blood flow
rates (data not shown) revealed only a small gain of information
for the analyses in the healthy population compared with the
initial knowledge. In contrast, after translation to the obese cohort,
a larger information gain was achieved. For further quantification,
all parameters for which the geometric mean value changed by
more than 10% are shown in Tables S4–S7.

Characterization of pathophysiological alterations
The mechanistic evaluation of PBPK models in the Bayesian-PBPK
analyses allows the characterization of specific biological pro-
cesses relevant for drug PK in detail. In particular, we specifically
assessed the acquired knowledge in enzyme-mediated hepatic
clearance, since changes in enzymatic activity in obese patients
are still a matter of debate.32 Our analyses revealed that the
hepatic metabolic clearance differs statistically significantly
between the subjects of the healthy and obese cohorts. In
particular, CYP3A4-mediated clearance decreased in the obese
cohort (p = 0.02), while CYP2C9-mediated clearance increased (p <

10−8) (Fig. 6a). One of the unique features of our clinical
investigation was the availability of liver biopsies from each
patient. This provided the opportunity to compare assessed
information from the PBPK model with underlying molecular
alterations measured in corresponding patient material, i.e.,
expression data of the metabolizing enzymes. Interestingly, a
significant correlation could be observed between CYP3A4-
mediated clearance in the PBPK model and corresponding
expression data of CYP3A4 (r = 0.51, p = 0.02). For torsemide,
however, a direct correlation of specific hepatic clearance to the
expression of CYP2C9 was not found in the cohort of 20 obese
individuals. Since the small sample size might hamper the
identification of statistically significant features, further Bayesian-
PBPK analyses were additionally performed for midazolam and
torsemide, taking into account all 79 diseased patients (59 obese
patients together with the 20 individuals with body mass index
(BMI) < 30, where also liver biopsies were available). The
subsequent correlation analyses of hepatic clearance with
corresponding expression data of CYP3A4 and CYP2C9, respec-
tively, revealed indeed significant correlations (r = 0.42, p = 0.0002
and r = 0.23, p = 0.04, respectively) for both drugs (Fig. 6b).
Based on these relationships in the cohort of diseased patients,

we next correlated hepatic clearance and expression data,
respectively, with body weight and disease progression markers
such as steatosis and NAS. Statistically significant correlations of
hepatic CYP3A4-mediated clearance with body weight, steatosis,
and NAS were observed for midazolam (Fig. S5A). For torsemide,
only a correlation of hepatic CYP2C9-mediated clearance to body
weight was statistically significant. Finally, the same analyses were
performed with expression data of the CYP3A4 and CYP2C9 genes

Fig. 6 Relationships between levels of measured enzyme expression and model-assessed enzyme-mediated clearance. a Comparison of the
specific CYP3A4-mediated clearance (CYP3A4 Cl) for midazolam, and that of CYP2C9 (CYP2C9 Cl) for torsemide, respectively, in the cohorts of
20 healthy individuals and 20 obese patients. Boxplots are defined corresponding to Fig. 2. b Correlation of specific hepatic clearance with
expression levels of the indicated enzyme in all 79 diseased patients. Data are shown together with regression line and confidence interval for
regression line (dashed line)
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that have been measured in liver biopsies. The same trend was
observed for all correlations, but only the relationship between
CYP3A4 expression and steatosis showed a statistically significant
correlation (Fig. S5B).

DISCUSSION
Drug development has been efficiently supported by the
development of systems approaches that focus on the integration
of experimental data, available knowledge and mathematical
models and that translate gained knowledge from preclinical
stages to the clinics.33, 34 However, a previous shortcoming has
been the lack of sufficient techniques to not only collect but also
to connect the data which is obtained along and across species,
scales, and study designs.35 A further limitation is a missing
portability of existing models and approaches.36 To overcome this
issue, e.g., mechanistic and systems models have been identified
as a possible means to generate a better understanding of biology
and pathophysiology.3

In the present work we introduce a translational systems
pharmacology workflow that addresses above challenges by
combining drug cocktail probing with mechanistic PBPK modeling
and Bayesian statistics. In three learning steps, initial information
about drug physicochemistry and individual physiology informa-
tion was used together with experimental PK data to acquire
knowledge about a reference probe drug (midazolam) and a
candidate probe drug (torsemide), respectively, both in a healthy
population and an obese patient cohort.
Notably, the information acquired in the Bayesian-PBPK

analyses allows to consider both individualized PK profiles as well
as population simulations which were both used for qualification
of each step of the translational workflow (Figs. 3, 4). Each learning
step demonstrated significant improvement in the agreement
between simulations and observed data, compared with the initial
mean value model for an average patient. Ultimately, this allowed
the consideration of both individualized PBPK models as well as a
the quantification of the interindividual variability and its specific
physiological sources, which are both highly valuable information
for decision-making in pharmaceutical research programs.3, 33

By our iterative learning process we were able to show
continuous acquisition of knowledge, especially a large gain of
information was achieved in the characterization of the patho-
physiology of the obese patient cohort (Fig. 5). The acquired
knowledge about the candidate probe drug torsemide and the
pathophysiological changes of the reference probe drug mid-
azolam was then used for successful prediction of the population
PK of torsemide in the obese population. Note that accuracy of the
prediction could have been increased by including more than the
20 chosen individuals into each learning step. However, as we
aimed for a translation from clinical phase I to phase II, we used a
number of individuals typical for these phases of clinical
development.
The retrospective analysis of torsemide PK in the obese

population showed that the prediction could have been improved
by integration of further enzyme-specific information for CYP2C9
in the diseased population (Table 2). Hence, the incorporation of
several learning steps including studies with other reference
compounds that are metabolized via CYP2C9 in the population of
interest could improve the prediction of the candidate compound.
In general, the ability to make predictions of future experiments
and results by the integrative concept of our translational
approach is of importance in drug development, as drug failure
that emerges in the late phases of clinical development is often
due to insufficient efficacy.37 The predicted population simulations
together with the identified sources of PK variability could support
among others evaluation steps in clinical development, where the
challenge is to make decisions about project termination as early
as possible.33, 37

A further advantage of the PBPK models integrated in our
translational approach is the detailed mechanistic structure, which
allowed to derive information from PK data on a functional level.
Interestingly, we discovered that metabolic clearance of mid-
azolam decreased significantly for obese patients compared with
healthy volunteers, while the CYP2C9-mediated clearance
of torsemide increased significantly. Thus, our results support
clinical findings,38, 39 as hepatic clearance of midazolam showed
significant inverse relationships to body weight, steatosis, and NAS
in the overall diseased population (Fig. S5A).
Interestingly, the same correlation reported for hepatic clear-

ance could be shown for expression data of CYP3A4 and CYP2C9,
which confirms that the above-mentioned model-based patho-
physiological characterization is feasible for specific parameters by
our translational approach. These findings could pave the way for
the application of comprehensive PBPK/PD systems pharmacology
approaches that describe on-target drug exposure and resulting
PD effects. In particular, the extension of PBPK models with PD
models that mechanistically describe drug effects or biomarker
relationships could lead to an improved predictability of PD
effects. These models could then be used for target identification
and a better understanding of the mode of action of a new drug
candidate. However, challenges are, e.g., the lack of sufficient
experimental data, incomplete mechanistic knowledge of the
underlying processes, or the different time scales of such multi-
scale modeling systems.35, 36, 40, 41

The presented case study is a proof-of-concept that bridging of
phase I and II studies in the clinical development process is
feasible. A continuous use of such translational modeling
approaches can therefore support the extraction and transfer of
knowledge throughout the different phases of drug development
(Fig. S6). This is expected to facilitate the streamlining of future
clinical studies, since extensive information is already available
from prior analyses, either through the literature or through in-
house databases of compounds from inventor companies.

MATERIALS AND METHODS
Study design
Two open label single-dose PK studies, conducted in healthy volunteers
patients (EudraCT 2011-002291-16, ClinicalTrials.gov NCT01788254) and
diseased patients (EudraCT 2012-000447-27), received regulatory approval
by the German Federal Drug Administration (BfArM) and have been given
favorable opinion by the local ethics committees of the University of
Tuebingen and Kiel, respectively. The studies were operated in accordance
with the principles of the Declaration of Helsinki and the German Drug Law
(AMG). All study participants gave written informed consent before
inclusion.
Female and male healthy volunteers aged 18–56 years (mean BMI: 23.5

kg/m2) were eligible for inclusion. Absence of diseases relevant to safety
and PK was established based on a detailed medical history, thorough
physical examination, electrocardiogram, and routine chemistry and
hematological parameters within the institutional normal reference range.
Female and male patients aged 20–77 years (mean BMI: 47.3 kg/m2)
undergoing visceral surgery who were also scheduled for liver biopsy and
otherwise in good clinical condition at the discretion of the responsible
physician and investigator were included in the patient study (Table S1).
Patients with signs of decompensated disease were not eligible for
inclusion.
The study medication was applied after an overnight fast. The patients

were studied on the day before visceral surgery. All probe drugs were
administered orally as a pharmacologic cocktail containing 1mg
midazolam, 5 mg codeine, 0.25mg torsemide, 5 mg pravastatin, 2.5 mg
talinolol, and 50mg [13C3]caffeine with 200ml of tap water. Blood
samples were drawn in EDTA-containing tubes before drug intake and
after 0.5, 1, 1.5, 2, 3, 4, 6, and 8 h. Samples were centrifuged (10min, 4 °C,
4000 rpm) and plasma was stored at −20 °C until analysis. Urine was
collected for 8 h in two 4-h intervals. After recording the volume, samples
were withdrawn and stored at −20 °C until analysis.
The liver biopsies were taken surgically the following day in the course

of intervention and preserved in liquid nitrogen within 60 s after resection
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(see Supplementary Material for more information about specific
methods).

Quantification of midazolam, 1′-hydroxymidazolam, torsemide,
and hydroxytorsemide in plasma
Plasma samples (250 µl) were mixed with 500 µl of acetate buffer (0.1 M,
pH 5) and 10 µl of internal standard mixture. Samples were extracted with
diethyl ether, and the organic phase evaporated to dryness in a stream of
nitrogen. The residue was dissolved in 75 µl of acetonitrile:water 1:2 (v/v),
and 5 µl of the supernatant was used for LC–MS–MS analysis as described
previously.42

Genotyping for CYP3A4, CYP2C9, and CYP3A5 alleles
High-quality genomic DNA was isolated from whole blood using QIAamp
DNA Blood Mini Kit (Qiagen, Hilden, Germany). Genotype analyses of
healthy individuals (n = 103) and patients (n = 80) for CYP3A4*22,
CYP3A4*1B, CYP2C9*2, CYP2C9*3, and CYP3A5*3 were performed with
predeveloped TaqMan Assays (Life Technologies, Foster City, CA, USA),
according to the manufacturer’s protocol on a 7900 Real-Time PCR System
(Life Technologies, Foster City, CA, USA), and data were analyzed with the
SDS software. Genotype frequencies of both cohorts were in
Hardy–Weinberg equilibrium.

NAFLD activity score
The proposed NAS is the unweighted sum of steatosis, lobular inflamma-
tion, and hepatocellular ballooning scores, as developed in Kleiner et al.30

NAS of ≥5 is assigned with a diagnosis of NASH, 3–4 is assigned as “mild
steatosis”, and biopsies with scores <3 are assigned as “not NASH”.

Expression analysis
For homogenization of 5–10mg frozen tissue and subsequent nucleic acid
isolation, tubes with 1.4 mm ceramic beads (Precellys, Villeurbanne, France)
and the AllPrep DNA/RNA Mini Kit (QIAGEN, Hilden, Germany) were used.
Gene expression analysis using the HuGene 1.1 ST gene (Affymetrix, Santa
Clara, CA, USA) was performed, according to the manufacturer’s protocols.

PBPK models
Both the organs and physiological processes are explicitly represented in
PBPK models and parametrized by physiological information provided in
the PBPK software tools. So-called distribution models, which quantify
passive permeation of tissue and cell membranes by a drug, are
parametrized by drug physicochemistry involving lipophilicity or molecular
weight.43–46 Finally, information on the relative tissue-specific expression
of metabolizing enzymes or transport proteins is used to model active
transport and metabolization of the drug.47 The systematic integration of
patient physiology and drug physicochemistry into a PBPK model allows
for a comprehensive description of the physiological processes underlying
the concentration of the drug in the plasma and various tissues and organs
over time.

Midazolam PBPK model
A combined PBPK model for midazolam and OH-midazolam was created
incorporating available literature information, which is described in the
Supplementary Material. Three active processes described via
Michaelis–Menten kinetics were integrated into the model: the metabo-
lization of midazolam to OH-midazolam via CYP3A4; the glucuronidation of
OH-midazolam via UGT1A4; and the active transport of midazolam via P-
glycoprotein (PGP). The relative expression of the active form of each
enzyme in each organ was obtained from the expression database
integrated into the software. CYP3A4 is expressed mainly in the liver and
the intestinal compartments; UGT1A4 is present in the kidneys, liver, and
small intestine; PGP is expressed at high levels in all three organs. The
glucuronidation of midazolam was neglected, as was its metabolization
into minor metabolites via CYP3A4 and CYP3A5. The parameters
provided in Table 3 are sufficient to parameterize the PBPK models for
midazolam and OH-midazolam as such representing a mean individual
(Model file S1).19

Torsemide PBPK model
A combined PBPK model for torsemide and the metabolite M1 (OH-
torsemide) was created using literature information, which is described in
the Supplementary Material. Since torsemide and OH-torsemide are highly
bound to plasma proteins, the exchange between plasma and interstitial
space is assumed to be not instantaneous, i.e., the capillary endothelium
constitutes a true barrier for this drug. This was taken into account by
introducing an endothelial barrier. Values for endothelial permeability
(default value for small molecules: 100 cm/min) in all organs were scaled
with a factor of 0.001, except for liver. Liver permeability was scaled with a
factor of 0.1 to account for endothelial fenestration in this organ.
Metabolism via CYP2C9 was integrated as an active second-order
Michaelis–Menten process for the production of M1 from torsemide, and
of M5 from M1; the expression database integrated into PK-Sim was used
to obtain the relative expression profile for the enzyme in each organ. Two
independent kinetics equations were used since the dissociation constants
Km and vmax would not necessarily be the same for both metabolization
steps. For the sake of simplicity, and due to a lack of experimental data, the
production of M3 was neglected. Transport via OATP1B1 was also
integrated into the model. It was assumed that both torsemide and OH-
torsemide are transported via OATP1B1, but with different kinetics, similar
to the assumption for CYP2C9. Two renal clearance processes were also

Table 3. Parameterization of the midazolam mean value model

Molecule Parameter Value Unit

Midazolam Fraction unbound 3 %

Midazolam Lipophilicity 3.6 [–]

Midazolam Molecular weight 325.77 g/mol

Midazolam Intestinal permeability 5.55E-04 cm/min

Midazolam Solubility at reference pH 0.03 mg/ml

Midazolam CYP3A4 kcat 0.1 1/min

Midazolam CYP3A4 Km 2.1 µmol/l

Midazolam ABCB1 kcat 177.64 1/min

Midazolam ABCB1 Km 40.45 µmol/l

OH-midazolam Fraction unbound 10 %

OH-midazolam Lipophilicity 3.13 [–]

OH-midazolam Molecular weight 341.8 g/mol

OH-midazolam UGT1A4 kcat 10 1/min

OH-midazolam UGT1A4 Km 1.41 µmol/l

Table 4. Parameterization of the torsemide mean value model

Molecule Parameter Value Unit

Torsemide Fraction unbound 1.25E-01 %

Torsemide Lipophilicity 2.023 [–]

Torsemide Molecular weight 348.8 g/mol

Torsemide Intestinal permeability 1.66E-05 cm/min

Torsemide CYP2C9 kcat 20 1/min

Torsemide CYP2C9 Km 1 µmol/l

Torsemide OATP1B1 kcat 30 1/min

Torsemide OATP1B1 Km 1 µmol/l

Torsemide Renal clearance 0.0013 l/min/kg

OH-torsemide Fraction unbound 1.91E-01 %

OH-torsemide Lipophilicity 2.139 [–]

OH-torsemide Molecular weight 364.42 g/mol

OH-torsemide CYP2C9 kcat 70 1/min

OH-torsemide CYP2C9 Km 1 µmol/l

OH-torsemide OATP1B1 kcat 50 1/min

OH-torsemide OATP1B Km 1 µmol/l

OH-torsemide Renal clearance 0.007 l/min/kg
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integrated into the model, one for each of the considered drugs.
Michaelis–Menten kinetics were used so that potential nonlinearities
could be described. The parameters provided in Table 4 are sufficient to
parameterize the PBPK models for torsemide and OH-torsemide as such
representing a mean individual (Model file S2).19

Statistical analysis
A previously established Bayesian-PBPK analysis was used for individual
steps of the presented translational approach.24 The objective of the
Bayesian-PBPK analysis is the identification of a large number of
physiological and substance-specific parameters. In Bayesian statistics,
parameter uncertainty can directly be derived in form of probability
distributions. Furthermore, the Bayesian formulation integrates prior
information (i.e., initial knowledge) about unknown parameters into the
estimation process. The prior information is then combined with the
information extracted from the experimental data in the so-called posterior
distribution (i.e., acquired knowledge). For most parameters, informative
prior distributions such as normal and lognormal distributions can be
defined. However, when the available information is vague, so-called
uninformative (e.g., uniform) distributions are defined. Nevertheless, for
each parameter, the lower and upper boundaries that are specified
correspond to biological information.
Distributions of these physiological parameters were refined by using a

Bayesian framework in combination with mixed-effects modeling.24, 48, 49

The hierarchical structure of the mixed-effects model separates the
individual level from the population level. At the individual level, the
experimental data were provided for each individual and the PBPK model
describing the experimental data is specifically parameterized for the
individual. At the population level, all individual parameters are assigned a
population distribution and the population distribution itself was identified
in the Bayesian-PBPK analysis. The resulting complex distribution is
identified via a Markov chain Monte Carlo (MCMC) approach (see also
Supplementary Methods).50, 51

For each application of the Bayesian-PBPK analysis, one long MCMC
sample was generated by drawing 150,000 samples from of the posterior
distribution. The Gelman and Rubin convergence measure (R̂) was
calculated to determine the point of convergence of the chain of samples,
since only the converged portion of the chain represents the posterior
distribution.52, 53 Convergence was determined after 50,000 iterations.
From the remaining 100,000 iterations, a random and independent
subsample of 500 was identified for the analyses and simulations that are
presented (see also Supplementary Methods).
The Bayesian-PBPK analyses were qualified by performing population

simulations that compare the assessed interindividual variability with
experimental data from individuals who were not integrated into the
analyses. Therefore, a virtual population was created based on the
subsample from the posterior distribution. Each virtual individual assessed
in this analysis was created randomly, using age, body height, body
weight, and BMI within the overall range of the study population (Table 1).
To create a new virtual individual, a random parameter vector was drawn
out of the updated population distributions using the posterior subsample.
The population distributions themselves were created by taking the
maximum posterior estimates of the population parameters (mean value
and standard deviation). For a detailed description of how a new individual
is sampled,24 correlation analyses were performed by calculating Pearson’s
linear correlation coefficient. Significance of the difference between mean
values was tested using a two-sample t-test. Significance level was 0.05.

Implementation
The translational approach including the Bayesian-PBPK analyses was
implemented in Matlab® (version R2013b; MathWorks, Natick, MA). The
PBPK models were created using the software tools PK-Sim® (version 5.3.2)
and MoBi® (version 3.3.2). PK-Sim and MoBi are both part of the
Computational Systems Biology Software Suite, which is a commercial
software package from Bayer AG, Leverkusen, Germany, and for which
academic licenses are available free of charge. It further consists of R and
Matlab Toolboxes, which represent interfaces to MoBi, such that
parameterization and simulation of a PBPK model created within PK-Sim
is possible also in external software. This allows to integrate the simulation
into complex workflows. Computation was performed on a computer
cluster running the SUSE Linux Enterprise Server 11 SP3 operation system.
The cluster consists of 36 knots whereby each knot consists of two CPU

containing 16 cores. Model evaluations were parallelized such that each
individual was evaluated on a single core.
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