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Abstract

The Lone Star tick, Amblyomma americanum, is endemic to the southeastern United States and 

capable of transmitting pathogenic diseases and causing non-pathogenic conditions. To remain 

firmly attached to the host, the tick secretes a proteinaceous matrix termed the cement cone which 

hardens around the tick’s mouthparts to assist in the attachment of the tick as well as to protect the 

mouthparts from the host immune system. Cement cones collected from ticks on a host are 

commonly contaminated with host skin and hair making analysis of the cone difficult. To reduce 

the contamination found in the cement cone, we have adapted an artificial membrane feeding 

system used to feed long mouthpart ticks. Cones collected from in vivo and membrane fed ticks 

are analyzed to determine changes in the cone morphology. Comparisons of the cement cones 

using light microscopy shows similar structures and color however using scanning electron 

microscopy the cones have drastically different structures. The in vivo cones contain fibrils, sheets, 

and are heavily textured whereas cones from membrane fed ticks are remarkably smooth with no 

distinct structures. Analysis of the secondary protein structures using FTIR-ATR show both in vivo 
and membrane fed cement cones contain β sheets but only in vivo cement cones contain helical 

protein structures. Additionally, proteomic analysis using LC–MS/MS identifies many proteins 

including glycine rich proteins, metalloproteases, and protease inhibitors. Proteomic analysis of 

the cones identified both secreted and non-secreted tick proteins. Artificial membrane feeding is a 

suitable model for increased collection of cement cones for proteomic analysis however, 

structurally there are significant differences.
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1. Introduction

In order to reach the nutritious bloodmeal, ticks must penetrate the host’s skin with the 

hypostome and are assisted by the presence of recurved teeth along the hypostome surface. 

Adult Ixodid ticks stay attached to the host for 7–21 days dependent on the species, and 

consequently firm attachment to the host by way of a cement cone is required. Tick feeding 

is divided into three general stages: attachment, slow feeding, and fast feeding (Anderson 

and Magnarelli, 2008; Kemp et al., 1982). The attachment phase has multiple steps 

including identification of a vertebrate host, penetration of the barbed mouthparts deep into 

the dermis, encasement of the hypostome in a narrow secreted cement cone for a stealthy but 

secure attachment and to provide a conducive environment for the injection of pathogenic 

microbes during the bloodmeal (Alekseev et al., 1995; Anderson and Magnarelli, 2008). The 

cement cone protects the mouthpart from the host immune system (Alekseev et al., 1995) 

while also anchoring the tick into the host dermis. The proteinaceous matrix of the cement 

cone is secreted by both longirostra (long mouthparts) and brevirostra (short mouthparts) 

tick species (Kemp et al., 1982).

Ticks secrete two types of cement, a primary “core” cement and a secondary “cortex” 

cement. The primary secretion, or the core, has been noted as early as 5–30 min after 

attachment (Gregson, 1960; Kemp et al., 1982). The core cement hardens almost 

instantaneously once in place, while the cortex cement secretes from the tick for multiple 

days and has a graduate hardening process (Kemp et al., 1982). Although both the core and 

cortex cement are predominantly proteinaceous, the core cement also contains lipids while 

the cortex cement has more carbohydrates than lipids (Kemp et al., 1982; Moorhouse and 

Tatchell, 1966; Stone et al., 1977). The relative quantities of amino acids in the cement cone 

revealed that small amino acids such as glycine, serine, and leucine were the most abundant, 

followed by tyrosine, an amino acid known for its cross-linking properties (Kemp et al., 

1982). Although tyrosine is present, there is currently no evidence regarding its role in the 

protein structure or the aggregation of proteins for the formation of the cement cone.

The majority of research regarding the cement cone structure comes from the study of tick 

bite site biopsies. Using common histological stains, hematoxylin and eosin, the cement 

cone can be identified by its bright pink color (Chinery, 1973). Differences in the core and 

cortex cement are clearly visible after histology staining and can give some insight into the 

formation of the cement and how feeding takes place through the cement. The core cement 

lies close to the hypostome and forms a tapered tube in which the hypostome fits. Transverse 

cuts of the biopsy indicate that the primary cement is almost perfectly circular indicating 

that full coverage of the hypostome is important in preventing host detection of the 

hypostome (Chinery, 1973). The cortex cement is layered on the exterior of the core cement, 

coming into direct contact with the host skin (Gregson, 1960; Kemp et al., 1982). The 

strands of the fully cured cortex cement are intertwined with the surrounding skin tissue 

(Chinery, 1973) allowing for a more secure attachment.

Adhesive protein secretions are produced in many other invertebrates for structures such as 

egg casing adhesives, spider silk, and barnacle adhesive. Analysis of the protein composition 

of these other invertebrate adhesive secretions revealed over-representation of small amino 
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acids, glycine and serine being the most prevalent (Li et al., 2008) similar to the amino acid 

composition found in tick cement proteins. Insect egg casing adhesives can be found as 

either hydrogel with high elasticity and tack or as a glue which becomes tough and dry 

through the evaporation of the solvent (Li et al., 2008). Proteomic analysis of the egg casing 

adhesives revealed mostly large molecular weight proteins (more than 75 kDa) except for 

shield bugs which contain proteins spanning the entire range of molecular weights according 

to SDS-PAGE (Li et al., 2008). Various spider silk formulations are used as a cocoon to 

protect the spider from the environment during development, adhesive to secure the spider 

webbing and egg casings to the substrate, and webbing to provide safety and assist in 

capturing food (Winkler and Kaplan, 2000). The most commonly studied spider silk is 

dragline silk which has high tensile strength and is commonly comprised of only a few 

proteins. These proteins self-assemble into crystalline repeats which are bound together by 

disulfide bond formation, glycosylation, or cation interactions (Winkler and Kaplan, 2000). 

Barnacles also secrete an adhesive cement which is used to firmly adhere to their substrate 

however, barnacle cement differs from the other adhesives listed here as the protein 

composition of barnacle cement contains cysteine repeats (He et al., 2013) rather than a 

large number of glycine repeats. However, the two-cement process of barnacles (Burden et 

al., 2012) mimics the two-cement composition of tick cement.

The focus of tick cement cone research has shifted in the last 40 years. Original research of 

the topic focused on identifying structural characteristics of the cone and using histological 

staining to uncover bits of information regarding its composition (Kemp et al., 1982; 

Moorhouse and Tatchell, 1966; Stone et al., 1977). As molecular biology based techniques 

improved, the focus began to shift towards identifying probable cement proteins from 

sialotranscriptomes and understanding the proteins responsible for the makeup of the cement 

cone to exploit these proteins for vaccine development (Binnington and Kemp, 1980; Bishop 

et al., 2002; Havlíková et al., 2009; Karim and Ribeiro, 2015; Kemp et al., 1982; Kim et al., 

2014; Maruyama et al., 2010; Zhou et al., 2006). However, structural and proteomic research 

of the cement cone has been largely lacking in the last 10–15 years due to the difficulty in 

collecting cement cones which remain embedded in the skin of the host. Another 

complication in cement cone research is the solubility of the cement cone. The curation 

process for the cement formation results in an extremely hard cone which is difficult to 

solubilize. Solubilization has been most successful in hot acids or bases (Kemp et al., 1982), 

however at these extreme conditions identification of proteins is difficult as such harsh 

conditions can undergo hydrolysis. The use of molecular techniques and the development of 

an artificial membrane feeding system allow the tick research community to circumvent this 

problem. Common artificial feeding methods involve feeding the tick via a capillary tube 

fitted on its mouthparts; however, this does not simulate a natural feeding environment, and 

feeding cannot proceed for multiple days as with in vivo feeding. To better replicate natural 

feeding, membranes are now being used to simulate skin and the ticks feed on a blood pool 

supplied underneath. This method has been used to feed multiple tick species with varying 

mouthpart sizes(Andrade et al., 2014; Fourie et al., 2013; Kröber and Guerin, 2007a, 2007b; 

Oliver et al., 2016). Previous studies using Amblyomma hebraeum have shown cement 

cones produced on the underside of the membrane to be easily collectable without the 

inference of the host dermis (Kröber and Guerin, 2007b). Here, we utilized an artificial 
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membrane feeding system to farm cement cones from adult female Amblyomma 
americanum ticks. We have used multiple techniques to compare the cones collected from in 
vivo fed and membrane fed ticks to identify the strengths and weaknesses of artificial 

membrane feeding for cement cone research.

2. Materials and methods

2.1. Materials

All common laboratory supplies and chemicals were purchased from Sigma-Aldrich (St. 

Louis, Missouri) or Fisher Scientific (Grand Island, New York) unless otherwise specified.

2.2. Tick rearing

Adult A. americanum ticks were purchased from the Tick Rearing Facility at Oklahoma 

State University and maintained at the University of Southern Mississippi according to 

established methods (Patrick and Hair, 1975). The adult ticks were maintained at room 

temperature with 90% relative humidity and a long light cycle of 14 h light 10 h dark. All 

animal work was conducted according to the approved protocol by the institutional Animal 

Use and Care Committee (IACUC) of the University of Southern Mississippi (protocol# 

15101501).

2.3. Assembly of an artificial membrane feeding apparatus

Acrylic chambers were sculpted to fit precisely into the well of a six-well microplate 

(Kröber and Guerin, 2007a). Silicone membranes were prepared by mixing 3.3 mL of 

silicone oil and 10 g of Elasatosil E4 silicone glue (Wacker, Munchen, Germany), with 26 

mL toluene (Andrade et al., 2014). This mixture was stirred on a magnetic stir-plate for 20 

min at 600 rpm. Lens paper was cut into 3 cm by 3 cm squares. The silicone mixture was 

poured into a petri dish for a larger surface area and the lens paper squares were carefully 

swiped over the surface of the silicone in order to coat one side of the lens paper. The one-

sided silicone squares were hung to dry for 48 h in a vented chemical hood. After the 

silicone membranes were dried, fiberglass mesh which had been precisely cut to fit inside 

the acrylic chamber was carefully glued to the non-coated side of the silicone membrane 

using Elastosil E4. The reinforced membranes were then glued to the bottom of the acrylic 

chambers with the same silicone glue. This glue was allowed to dry for at least 24 h before 

used for feeding. Excess membrane was trimmed from the circumference of each chamber 

to ensure a proper fit into the six-well microplate. Chambers were also submerged in 70% 

ethanol to test for membrane integrity before feeding (Andrade et al., 2014).

2.4. Collection of cement cones from in vivo fed ticks

A total of 50 female and 25 male ticks were placed onto the back of a sheep and enclosed in 

a sock glued to the sheep. Ticks were manually removed at regular intervals as needed for 

other ongoing experiment using forceps. All non-treatment ticks are inspected for cement 

cone formation. Pictures of intact cement cones were taken with a Dino Light camera. Cones 

were carefully removed by pulling the cone from the tick mouthparts using sharp point 

forceps and stored dry at −80 °C until analyzed. Skin contaminate and hair can often be 
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identified and care is taken to remove what is clearly not cement however, it difficult to 

remove all layers of skin as the color of the cement and skin are similar.

2.5. Collection of cement cones from membrane fed ticks

A total of 15 females and 5 males were placed into an artificial feeding chamber. Animal 

hair collected from a local pet grooming facility was then placed on top the silicone 

membrane to simulate host fur and animal scent to the membrane. The animal hair is washed 

with a non-medicated pet shampoo prior to being sheared from the animal. Using a cotton 

stopper, the total volume of the chamber was reduced to force the ticks to interact with the 

membrane. Blood was collected from a local abattoir who regularly slaughters bovine and 

porcine animals. Blood is defibrinated by manual agitation using a plastic stirring rod, large 

clots were removed manually and small clots by straining. Defibrinated blood was stored for 

up to two weeks at 4 °C as 25 mL aliquots until used and 3–4 mL aliquots were pre-warmed 

to 37 °C, added to a single well of a 6-well plate and the feeding chamber was placed into 

the well so that the membrane comes into direct contact with the blood. To maintain the 

optimal temperature for feeding, the feeding system was placed in a 37 °C incubator. The 

blood was changed twice daily and the membrane was rinsed with a PBS solution with 2% 

Penicillin/Streptomycin at each blood change (Andrade et al., 2014). The ticks were 

monitored daily for attachment and changes in engorgement. Ticks can be fed up to 20 days 

and cones can be collected at any time. The outside of the silicone membrane was examined 

daily for the presence of cement cones and the cones were removed with sharp pointed 

forceps during the course of blood feeding. Cement cones were collected from various time 

points including 24 h, 3 days, 5 day, and 7 days after tick attachment. All cones collected are 

from feeding females except for one male cone which was used for FTIR. Cones from 

membrane fed ticks are rinsed with PBS with penicillin/Streptomycin prior to removal and 

are placed in 1.5 mL microcentrifuge tubes and placed at room temperature for 24 h to dry 

the cones and are then stored at −80 °C.

2.6. Scanning electron microscopic analysis

Cement cone samples were oriented and mounted onto standard aluminum scanning electron 

microscopy (SEM) mounts with carbon conductive adhesive tabs and were coated with a 

thin deposit of silver using a Quorum Emitech K550X (East Sussex, United Kingdom) 

sputter coater to remove any charging that may occur on the surface of the sample. Electron 

micrographs were captured with an FEI Quanta 200 (Hillsboro, Oregon) environmental 

scanning electron microscope (ESEM) operating in high vacuum mode at an accelerating 

voltage range of 10 kV to 20 kV.

2.7. Fourier transform infrared spectroscopy – attenuated total reflectance

The Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (FTIR-ATR) 

spectra were obtained for in vivo and membrane fedcones. More than 300 scans were taken 

to increase the signal to noise ratio. Spectra were deconvoluted using Fityk 0.9.8 software 

(Wojdyr, 2010). Gaussian equations were applied to the Amide II peak until the 

deconvoluted spectrum matched the original curve. Secondary peaks were identified and 

peak wavelengths matched to known secondary structures.
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2.8. Proteome

Cement cones collected from in vivo and membrane fed ticks were grouped accordingly and 

each group placed in a 1.5 mL micro-centrifuge tube with 250 μL of 8 M urea. The tubes 

were secured to a vortex and allowed to vortex overnight. The samples were centrifuged 

briefly on a small tabletop centrifuge to sedimentate the remaining insoluble cement 

fragments and the supernatant was removed. The supernatant was mixed in a 1:1 ratio with 

reducing Laemmali sample buffer (Bio-rad, Hercules, California) and subjected to SDS-

PAGE using AnykD gels (Bio-Rad). After electrophoresis, the gel was stained using 

GelCode Blue overnight and destained with 3–5 washes of 20 mL water. Gel images were 

obtained using Bio-Rad Versa Doc white light transillumination.

Bands were manually excised from the gels and washed with 100 mM ammonium 

bicarbonate buffer (pH 8.5) and 100% acetonitrile mix (v/v, 1:1) until the color disappeared. 

The gel slices were washed with HPLC grade water followed by 100% acetonitrile, and then 

dried in a speedvac as described by Chao et al. (2004). The proteins were digested with 

trypsin (0.5 mg/mL, Promega, Madison, WI, USA) using a 50:1 ratio (protein:trypsin) 

overnight at 37° C. Hydrophilic peptides were eluted using NANOpure water, followed by 

the elution of hydrophobic peptides with 50% acetonitrile with 5% trifluoroacetic acid. The 

eluted peptides were dried in a speedvac and resuspended in water/acetonitrile (50:50) and 

0.1% formic acid to a final peptide concentration of 1 mg/mL. The digested samples were 

analyzed on a LTQ Vello mass spectrometer (Thermo Electron) with in-line HPLC as 

described by Chao et al. (2004).

2.9. Data analysis

Protein identification was performed using the Sequest algorithm (Eng et al., 1994) in the 

Protein Discoverer v. 1.4 (Thermo Electron, Woburn, MA, USA) and the tick database 

containing 3500 tick specific polypeptides (Francischetti et al., 2009; Karim et al., 2011). 

The identified peptides were further evaluated using the charge state versus cross-correlation 

number (Xcorr). The criteria for positive identification of peptides were Xcorr >1.5 for 

singly charged ions, Xcorr >2.0 for doubly charged ions, and Xcorr >2.5 for triply charged 

ions. Only the best peptides were considered. To positively identify a protein, one tryptic 

peptides had to detect in all three analysis, or at least two different peptides had to be 

detected in a single analysis. Nonspecific matches (i.e., false positive matches) were 

eliminated by searching with publically available rabbit and sheep databases on NCBI (to 

eliminate any host proteins) and a reversed protein sequence database generated from A. 
americanum sialome sequence (Karim and Ribeiro, 2015).

3. Results

3.1. Feeding of tick using artificial membrane feeding

Ticks were placed inside the acrylic chamber and inspected every 24 h to gage attachment 

success. During the first inspection, it is common to find a majority of the tick have climbed 

to the cotton stopper and these ticks are placed back to the bottom of the chamber 

underneath the animal hair to force interaction with the membrane. Ticks which are not 

attached after 48 h are removed from the chamber as they are unlikely to attach after that 
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point. After 48 h, the attached ticks are monitored daily for changes in female size indicating 

successful feeding. The underside of the membrane is examined at each cleaning to verify 

tick attachment and to search for the presence of fungal contamination or cement cones 

which can be removed as experimental design dictates (Fig. 1).

By checking the membrane each day, cement cone growth can be monitored and 

documented. As seen in Fig. 1, the ticks cluster together when feeding. Because of this, tick 

attachment does not always happen at straight through the skin or membrane, often times 

happening at an angle where the hypostome takes a longer path to the blood supply. The two 

ticks visible through the chamber wall are a good example of this. The tick to the right has 

attached directly through the membrane and the hypostome is protruding through the 

membrane more than the surrounding hypostomes. The tick to the left has attached at an 

angle most likely because of crowding. The hypostome of this tick does not protrude 

through the membrane as extensively as the first tick. It would be interesting to correlate the 

angle of attachment and consequently the amount of hypostome present on the other side of 

the membrane with the engorgement size and engorgement time to determine if there is any 

change in the ability to feed.

The daily observation of the attached ticks revealed some differences between in vivo and 

membrane fed ticks. Ticks which are fed on live animals attach within the first 24 h; 

however, tick which are fed using the in vitro feeding system show a delayed attachment 

with the highest attachment rates after 48 h. Along with the increased attachment period, 

there is also a decrease in total tick attachment. Feeding of ticks on live animals during the 

proper seasons often results in attachment rates close to 90%. However, when ticks are fed 

using the membrane feeding system, attachment rates range between 50 and 75%.

A. americanum fed on live animals reach an engorged state after 12 days of feeding. The 

size of female ticks changes slowly during the first 5–7 days with drastic changes taking 

place in the final 3–4 days of feeding. Ticks fed using an in vitro feeding system require a 

longer feeding period before reaching the fast feeding stage (Fig. 2). The ticks fed using 

artificial membrane feeding can be examined in lab using a dissecting microscope so 

changes in tick size can be more clearly distinguished. Ticks that are fed in vivo can only be 

examined with a microscope after being removed from the host. The progress of feeding 

from 2 to 10 days (Fig. 2A–E) shows that it takes more than 10 days for the tick to enter the 

fast feeding stage. Fig. 2F shows a tick that has been attached to the membrane for 24 days. 

After 15 days of feeding changes in size slowed. Eggs were visible underneath the cuticle 

however, the tick was unable to detach. The tick was forcibly removed and placed in a 

humid chamber for ovipositioning however, no eggs were deposited.

Nymphal ticks were also fed using the artificial membrane feeding system (Fig. 3). In 

laboratory settings, nymphs are commonly fed on small mammals such as hamsters or mice. 

Nymphs fed in the artificial membrane feeding system were weighed and stored in a plastic 

vial inside a high humidity chamber to monitor the molting process. The nymphal ticks that 

fed to engorgement weights higher than 10.0 mg (one exception of 7.30 mg) molted into 

female adult ticks (Table 1). Of the 11 nymphs that successfully fed and molted, seven 

molted into adult females.
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3.2. Description of cement cone

In Fig. 4 two female ticks are shown which have been removed from a host sheep. The 

cement cone is visible from the dorsal and ventral views (Fig. 4A and B, respectively) and 

the hypostome is visible through the cone. The tip of the cone is tinted a slight red color 

indicating that it may have been in direct contact with blood. The cone appears to be 

relatively smooth with a pointed tip. It is important to note that it is difficult to remove all 

layers of skin on the cement cone and that some of what is visible is likely residual skin 

layers.

Ticks fed using an artificial membrane feeding system also form a cement cone that 

surrounds the mouthparts (Fig. 5). Inspection of these cones can take place much earlier than 

in vivo fed ticks (Fig. 5A) and the same cement cone can be observed the course of the 

bloodmeal. The general morphological characteristics of the cone remain regardless of 

feeding type. The cone is slightly transparent with the mouthparts still visible through the 

cement (Fig. 5B) as seen in the in vivo fed cones (Fig. 4) and the cement cone base is wide 

across the surface of the membrane. However, there is a lack of structural definition in the 

membrane fed cement cones as observed when removing the cones from the tick’s 

mouthparts. When the cone is grasped with the forceps, there is more give to the cone 

indicating that the cone has not completed the hardening process. To better preserve the 

microstructures on the cement cone surface, ticks can also be removed from the membrane 

by cutting the membrane away and the cones can be visualized on the mouthparts (Fig. 5C) 

and removed the same as in vivo fed cones. By removing cement cones in this way 

differences in cement cone size and shape can clearly be seen. Often the cones are flat and 

widespread on the tick mouthparts (Fig. 5C).

3.3. Comparison of SEM images

Cement cones collected from both in vivo (Fig. 6) and membrane (Fig. 7) fed ticks were 

subjected to SEM for further analysis of the cone surface. Fig. 6 examines two in vivo cones 

(Fig. 6A–D and E–H). Each in vivo cone is approximately 250 μm at the base and extends 

between 300 and 700 μm. The outer surface has regions which appear relatively smooth near 

the tip of the cone (blue arrow) as well as highly textured regions near the base. In Fig. 6B 

the cone is positioned such that the opening in which the mouthparts fit is visible. In this 

view, the layering of the cone can easily be seen. The layering of the protein secretions 

causes a basket weaving structure consisting of both sheet like arrangements and fiber 

arrangements (Fig. 6C). Interestingly, this view also shows the presence of small circular 

indentations aligned along the inner edge of the cone opening (yellow arrow). Close 

examination of the outer regions of the cone shows an overall smooth appearance with 

extensive flaking near the edges. Similar structures can be found in the second cone (Fig. 

6E–H). Images 6F and 6 G exhibit the same sheet and fiber basket weaving as seen in Fig. 

6B. In addition to these assemblies, Fig. 6G also reveals clusters of clumps similar to 

cauliflower. The inner edge of the mouthpart opening visualized in Fig. 6H also contains the 

indentations (yellow arrow) as seen in Fig. 6C, although the definition is decreased.

Fig. 7A–D shows the structural morphology of an artificially membrane fed cone collected 

24 h after attachment and compared to a membrane fed cone 7 days post-attachment (Fig. 
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7E–H). The 24 h membrane fed cone is much smaller than the in vivo fed cones, measuring 

250 μm across and approximately 100 μm long (Fig. 7A). The overall topography of the 

cone exhibits large mounds (Fig. 7A), which are not present in any of the cones collected 

from later time points. Closer examination of the cone reveals two distinct textures (Fig. 

7B), a remarkably smooth surface located closest to the base (red arrow) and a more porous 

region near the tip of the cone (blue arrow). Close examination of the cone base (Fig. 7C) 

shows areas which were previously heavily textured prior to the full curation of the primary 

cement.

As the feeding progresses, the cement additional layers of cortex cement adds bulk to the 

cement cone. In Fig. 7E, the cone is turned upward so that the location of the hypostome can 

be clearly seen. This cone has a smooth micro surface with a varied topography of the cone 

as a whole. The outer surface (Fig. 7F) displays a smooth surface similar to that seen in Fig. 

7C. However, irregular features are observed on the surface, which maybe the result of 

contamination from immune cells found in the blood or a fungal contaminant resulting from 

the constant moist conditions. Inspection of the inner surface of the cone, where the 

hypostome would have been located (Fig. 7G), reveals a pattern of indentions (yellow 

arrow). Close examination (Fig. 7H) of this area shows that the indentions (yellow arrow) 

are formed in rows down the length of the cone opening. Interestingly, the fibrous/basket 

weaving formations seen in in vivo formed cement cones (Fig. 6) are completely absent 

from membrane fed cones.

3.4. Comparison of fourier transform infrared spectroscopy attenuated total reflectance 
(FTIR-ATR) images

In order to obtain information regarding the protein composition of the cement cones, FTIR-

ATR was used to determine the secondary structures of the proteins present on the outer 

surface of the cone. Using this method, it was determined that all cement cones (in vivo and 

membrane fed) contain to some extent β-sheet structures and most of the cement cones 

contain β turns (Figs. 8 and 9, respectively). The cones collected from in vivo fed ticks also 

possess proteins in a helical confirmation (310 helix in Fig. 8A and α helix in Fig. 8B). In 

each in vivo cone, β sheet structures represent over half of the total structures found (Fig. 

8A–B). The percent of helical structures present varies between the in vivo fed cones, with 

more helix formation in the lab fed cement cone (Fig. 8A) compared to the field collected 

cement cones (Fig. 8B). The remaining secondary structure identified in Fig. 8B corresponds 

to spectra from β turns.

Cones collected from in vitro fed ticks have a markedly different spectrum from in vivo fed 

cones. Each of the membrane fed cones (Fig. 9A–C) contains only two secondary structures. 

Analysis of a cement cone collected from a membrane fed female tick after just 72 h of 

feeding reveals almost exclusively random coil structures with a minor portion of the spectra 

assigned to β-sheet structures (Fig. 9A). The remaining two cones collected from membrane 

fed ticks (female after seven days of feeding and male after five days of feeding) show less 

variation in their structural analysis (Fig. 9B and C, respectively). These cones contain 

predominantly β sheet structures (Fig. 9B–C). The remaining structures of the cement cones 

analyzed in Fig. 9B–C consists of β-turns.
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3.5. Comparative list of identified proteins

The solubilization of tick cement cones in 8 M urea does not dissolve the cone completely 

but does allow for the investigation of the soluble fraction of the cement cone. SDS-PAGE 

analysis of the soluble proteins shows multiple proteins ranging from 10 to 250 kDa (Fig. 

10). To identify these proteins, the bands were subjected to trypsin digestion in gel segments 

as indicated by the boxes in Fig. 7. The digested protein fragments were subjected to LC–

MS/MS and mapped using a previously generated transcriptome from the salivary glands of 

A. americanum (Karim and Ribeiro, 2015). It is important to note that there are many more 

proteins present in the SDS-PAGE than are identified by LC–MS/MS. The peptides 

identified by LC–MS/MS are first mapped using host based databases. The remaining 

unidentified peptides are then mapped using to the tick sialotranscriptome. Any peptide that 

does not meet the strict criteria is removed from the analysis. This causes a large number of 

peptides to remain unidentified.

The proteins identified in the segments SF1-SF9 from in vivo cones show interesting results 

(Table 2). Only seven A. americanum proteins were identified from only four gel segments 

(SF2, SF3, SF4, and SF9). Four of these proteins are considered intracellular proteins with 

functions necessary for cell maintenance (Putative deSUMOylating isopeptidase, putative 

cytochrome p450, putative ribosomal protein I6, and putative Histone H2B). The remaining 

proteins identified from the cement cones include a glycine rich protein of nearly 70 kDa, a 

metalloprotease, and a hypothetical secreted protein with no known function. Also identified 

from the cement cones were host proteins. This is typical in in vivo cones as there is skin 

and hair embedded within the cement structure and it is possible for proteomic analysis of in 
vivo cones to contain more host proteins than tick proteins. It is also important to note that 

the remaining cement present after solubilization may contain the bulk of cement proteins 

and only the outer layers and host contaminates were solubilized by the urea. This would 

account for the low identification of tick proteins. The use of artificial membrane feeding 

reduces the amount of host contamination present in the cones however, proteins from the 

blood can also be sources of contamination. Cones that were collected from membrane fed 

ticks resulted in the identification of many more proteins than those found in in vivo cones. 

From the eight segments (AF1–AF8) excised from Lane 3 of Fig. 10 from an artificial 

membrane collected cone, six of these segments (AF2, AF4–AF8) led to the identification of 

a mixture of 26 secreted and non-secreted proteins (Table 3). Identified secreted proteins 

include glycine rich proteins, serine protease inhibitors, metalloproteases, and unclassified 

secreted proteins.

4. Discussion

4.1. Cement cones from both feeding systems have similar characteristics

The tick hypostome has recurved teeth which are believed to assist the tick in piercing the 

host skin and initial attachment to the host. The firm attachment of the tick to the host is 

necessary for the tick to maintain access to the bloodmeal. Soon after attachment, the tick 

begins to secrete a highly proteinaceous saliva into the host. Some components of this saliva 

begin to aggregate and form a hardened cement surrounding the mouthparts, referred to as a 

cement cone. While fluid, this cement intertwines itself between the layers of the host’s skin 
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and fits firmly within the bite cavity. Cement cones are secreted in the first days of feeding 

and harden through the following days. This would imply that after a certain point in feeding 

the cement cone has completed its formation. Although the cones here have been collected 

at different time points, the cement cone formation is complete after approximately four 

days (Moorhouse and Tatchell, 1966). The complete formation of the cement cone allows for 

the comparison of the cement cones collected after any point after four days of feeding. As 

the tick is forcibly removed, the cement cone is often left buried in the skin of the host as 

seen with the left tick presented in Fig. 4. The cone extends past the hypostome in both in 
vivo and membrane fed ticks (Fig. 4A and B, respectively). Upon examination the cement 

cone completely encompasses the tick mouthparts. This indicates that there must be some 

opening of the cone to allow for the uptake of the blood-meal. Histological staining of tick 

bite site biopsies has revealed an opening at the tip of the cone (Chinery, 1973). This 

opening was present through the entirety of the cone so that the blood was drawn into the 

cone and then taken into the tick by its hypostome. This way, the hypostome never comes 

into direct contact with the in vivo blood pool reducing the chances of immune system 

activation (Binnington and Kemp, 1980; Bishop et al., 2002). Our finding of cone 

discoloration near the tip of the in vivo cone supports the histology data. Many of the 

proteins previously identified from solubilized cement cones are host contaminate proteins 

even when the cone has been rinsed with PBS and ethanol. The presence of these proteins 

after washing is a direct consequence of the blood present within the center of the cone.

One significant difference observed between the two cones types is the changes in the curing 

process. Although the exact curing processes is not understood, in vivo fed ticks use air flow 

as a means of drying the cement (Kemp et al., 1982). This allows for both the primary and 

secondary cement to harden albeit at different rates. However, due to the lack of a dermis in 

the artificial membrane system, air flow to the cement is minimal which causes the cones to 

remain soft. The cone is still intact indicating some level of aggregation or cross-linking 

involved in the curation process. In order to collect accurate structural data from the 

membrane fed cement cones, great care is taken to remove the cone from the hypostome and 

the cone is placed into a 1.5 mL tube and the drying process is allowed to finish at room 

temperature for at least 24 h before long term storage.

It is important to note that during the cone removal process there is significant pulling of the 

hypostome. This stress on the hypostome would occur in nature when a tick is attached to an 

unsuitable location for feeding. It would be advantageous for the tick to quickly detach from 

the host to prevent possible death by being pressed against a hard surface or by being pulled 

apart. When the hypostome is pulled during the cone removal, the tick secretes a few 

microliters of saliva which is able to completely dissolve the cement cone in less than one 

minute (unpublished data). The components of this secretion have not yet been elucidated 

due to the small volume present however the use of this secretion is of interest. After the 

secretion of this compound, the cone does still persist which indicates that the tick uses this 

secretion only to loosen the hypostome for removal. This quick solubilization is remarkable, 

as the cones are otherwise insoluble in anything other than hot acids. The identification of 

the compounds present in the secretion could have many applications in the biomedical field 

such as dissolution of blood clots and plaques.
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4.2. SEM reveals differences at the cone surface

The skin of a host can be millimeters in thickness and the tick hypostome must reach 

through the full thickness to reach the bloodmeal. In vivo cones are embedded in the host 

skin and therefore create an interlocking network of host tissue and cement. Impressions of 

this network are recognizable by SEM of in vivo fed cones (Fig. 6). The layering and texture 

surrounding these cones could easily allow for a more secure attachment to the host. The 

membranes of the artificial feeding system are typically less than one millimeter and 

therefore the cone is present solely on the outer surface of the membrane removing the rigid 

surrounding matrix of the skin. This could explain the lack of layering and fibrous textures 

easily visualized in the in vivo cones.

Along the inner surfaces of the cones examined in this work, the impressions left by the 

hypostome teeth are clearly visible (yellow arrows in Figs. 6 and 7). It is a reasonable 

conclusion that the indentions found are caused by these structures on the hypostome. When 

the cement cone is forcibly removed from the mouthparts, the hypostome remains imbedded 

in the cement and the teeth can be seen extending out of the cement (Data not shown). As 

the tick is feeding the hypostome is filled with fluid, either saliva or blood. Because of the 

presence of this extra fluid, the hypostome is slightly swollen making it fit directly into the 

sides of the cement (Chinery, 1973). As the tick finishes feeding, the hypostome no longer 

contains the same amount of fluid and therefore is smaller in size. This allows for the easy 

removal of the hypostome from the bite lesion.

4.3. Identification of two types of cement from membrane fed cones

Artificial membrane feeding of the ticks allows for the examination and collection of the 

cement cone at a much earlier point in tick feeding when compared to in vivo feeding giving 

us a unique look at the early stages of cone development. In Fig. 7, a cone collected 

approximately 24 h after attachment contains cement with two distinct differences in 

structure which could indicate at two different stages of the curation process. The smooth 

region of the cone near the base has likely been present longer and represents cement that 

has cured for a longer time. It has been documented that a primary cement is secreted in the 

early hours of feeding that cures very quickly followed by a secondary cement secreted after 

the initial attachment and has a longer curing time (reviewed in (Kemp et al., 1982)).

It is unknown how the cement cone fully hardens. It is known that insect cuticle hardens by a 

sclerotizing process which is believed to take place by protein cross-linking and dehydration. 

In insects, cuticle proteins are cross-linked together at tyrosine positions through interactions 

with quinone compounds such as catechols (Andersen, 2010). Previous proteomic analysis 

of in vivo fed cement cones from our lab (data not shown) has also found tick tissue 

transglutaminase which is able to cross-link proteins at the glutamine residues. Although 

tissue transglutaminase was not found in this study, this could be due to different 

solublization techniques or changes in the identification of transglutaminase peptides from 

the in-gel digestion.
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4.4. Secondary structures of cement proteins exhibit minor differences

Early research noted that the cone is only soluble in hot acidic or alkali solutions however 

this makes proteomic analysis difficult. This lack of proteomic data has hindered cement 

research and many current conclusions about tick cement are purely speculative. The 

commonalities of tick glycine rich proteins and spider silk GRPs is a prime example of this 

(Maruyama et al., 2010). Spider GRPs are known to be extremely long in length with 10–20 

amino acid long repeats (Tokareva et al., 2013). However, tick GRPs are smaller and repeats 

are typically 3–7 amino acids long or the repeats are lacking (Maruyama et al., 2010). To 

gather more information about the proteins present on the surface of the cement cone face, 

FTIR-ATR is used to determine protein secondary structure. The spectra for two in vivo fed 

cones (Fig. 8) show similar structural components although the amounts in which these 

secondary structures are found differ. The lack of helical structures in the membrane 

collected cones is likely due to the cone not being contaminated with host skin. The 

interlocking nature of the cement cone with the layers of the host skin would allow for skin 

cells and extracellular proteins to become imbedded within the cured cone. The fact that 

these structures are missing from the membrane fed cones goes to show that this method 

does allow for the study of tick cement cones without interfering host proteins. Comparison 

of the later fed membrane cones also shows that there is no significant difference between 

the secondary structures found in cones from male and female ticks. The presence of a full 

sclerotized scutum covering their backs, males do not expand during feeding as females do, 

and therefore they feed intermittently on the host taking in multiple small bloodmeals from 

the same host. The shorter feeding time of males also contributes to the difficult task of 

collecting cement cones from in vivo sources. Proteins of the male salivary glands have only 

recently begun to be investigated.

Along with time comparable cones from in vivo and artificial membrane sources, a cone 

removed from a membrane fed female was removed after just 3 days of feeding. This cone 

did not show a predominance of β-sheet structures as seen with both in vivo and longer 

feeding membrane cones but rather contained almost exclusively random coil structures 

(Kong and Yu, 2007). As seen with early cones in the SEM (Fig. 7A–D), there is a curing 

process that occurs which hardens the cone. Although it is not currently known how this 

process occurs, the data shown here indicates that a conformational shift in the proteins may 

play a role in this hardening process. This needs to be further investigated by measuring the 

secondary structures of cones collected at multiple time points of the feeding.

4.5. Proteins of in vivo and membrane fed cement cones contain the same protein families

Identification of proteins from the cement cone is a difficult process. To date, the only 

proteins known to be present in the cement cone include GRPs isolated from two different 

tick species (Rhipicephalus appendiculatus and Haemaphysalis longicornis) using 

immunochemistry (Bishop et al., 2002; Havlíková et al., 2009) and chitinase which was 

experimentally proven using RNA interference (Kim et al., 2014). However, direct 

solubilization of the cone for proteomic studies typically reveals more host proteins than tick 

proteins. The interlocking nature of the cement cone with the host dermis makes the 

collection of a cone free of host proteins impossible. Artificial membrane feeding removes 

the host dermis and therefore allows for a cement cone completely free of host skin cells.
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When investigating the protein composition of cement cones, a large focus is placed on 

finding the structural components. However, in the comparative proteomes listed here 

(Tables 2 and 3) there are few proteins which would serve as a scaffolding for the cement. 

Proteomic analysis of the in vivo cement cones results in only seven A. americanum proteins 

identified from four gel regions. These proteins include both intracellular proteins such as 

cytochrome p450, ribosomal proteins, and histone components. There are two explanations 

for the presence of these proteins in the cement cone. The first is that pieces of the tick 

hypostome remain embedded in the cement and the cells are lysed during the solublization 

process releasing intracellular proteins. The second possible explanation involves the 

unconventional secretion of intracellular proteins using exosomes. It has been hypothesized 

that the secretion of these intracellular proteins could help identify new functions for these 

proteins (Díaz-Martín et al., 2013). Proteins identified from the cement cone which are 

either secreted or have enzymatic function which could be used to the benefit of the tick 

include deSUMOylating isopeptidase, glycine rich proteins, and a metalloprotease. 

DeSUMOylating isopeptidases are involved in the removal of small ubiquitin-like modifiers 

which can affect cellular processes and act as gene expression modifiers (Li et al., 2005). 

The presence of this protein in the cement cone may be the result of residual tick cells or it 

may be secreted from the salivary glands into the host to modulate the protein functionality 

of host immune proteins. A glycine rich protein was also identified in the in vivo cement 

cone proteome. GRPs are a class of proteins which contain more than 20% glycine in the 

primary sequence. These proteins are the major component of spider silks (Tokareva et al., 

2013; Winkler and Kaplan, 2000)and are also found abundant in plant cell walls(Sachetto-

Martins et al., 2000). It is hypothesized that the GRPs present in the cement cone give the 

cone its strength and insoluble characteristics. The third protein identified from the in vivo 
cement cone proteome which has probable function is a metalloprotease. Metalloproteases 

assist in the prevention of blood clot formation throughout the bloodmeal. The presences of 

this protein in the cement cone could be a remnant of the saliva secreted from the tick during 

feeding. It is also possible that the metalloprotease is necessary at the location of the cement 

cone to prevent blood clotting specifically at the cone by the activation of platelets by 

collagen like proteins in the cement.

The proteome assembled from membrane collected cones revealed many more A. 
americanum proteins (26 proteins from six gel sections). The membrane fed cones also 

contained intracellular proteins such as nucleoside phosphorylase, DNA replication factors, 

transcription factors, and Golgi membrane proteins. As mentioned above, these intracellular 

proteins are the result of tick hypostome cells embedded into the cement of the cone. Other 

proteins found in the membrane fed cones include metalloproteases, serine protease 

inhibitors, multiple hypothetical proteins with unknown functions, and a RIM36 like glycine 

rich protein. Thrombin is a serine protease found in the blood which is necessary to the 

formation of blood clots. The inhibition of thrombin by the protease inhibitors likely reduces 

the amount of clot formation around the cement cone. There is a high incidence of 

hypothetical proteins in the artificial membrane fed cement cone. These proteins have been 

identified as RNA transcripts from the sialotranscriptome generated for A. americanum 
(Karim and Ribeiro, 2015). However, these proteins have not been characterized in any other 

organism and so it is not possible to predict a function for these proteins.
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The presence of functional proteins within the cement cone has been investigated previously. 

Tick tissues, saliva, and cement cones were collected from R. appendiculatus and the 

lysozyme activity of the tissues was measured (Alekseev et al., 1995). Although the activity 

did not differ greatly throughout the samples, there was a distinct difference between the 

cones of female and male ticks. There was also a significant increase of the lysozyme 

activity in cones collected from ticks infected with tick-borne encephalitis virus (Alekseev et 

al., 1995). This added activity found in the cone itself leaves open the possibility for many 

other functions embedded in the cone. The presence of proteins with known enzymatic 

functions within the cement cone structure supports the idea that the cone may play more 

than just a structural role. It should be noted that the cross-linking of the scaffolding proteins 

would likely make them impenetrable to the solubilization techniques used here. The 

interaction of 8 M urea with the cement cone is likely to only occur with proteins which are 

present along the surface or that are not tightly bound to each other. To further investigate 

these proteins, the cross-linking nature of the scaffolding would need to be disrupted.

5. Conclusions

The feeding biology of adult Ixodid ticks requires their attachment onto the host for more 

than 10 days. This level of attachment is facilitated by the formation of a proteinaceous 

cement cone which is secreted from the tick’s salivary glands in the early stages of feeding. 

New approaches to tick feeding include artificial methods which utilize silicone membranes 

as host mimics and allow for more controlled experimental designs. The use of these 

artificial membrane feeding methods allows for a higher success rate of cement cone 

collection; however, there has been little work thus far comparing the tick biology between 

in vivo and membrane feeding. Here, we compare the cement cones from in vivo and 

artificial membrane feeding methods to determine the suitability of membrane feeding 

methods as a comparative feeding model. Comparison of the cones under magnification 

shows distinct differences in the appearance of the cones however, the composition of the 

cone is unlikely to change due to the change in feeding method. The structures of the cones 

are further investigated using SEM to examine the surface topography. Using SEM, a 

difference can be distinguished between the two feeding types. The formation of the cone in 

in vivo feeding takes places within the dermal layers of the host which are likely responsible 

for many of the morphological changes seen here. Another aspect of cement cone research is 

to determine the proteins which are responsible for the cone’s composition. To do this, we 

utilized FTIR-ATR to determine the secondary structures found on the cone’s surface. Each 

of the cones contained a significant proportion of β-sheet structures. In each of the in vivo 
cones, a helical structure is also present. It is possible that these helical structures are due to 

proteins synthesized by the host skin. One final evaluation compared the proteins identified 

from each cone type. Cones collected from in vivo fed ticks yielded fewer identifiable tick-

specific proteins than cones collected from membrane fed ticks. The presence of host skin 

cells on the in vivo cones are more abundant and the protein sequence database for mammals 

is more developed making them easier to identify. The study of cement cones collected from 

membrane fed ticks is an important advancement for the proteomic study of cement cones. 

Artificial membrane feeding systems also yields an opportunity to collect and study cement 

cones much earlier than in vivo feeding allows.
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Fig. 1. 
Hypostomes and cement cones on the underside of the membrane feeding apparatus. (A) Six 

hypostomes are visible piercing through the surface of the membrane. (B) The same region 

of the membrane from another angle shows the ticks in the chamber attached to the 

membrane.
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Fig. 2. 
Feeding progression of ticks using artificial membrane feeding. Pictures were taken to 

document changes in tick size as feeding continued. Ticks have been feeding for (A) 2 days, 

(B) 4 days, (C) 6 days, (D) 8 days, (E) 10 days, and (F) 24 days. (G) Attached tick can be 

seen through the chamber wall and the hypostome is visible through the membrane. (H) 

Close examination of the hypostome shows a small cement cone that has been secreted from 

the tick.
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Fig. 3. 
A. americanum nymphs fed using an artificial membrane feeding apparatus. (A) Engorged 

nymphal ticks can be seen attached to the membrane ready to drop off. (B) Comparison of 

unfed and fully engorged nymph ticks.
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Fig. 4. 
In vivo fed adult female Amblyomma americanum ticks removed from a sheep during 

feeding. The cement cone is visibly attached to the hypostome of the right tick from both the 

dorsal (A) and ventral (B) views. The cone located on the hypostome of the tick on the right 

covers the hypostome for the purpose of tick attachment and protection of the hypostome.
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Fig. 5. 
Arificial membrane fed ticks with visible hypostomes. The external view of the artificial 

membrane feeding apparatus membrane (A) allows for the visualization of the cement cone 

(B) as the cone is forming. Ticks can be removed from the feeding apparatus with cones 

intact (C) and without contamination for further analysis.
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Fig. 6. 
Scanning Electron Microscopy (SEM) images for cones collected from in vivo sheep fed 

ticks after five or more days of feeding. These cones contain multiple morphological 

characteristics such as fibers (B), layers (C and G), flaking (D) and indentions (C and H). 

The blue arrows indicate the tip of the cement cone which comes in contact with the 

bloodmeal. The yellow arrows identifies the areas of hypostome indentions. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)

Bullard et al. Page 24

Ticks Tick Borne Dis. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Scanning Electron Microscopy (SEM) of cement cones collected from membrane fed ticks. 

Comparison of a cone collected from a tick which had only been feeding 24 h (A–D) and 

shows different morphology than longer fed cones (E–H). In these cones, a distinction can 

be made between primary (D) and secondary (C) cement. The base of the cement cone is 

indicated with red arrow. Blue arrow identifies the tip of the cement cone. Also, the layering 

of the recurved teeth on the hypostome is visible along the inner walls of the cone (G and H) 

and indicated by yellow arrows. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 8. 
FT-IR spectra with Gaussian deconvolution for the identification of protein secondary 

structure. In vivo cones contain a mixture of β sheet and helical structural components.
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Fig. 9. 
FT-IR spectra with Gaussian deconvolution of membrane collected cement cones. Cones 

collected later in feeding contain primarily β sheet structures while a cone which was 

collected during the first 3 days of feeding is primairly random coil in structure.
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Fig. 10. 
SDS-PAGE of cement soluble fraction. The cones were dissolved in 8 M urea overnight and 

subsequently run on a SDS-PAGE. The bands were excised as indicated by the boxes and 

digested using trypsin. Lane 1—in vivo fed cone, Lane 2—molecular weight marker (from 

bottom: 10 kDa, 15 kDa, 20 kDa, 25 kDa, 37 kDa, 50 kDa, 75 kDa, 100 kDa, 150 kDa, 250 

kDa), Lane 3—membrane fed cone.
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Table 1

Sex of molted adult ticks and the weights of nymphal ticks fed using an artificial membrane feeding system.

Engorged nymphs that molted into adult females (mg) Engorged nymphs that molted into adult males (mg)

13.7 8.9

12.2 7.3

10.9 6.6

10.5 5.5

10.3 –

10.0 –

 7.30 –

Mean 10.7 ± 1.8 Mean 7.1 ± 1.0
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Table 2

Proteins identified from cement cones collected from in vivo fed ticks.

Gel Slice Protein ID Peptide Sequences % Coverage MW (kDa);pI

SF2 Putative deSUMOylating isopeptidase 2, 
partial
GI: 759085692

YHLMNK 3.53 19.0; 8.19

Putative cytochrome p450 4w1, partial
GI: 759084668

GRKLpK 11.93 12.7; 9.99

SF3 Putative Glycine-rich secreted cement protein, 
partial
GI: 759090220

YPGLSGLYGR 4.25 69.2; 9.41

SF4 Putative ribosomal protein I6
GI: 759086918

TGLLMVTGpYGINGcPLRR 13.12 32.1; 11.05

AamerSigP-2853 TWWSRWLSRDIFIAVVIASMSATFSWLWR 27.62 12.2; 10.46

SF9 Putative secreted metalloprotease, partial
GI: 759089918

LLGYLCVMVNSANLRYQDTVAPRVK 10.78 26.0; 7.02

Putative Histone h2b, partial
GI: 759084736

LLLPGELAK 7.89 12.8; 10.54

SF—sheep fed sample.
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Table 3

Proteins identified from cement cone collected from membrane fed ticks.

Gel Slice Protein ID Peptide sequences % Coverage MW (kDa);pI

AF2 Serine protease inhibitor
GI:805449283

LIDTPVDLALPK
LLSKLIDTpVDLALPK
MTILLpR

15.75 15.9; 6.96

Putative RNA recognition motif 
1, partial
GI:759085422

VATSRAIR
KPRLIVR

9.68 17.1; 9.99

Hypothetical protein, partial
GI:759085430

ELFDEIWTLLR 7.14 18.4; 4.48

Putative p1 ap, partial
GI:759087220

VGCPMxxxxLSARIIQCYLATRMHFYAR
KSAKMTDCSDCHATLVAASDVPPAAILTELR

17.56 37.5; 8.35

AF4 Putative tick metalloprotease, 
partial
GI:759089644

MEGLVGpRHRIEPLSVSEK
LIVLVVLVTVPTKGLEQpMLVYpRLLEER

24.37 22.5; 6.07

Putative metallopeptidase, partial
GI:759086118

IDGEKSIIQNPTEAQRK 8.37 22.8; 5.54

Hypothetical protein, partial
GI:759086210

LFAKQQGNVGAQALSPALTGKR 10.38 22.9; 9.20

Serine protease inhibitor, partial
GI:805448403

RSLAIFVpAPSSNLAALEK
VSAAKHLAVFRAGHR

13.13 28.5; 6.38

Serine protease inhibitor, partial
GI:805449067

RAQPPppVEFRVEHp
TGGKIPK

5.71 42.4; 9.20

AF5 Hypothetical protein
GI:759090180

ENLVANTVAGPALLDTAATTVR 5.58 39.1; 9.19

Putative coiled-coil domain-
containing protein, partial
GI:759087600

TEKLQFTKDEPK 2.62 52.3; 8.91

Putative tick metalloprotease, 
partial
GI:759089956

QLNVSNSTFEEK 4.98 27.0; 5.08

AF6 Putative cement protein RIM36, 
partial
GI:196476756

VITDPSTGLPIAQAVYIGIVR 12.65 16.8; 9.41

Putative purine nucleoside 
phosphorylase, partial
GI:759086528

VFGLSLISNECISNYDTQQVANHEEVLETGQKRK 14.47 26.2; 8.76

Putative secreted protein 
precursor, partial
GI:759089510

NARDYEcNNHHEENYCPGQSpLQCKGGNVCVCDR 18.78 21.0; 8.40

AF7 Hypothetical protein
GI:759090180

ENLVANTVAGPALLDTAATTVR 5.58 39.1; 9.19

AF8 Putative DNA replication 
licensing factor mcm4 
component
GI:759087732

KAIACLLFGGSVKR
ETVPNVPIKPGLEGYALPR
ITAIGVYSIK
KGPQEK
cNSDRAGQPKCPVDpFFIVpDK
HLASSPNIYERIAKSIApSIYGFADVK
GEIQHR cGpRLSATAAEK

15.85 82.1; 7.91

Putative transcription factor a 
mitochondrial, partial
GI:759085292

KPRSPRSAYAFFCIEAR 11.64 17.1; 8.95

Hypothetical protein
GI:759088860

mRARSVAVFSLLLHSTSppSQK 17.05 14.0; 10.29

Putative methylthioadenosine 
phosphorylase mtap, partial

QLQIpHHEAGTVVTIEGPR 9.09 22.9; 8.15
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Gel Slice Protein ID Peptide sequences % Coverage MW (kDa);pI

GI:759086166

Putative secreted protein 
precursor, partial
GI:759089400

LLVCISSASNQAKTLLSK
QKVSSR

14.12 19.0; 9.04

Putative n-acetylglucosamine 
kinase, partial
GI:759087196

NAGLSEEVR
GATLSK
LAKLAKEGDELSK

8.48 35.9; 6.61

Putative myosin class vi heavy 
chain, partial
GI:759085786

ELLDTIFSFLAR 6.78 20.3; 5.07

Putative golgi vesicular 
membrane trafficking protein 
p18
GI:759084714

MLQDmNTDFDAGEGILKSTmGRLVK 22.52 12.8; 9.23

Putative tick cystatins 1
GI:759088844

MARSVSVVAVLAVcIAAcVASIPGGWSAQEPQSSPKYK 29.46 14.1; 5.48

Putative secreted protein 
precursor
GI:759088682

SLDmLLPVDTDpQVIIRR
RGHKPK

19.01 13.5; 9.35

AF—artificially fed sample.
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