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Background: Monitoring patients with multiple sclerosis (MS) for “no evidence of disease activity” 
(NEDA) may help guide disease-modifying therapy (DMT) management decisions. Whereas surveillance 
brain magnetic resonance imaging (MRI) is common, the role of spinal cord monitoring for NEDA is 
unknown.

Objective: To evaluate the role of brain and spinal cord 3T MRI in the 1-year evaluation of NEDA.

Methods: Of 61 study patients (3 clinically isolated syndrome, 56 relapsing-remitting, 2 secondary progres-
sive), 56 (91.8%) were receiving DMT. The MRI included brain fluid-attenuated inversion recovery and 
cervical/thoracic T2-weighted fast spin echo images. On MRI, NEDA was defined as the absence of new or 
enlarging T2 lesions at 1 year.

Results: Thirty-nine patients (63.9%) achieved NEDA by brain MRI, only one of whom had spinal cord 
activity. This translates to a false-positive rate for NEDA based on the brain of 2.6% (95% CI, 0.1%-
13.5%). Thirty-eight patients (62.3%) had NEDA by brain and spinal cord MRI. Fifty-five patients 
(90.2%) had NEDA by spinal cord MRI, 17 of whom had brain activity. Of the 22 patients (36.1%) 
with brain changes, 5 had spinal cord changes. No evidence of disease activity was sustained in 48.3% of 
patients at 1 year and was the same with the addition of spinal cord MRI. Patients with MRI activity in 
either the brain or the spinal cord only were more likely to have activity in the brain (P = .0001). 

Conclusions: Spinal cord MRI had a low diagnostic yield as an adjunct to brain MRI at 3T in monitoring 
patients with MS for NEDA over 1 year. Studies with larger data sets are needed to confirm these findings. 
Int J MS Care. 2017;19:158–164.
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No evidence of disease activity (NEDA) is a 
new proposed outcome to monitor the risk 
of disease progression and the effectiveness of 

disease-modifying therapy (DMT) in patients with mul-
tiple sclerosis (MS). The term NEDA is also known as 
disease activity–free status, freedom from disease activ-
ity, and disease-free status.1-5 This definition typically 
relies on clinical and cerebral imaging data, namely, the 
absence of new or enlarging T2 lesions or gadolinium-
enhancing lesions and no progression of neurologic dis-
ability or clinical relapses.6

Magnetic resonance imaging (MRI) plays a criti-
cal role in the diagnosis and monitoring of MS.7,8 The 
introduction of higher-field (eg, 3T) MRI scanners has 
shown a higher yield in the detection of MS lesions 

compared with 1.5T.9,10 Furthermore, brain MRI at 3T 
has also provided higher correlations between lesion load 
and clinical status, including neurologic disability and 
cognitive function, than at 1.5T.10 A growing body of 
evidence has determined that spinal cord MRI involve-
ment shows a particularly close association with MS-
related disability.11-24 In addition, spinal cord involve-
ment manifests early in the disease course; such lesions 
in presymptomatic at-risk individuals predict conversion 
to overt MS.25 Adding more relevance to the need to 
consider spinal cord involvement in MS is the observa-
tion that such involvement may progress independently 
from the brain.14 Given the time burden on the patient 
and health-care costs associated with spinal cord imag-
ing, it is important to assess its utility in the evaluation 
of NEDA.

Previously, a 7-year longitudinal study evaluating 
NEDA in a real-world cohort using clinically obtained 
low-resolution 1.5T MRIs showed that 7% to 11% of 
patients with MS who developed MRI-defined disease 
activity in each of the years had disease activity on the 
spinal cord only.6 Therefore, the goal of this study was 
to evaluate the diagnostic yield of combined brain and 
spinal cord 3T MRI in the evaluation of NEDA over a 
1-year period.
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line, a 1.5-point increase was required). At each clinic 
visit, patients had an evaluation of EDSS scores and 
anteceding relapses. During the observation period, 56 
patients (91.8%) were already receiving DMT (mono-
therapy with intramuscular interferon beta [IFNβ]-1a 
[n = 20], subcutaneous IFNβ-1a [n = 11], IFNβ-1b [n 
= 1], glatiramer acetate [n = 20], natalizumab [n = 2], 
or mycophenolate mofetil [n = 1] or dual therapy with 
IFNβ-1a and mycophenolate mofetil [n = 1]). Of the 
56 patients receiving DMT, 48 (85.7%) were receiving 
treatment for a mean ± SD of 4.8 ± 4.4 years (range, 
0.1–14.1 years) at study entry. The other eight patients 
were newly started on DMT at the time of baseline 
MRI. There were three patients who had imaging at 
follow-up but were lost to clinical follow-up. All the 
patients signed an informed consent form; this study 
was approved by the Brigham and Women’s Hospital 
research ethics committee.

MRI Acquisition
All the patients underwent brain and spinal cord 

MRI at baseline and follow-up using a 3T scanner (GE 
Signa; GE Healthcare, Milwaukee, WI). Follow-up 
MRIs were obtained a mean ± SD of 12.4 ± 1.3 months 
(range, 9.7–15.2 months) after baseline. Brain and cer-
vical images were obtained at both time points. Fifty 
patients also underwent thoracic spine imaging at both 
time points. The following imaging parameters were 
relevant to the present study: axial T2-weighted fluid-
attenuated inversion recovery images of the brain (rep-
etition time [TR] = 9000 milliseconds, echo time [TE] 
= 151 milliseconds, inversion time = 2250 milliseconds, 
pixel size = 0.976 × 0.976 × 2 mm; no interslice gaps), 
axial T2-weighted fast spin echo (FSE) images of the 
spinal cord (TR = 6166.66 milliseconds, TE = 110.24 
milliseconds, voxel size = 0.937 × 0.937 × 3 mm; no 
interslice gaps), and sagittal T2-weighted FSE images of 
the spinal cord (TR = 3000 milliseconds, TE = 145.66 
milliseconds, voxel size = 0.859 × 0.859 × 3 mm; no 
interslice gaps). Sample images are shown in Figure 1. 
Due to scan time limitations and the fact that these were 
research-related scans, intravenous gadolinium was not 
administered.

MRI Analysis
An experienced observer (ST) analyzed baseline and 

follow-up images concurrently using Jim software, ver-
sion 7 (Xinapse Systems, West Bergholt, UK). Uncer-
tain cases were reviewed by a senior observer (RB). 

Methods

Patients
We prospectively studied 61 consecutive patients 

with MS from the Partners Multiple Sclerosis Center 
at Brigham and Women’s Hospital (Boston, MA) who 
underwent MRI at baseline and 1 year later. Patient 
demographic and clinical data are summarized in Table 
1. All the patients meet the International Panel crite-
ria for either MS or a clinically isolated demyelinating 
syndrome.26 Progression of Expanded Disability Sta-
tus Scale (EDSS) score27 was defined as an increase of 
1.0 point or more at 6-month follow-up, which was 
required to be sustained at a clinic visit 6 months later 
(with the exception that if the EDSS score was 0 at base-

Table 1. Demographic, clinical, and MRI data 
for the 61 study participants at baseline and 
1-year follow-up
Characteristic Value

Age, mean ± SD (range), y 44.1 ± 8.6 (24–58)
Female sex, No. (%) 50 (82.0)
Clinical phenotype, No. (%)

Clinically isolated demyelinating 
syndrome

3 (4.9)

Relapsing-remitting 56 (91.8)
Secondary progressive 2 (3.3)

Disease duration, mean ± SD (range), ya 10.5 ± 9.1 (0–35)
Timed 25-Foot Walk test at baseline, mean 
± SD (range), sb

4.9 ± 1.1 (3.0–8.7)

EDSS score at baseline, mean ± SD (range)b 1.5 ± 1.6 (0–6)
Patients with spinal cord MRI lesions 
present at baseline, No. (%)

34 (55.7)

Clinical change at follow-up, No. (%)b

Relapse on-study 11 (19.0)
EDSS score worsening at follow-up 7 (12.1)
No clinical activity on-study 41 (70.7)
NEDA on-study 28 (48.3)

MRI findings at follow-up, No. (%)
NEDA by brain MRI 39 (63.9)
Activity by brain MRI 22 (36.1)
NEDA by spinal cord MRI 55 (90.2)
Activity by spinal cord MRI 6 (9.8)
NEDA by brain and spinal cord MRI 38 (62.3)
NEDA by brain  MRI + activity by spinal 
cord MRI

1 (1.6)

Activity by brain MRI + NEDA by spinal 
cord MRI

17 (27.9)

Activity by brain and spinal cord MRI 5 (8.2)
Activity by brain or spinal cord MRI 23 (37.7)

Abbreviations: EDSS, Expanded Disability Status Scale; MRI, mag-
netic resonance imaging; NEDA, no evidence of disease activity by 
clinical or MRI change.
aTime from first symptoms.
bThree patients did not have clinical follow-up.
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lesion accumulation on brain MRI, EDSS score progres-
sion, or relapse but had disease activity on the spinal 
cord was calculated.

Results
Comparisons of patients achieving NEDA based 

on brain and spinal cord lesions are shown in Tables 1 
and 2. Based on this sample of 61 patients, 63.9% (n 
= 39; 95% CI, 50.6%-75.8%) maintained NEDA in 
terms of brain MRI, whereas 90.2% (n = 55; 95% CI, 
79.8%-96.3%) maintained NEDA based on spinal cord 
MRI. Thirty-eight patients achieved NEDA based on 
both brain and spinal cord MRI, and five patients had 
disease activity on both measures. Six patients had new 
spinal cord activity with new lesions at follow-up in the 
cervical only (n = 2), thoracic only (n = 3), or both (n = 
1) regions of the spinal cord. The following spinal cord 
locations were involved with these new lesions: C2, C7, 
T6, T6-T7, T8-T9, and C4-C6, T4-T5, and T6 (Figure 
1). Patients with disease activity in either the brain or 
spinal cord only were significantly more likely to have 
disease activity in the brain (P = .0001). In addition, 
only 1 of 39 patients who had NEDA based on brain 
MRI was identified as having disease activity based on 
the spinal cord (2.6%; 95% CI, 0.1%-13.5%), which 
can be considered the false-positive rate for NEDA based 
on the brain. However, this patient also had a clinical 
relapse that coincided with the new spinal cord activity. 
Thus, there was no case in which failure of NEDA was 
shown by spinal cord MRI alone. In total, there were 
seven patients with enlarging lesions, six of whom also 
had new lesions. At baseline, 34 patients (55.7%) had 
spinal cord lesions; 1 additional patient developed spinal 
cord involvement at follow-up.

Comparisons of patients achieving NEDA based on 
spinal cord lesions and relapses are shown in Table 3. 

Image window width and level were adjusted by the 
observer to ensure a consistent comparison between the 
two time points. The follow-up images were categorized 
qualitatively as active by the presence of either new or 
enlarging T2 hyperintense lesions. Thus, achieving 
NEDA by MRI was defined as no new or enlarging T2 
hyperintense lesions. Examples of disease activity in the 
brain and spinal cord are shown in Figure 1.

Statistical Analysis
The proportions of patients who achieved NEDA 

in terms of lesion accumulation on brain MRI, lesion 
accumulation on spinal cord MRI, EDSS score progres-
sion, and relapse were estimated, and 95% confidence 
intervals (CIs) for each proportion were estimated using 
the exact binomial distribution. For the identification 
of disease activity using brain versus spinal cord lesions, 
the paired measurements were compared using the 
McNemar test. Furthermore, to estimate the additional 
diagnostic value of including spinal cord imaging, the 
proportion of patients who achieved NEDA in terms of 

Figure 1. Examples of active magnetic 
resonance images (MRIs) at follow-up
A and B, Baseline (A) and 1-year (B) axial fluid-attenuated 
inversion recovery (FLAIR) brain MRIs of a patient. The 
follow-up FLAIR MRI (B) shows a new T2 hyperintense brain 
lesion (red arrow) compared with baseline. C and D, Baseline 
(C) and 1-year (D) axial T2-weighted fast spin echo (FSE) 
thoracic spinal cord MRIs of another patient. The follow-
up T2-weighted FSE MRI (D) shows a new T2 hyperintense 
lesion in the thoracic spinal cord (green arrow) compared 
with baseline.

Table 2. Patients achieving NEDA at 1 year by 
brain and spinal cord MRI lesions

NEDA based 
on spinal cord 

lesions

Activity based 
on spinal cord 

lesions Total

NEDA based on brain 
lesions

38 1 39

Activity based on brain 
lesions

17 5 22

Total 55 6 61

Abbreviations: MRI, magnetic resonance imaging; NEDA, no evi-
dence of disease activity.
Note: Data are number of patients.
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Taken together, in decreasing order of sensitivity, the 
following rates of disease activity over 1 year were shown 
by the measures used in the present study: brain MRI 
activity (36.1%), clinical relapse (19.0%), worsening 
of EDSS score (12.1%), and spinal cord MRI activity 
(9.8%). More patients maintained NEDA in terms of 
clinical activity compared with brain and spinal cord 
imaging (70.7% vs. 62.3%). Overall, NEDA with the 
combination of clinical relapse, worsening of EDSS 
score, and brain MRI activity was maintained in 28 
patients (48.3%) and remained the same with the addi-
tion of the spinal cord MRI findings.

Discussion
The spinal cord is a common site of pathology in 

MS, occurring early in the disease course12,25 and play-
ing a role in the development of disability11,14-17,19,21-23,28; 
such involvement includes overt multifocal inflamma-
tory demyelinating lesions and the potential for tissue 
destruction (axonal loss/atrophy).29 This study evaluated 
the role of brain and spinal cord 3T MRI in defining 
NEDA at 1 year. We showed that spinal cord MRI had 
a low diagnostic yield as an adjunct to brain MRI for 
defining NEDA. Only one patient had activity on spinal 
cord imaging while having NEDA on brain imaging. 
This patient also had an on-study relapse and would 
not have met NEDA regardless of the spinal cord MRI, 
further reducing the diagnostic yield of spinal cord 
imaging.

There are specific aspects of this patient population 
that may have reduced the yield of spinal cord imag-
ing. Almost half of the patients were free of spinal cord 
lesions at baseline. This is a lower rate of spinal cord 
involvement than reported in other studies.12,18 In addi-
tion, the present patients had a relatively long disease 
duration (on average, 10 years), whereas previous stud-
ies showing higher rates of spinal cord activity have 
reported patients with shorter disease duration.12,18 In 
addition, most of the patients in this study had relapsing 
forms of MS. Studies have shown that these subtypes 
are less likely to have spinal cord involvement compared 
with patients with progressive forms of the disease.30,31 
Another important limitation of this study is the pos-
sibility that the results would have been different if a 
higher proportion of the study participants were taking 
the newer, higher-efficacy DMTs.3,6 The absence of 
gadolinium administration is a limitation of this study 
in that the current definition of NEDA includes gado-

 Comparisons of patients meeting the definition of 
NEDA based on spinal cord lesions and accumulation 
of physical disability (EDSS score) are shown in Table 
4. Based on the 58 patients with clinical information, 
81.0% (n = 47; 95% CI, 68.6%-90.1%) maintained 
NEDA in terms of relapses and 87.9% (n = 51; 95% 
CI, 76.7%-95.0%) maintained NEDA based on dis-
ability accumulation. In this slightly reduced sample, 
91.4% of patients (n = 53; 95% CI, 81.0%-97.1%) 
maintained NEDA on spinal cord imaging. Forty-three 
patients maintained NEDA on both spinal cord imag-
ing and relapses. Interestingly, 80% of the patients who 
had spinal cord activity at follow-up did not have an 
accompanying relapse. Four of 47 patients (8.5%; 95% 
CI, 2.4%-20.4%) who had NEDA based on relapses 
were identified as having disease activity on spinal cord 
MRI. When assessing patients who maintained NEDA 
on both spinal cord imaging and disability accumula-
tion, 47 maintained NEDA on both measures, and only 
1 patient had disease activity on both measures. Four of 
51 patients (7.8%; 95% CI, 2.2%-18.9%) who achieved 
NEDA based on disability accumulation were identified 
as having disease activity in the spinal cord.

Table 3. Patients achieving NEDA at 1 year by 
spinal cord MRI lesions and relapses

NEDA based 
on spinal cord 

lesions

Activity based 
on spinal cord 

lesions Total

NEDA based on 
relapses

43 4 47

Activity based on 
relapses

10 1 11

Total 53 5 58

Abbreviations: MRI, magnetic resonance imaging; NEDA, no evi-
dence of disease activity.
Note: Data are number of patients.

Table 4. Patients achieving NEDA at 1 year by 
spinal cord lesions and disability accumulation

NEDA based 
on spinal cord 

lesions

Activity based 
on spinal cord 

lesions Total

NEDA based 
on disability 
accumulation

47 4 51

Activity based 
on disability 
accumulation

6 1 7

Total 53 5 58

Abbreviation: NEDA, no evidence of disease activity.
Note: Data are number of patients.
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ated the spinal cord with T2-weighted FSE, which is 
the clinical standard but may have a reduced sensitivity 
to lesions versus newer MRI sequences, such as short 
time inversion recovery and phase-sensitive inversion 
recovery.38-43 Furthermore, the concept of NEDA is still 
evolving, with recent proposals to include brain volume 
loss and changes in neuropsychological test scores in the 
definition.5,44 Thus, spinal cord atrophy may provide an 
additional tool to assess NEDA and complement lesion 
assessment, particularly given the proposed discordance 
between lesions and atrophy in a subset of patients with 
MS.45 In addition, given that a recent study has shown 
a higher yield in the detection of spinal cord MS lesions 
at 7T versus 3T,46 a high-resolution ultra-high-field 
approach may be more sensitive.

Considering that spinal cord imaging is a separate 
and distinct evaluation from a utilization standpoint, 
these findings suggest that this might not be necessary 
for routine monitoring. However, owing to the limita-
tions of this study and general uncertainty about the 
role of NEDA, these results should not be directly used 
to change routine clinical practice. We would urge that 
further research is needed regarding the utility of spinal 
cord MRI in the routine monitoring of MS. o
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