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a b s t r a c t

The dedifferentiation theory of aging proposes that a reduction in the specificity of neural representations
causes declines in complex cognition as people get older, and may reflect a reduction in dopaminergic
signaling. The present pharmacological fMRI study investigated episodic memory-related dedifferentiation in
young and older adults, and its relation to dopaminergic function, using a randomized placebo-controlled
double-blind crossover design with the agonist Bromocriptine (1.25 mg) and the antagonist Sulpiride
(400 mg). We used multi-voxel pattern analysis to measure memory specificity: the degree to which dis-
tributed patterns of activity distinguishing two different task contexts during an encoding phase are re-
instated during memory retrieval. As predicted, memory specificity was reduced in older adults in prefrontal
cortex and in hippocampus, consistent with an impact of neural dedifferentiation on episodic memory re-
presentations. There was also a linear age-dependent dopaminergic modulation of memory specificity in
hippocampus reflecting a relative boost to memory specificity on Bromocriptine in older adults whose
memory was poorer at baseline, and a relative boost on Sulpiride in older better performers, compared to the
young. This differed from generalized effects of both agents on task specificity in the encoding phase. The
results demonstrate a link between aging, dopaminergic function and dedifferentiation in the hippocampus.

& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The dedifferentiation theory of cognitive aging proposes that
there is a loss of specificity of neural representations as people
become older. These pervasive changes are assumed to impact
predominantly on the complex cognitive functions which decline
the most (Baltes and Lindenberger, 1997; Li et al., 2001). Functional
magnetic resonance imaging (fMRI) studies have revealed wide-
spread age-related reductions in the specificity of distributed
cortical patterns of activity elicited by different categories of visual
stimuli (Carp et al., 2010b; Goh et al., 2010; Park et al., 2004) and
different actions (Carp et al., 2011). Preliminary evidence also
supports the prediction that dedifferentiation impacts on func-
tions and regions which decline prominently in old age: the visual
category-specificity of cortical activity patterns correlates with
older adults' fluid processing ability, and varies with working
memory load in frontal and parietal cortex (Carp et al., 2010a; Park
et al., 2010; Payer et al., 2006). However, little is currently known
about the mechanisms of dedifferentiation, nor its impact on
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episodic memory, one of the cognitive functions most affected by
aging. We investigated whether memory representations are less
specific in older adults and explored the modulation of memory
specificity by dopaminergic drugs.

Normal aging is accompanied by a marked decline in detailed
recollection of events, and an increase in false memory (Schacter
et al., 1997; Spencer and Raz, 1995). These episodic memory dif-
ficulties are typically attributed to declines in the integrity of the
prefrontal cortex (PFC) and the hippocampus (e.g., Head et al.,
2008; Yonelinas et al., 2007). However, regional age-related
changes may be secondary to generalized neural changes such as
dedifferentiation. The first aim of the present study was to ex-
amine whether the specificity of episodic reinstatement differs
according to age. Episodic recollection is thought to involve hip-
pocampal reactivation of stored memory traces which represent
events' particular sensory and cognitive properties (Alvarez and
Squire, 1994; McClelland et al., 1995). Consistent with this, func-
tional imaging studies show that successful episodic memory re-
trieval is accompanied by reinstatement of cortical activity asso-
ciated with the original events (Danker and Anderson, 2010).
Studies using multi-voxel pattern analysis (MVPA) have further
shown that the specificity of this episodic reinstatement for par-
ticular tasks and categories of stimuli varies with strategic
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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memory search and with competition between relevant and irre-
levant memories, suggesting that it reflects the specificity of
recollection (Kuhl et al., 2011; McDuff et al., 2009). Using MVPA,
St-Laurent et al. (2014) recently showed less distinctive cortical
reinstatement in older adults for individual items. We examined
the specificity of distributed patterns of reinstatement for two
different encoding task contexts involving semantic and phono-
logical processing (Johnson et al., 2009; Polyn et al., 2005). We
then determined the degree to which distinct task-related activity
patterns present during encoding were reinstated during sub-
sequent retrieval, predicting that this measure of memory speci-
ficity would be reduced in older relative to younger adults.

According to computational models, age-related dedifferentiation
may reflect a reduction in dopamine signaling and neural signal-to-
noise in prefrontal cortex (PFC; Li et al., 2001), and potentially else-
where. Modeling dedifferentiation in this way reproduces disruption
of episodic binding functions found in older adults (Li et al., 2005).
This is in line with wider evidence of a ‘correlative triad’ between
aging, cognition and dopamine function (Bäckman et al., 2006). The
second aim of the present study was to extend the findings of our
previous report, which examined dopaminergic modulations of brain
activity associated with successful episodic encoding across the two
encoding tasks (Morcom et al., 2010). The study had a cross-over
placebo-controlled design, in which we administered a dopamine
agonist (Bromocriptine) and an antagonist (Sulpiride) to manipulate
dopamine signaling. Morcom et al. (2010) found age-related differ-
ences in dopaminergic effects on activity associated with successful
episodic encoding in PFC and hippocampus. This dopaminergic sen-
sitivity was most pronounced in the older adults with poorer mem-
ory, consistent with the notion that dopaminergic decline impairs the
ability to encode new memories. Specifically, there were reversed
subsequent memory (subsequent forgetting) effects within MTL in
the older group: i.e., encoding phase activity predicted later forgetting
rather than remembering (Morcom et al., 2010). We proposed then
that older adults may encode less distinctive memory representations
which do not support specific recollection (Morcom et al., 2010;
Wagner and Davachi, 2001).

This novel joint analysis of task-specific activity at encoding
and its reinstatement at retrieval allowed us directly to test the
link between dopamine, aging and dedifferentiation of episodic
memory. We predicted that the expected age-related reduction in
memory specificity would vary with changes in dopamine sig-
naling. If dopaminergic decline causes dedifferentiation, loss of
memory specificity should be dopamine-sensitive. Predictions
about the nature of this sensitivity were derived from the results
of the successful encoding study (Morcom et al., 2010) and the
dopamine aging hypothesis. First, we expected that dopaminergic
modulation of memory specificity would track individual differ-
ences in memory ability in the older group, and that poorer older
performers would show greater dopamine sensitivity, distin-
guishing them from the young. Second, we predicted that the
dopaminergic effect on memory specificity would parallel that
previously reported for the univariate memory encoding (sub-
sequent memory) effects. In addition, if the reversed, subsequent
forgetting, effects in the older group reflected impaired memory
specificity as proposed by Morcom et al. (2010), then Bromo-
criptine should reduce memory specificity in poorer older per-
formers just as it enhanced subsequent forgetting effects.
Methods

Subjects

Sixteen younger (7 female, mean age ¼ 24.9, SD ¼ 4.7 years)
and sixteen older adults (9 female, mean age ¼ 66.9,
SD ¼ 3.3 years) contributed data. These comprised all subjects
from the previous report on the encoding data, as well as 1 young
and 3 older subjects who had not provided sufficient data for that
event-related analysis, and 1 older participant who contributed
data only for the Placebo session. An additional 3 older subjects
and 1 young were excluded due to missing Placebo session data
(3 with data acquisition or storage issues, 1 withdrew). Therefore,
the Placebo condition analyses included 16 young and 16 older
subjects, and the drug analyses included samples of 16 and 15. A
further older subject was also excluded from analyses of covar-
iance due to an outlier value for the performance covariate,
yielding sample sizes of 16 and 14 (see Results: Task specificity and
Feature selection). Volunteers were screened on initial telephone
contact using a standard questionnaire. The exclusion criteria were
a history of any significant psychiatric or physical condition which
was likely to affect the brain or cerebral vasculature, current va-
soactive or neurotropic medication, and contraindications to the
study drugs or to MRI. Each subject also had an electrocardiogram
prior to taking part in functional MRI scanning, reviewed by a
physician, as well as a structural scan. The groups were matched
on years of education (in young, mean ¼ 4.6, SD ¼ 2.6; in old,
mean ¼ 4.0, SD ¼ 3.0; t o 1). Estimated verbal IQ using the Na-
tional Adult Reading Test (Nelson, 1982) was slightly higher in the
older group as expected (Backman and Nilsson, 1996); for young,
mean ¼ 112, SD ¼ 6.0; for old, mean ¼ 118, SD ¼ 6.5, t
(34) ¼ 2.96, p ¼ .006; for details see Morcom et al. (2010).

Experimental design and task

Subjects took part in 3 experimental sessions in which they
received Sulpiride 400 mg, Bromocriptine 1.25 mg, or a Placebo
orally, in a randomized double-blind crossover design. The scan-
ned episodic memory task commenced after 3 h, and comprised a
study (encoding) phase, followed by 2 test (retrieval) phase blocks.
To avoid nausea within the double-blind procedure, the study drug
was given with 10 mg of the peripheral dopamine antagonist
Domperidone (Reddymasu et al., 2007). Subjects were also asked
to eat beforehand. For Sulpiride the mean time to maximal plasma
concentration is about 3 h, and it has a plasma half-life of around
12 h, and oral bioavailability of about 35%. Plasma prolactin con-
centration is maximal after about 1 h, then declines slowly (Wiesel
et al., 1982; von Bahr et al., 1991; Caley and Weber, 1995). Bro-
mocriptine's central effects are also long lasting, though somewhat
slower to onset than those of Sulpiride, with measurable effects
from as early as 1 1/2 h post-dose which maximal after 3 h and
persist for some time (Luciana et al., 1998; Müller et al., 1998;
Oranje et al., 2004). fMRI data acquisition began at about 3-h post-
dose and the sessions were separated by a minimum washout
period of a week. Subjects were randomly allocated to each of
6 possible counterbalanced session orders. After exclusions, there
were minor imbalances in session ordering between and across
age groups. The main analyses are reported with the full N, but we
conducted check analyses to rule out possible confounds of session
effects: none were found, and effects were if anything more robust
once session ordering was balanced. Details of these check ana-
lyses are given in the Supplementary material.

Study and test stimuli were 4–9 letter nouns of 1–3 syllables
from the CELEX database (http://www.ru.nl/celex/; for details see
Morcom et al., 2010). The paradigm is illustrated in Fig. 1. The
study phase consisted of 16 “mini-blocks” of 15 trials each. Subjects
performed two different orienting tasks, one involving a semantic
and one a phonological judgment. Semantic and phonological
mini-blocks alternated and each pair was followed by 21 s fixation.
This task ordering was counterbalanced across subjects. Semantic
mini-blocks were preceded by the cue “Living?” and subjects
judged whether each word referred to a living or a non-living

http://www.ru.nl/celex/


Fig. 1. Paradigm design. Illustrates the mini-block structure of the study and test phases of the task. Note that not all mini-blocks are shown. See Experimental design and
task for details.
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thing. Phonological mini-blocks were preceded by the cue “Sylla-
bles?”, and subjects judged whether each word had an even or an
odd number of syllables. In both tasks half the items were animate
and half inanimate, and of each of these, half had an odd and half
an even number of syllables. Items were distributed randomly
across mini-blocks. Words were shown center-screen in white
uppercase Arial font on a black background. The stimulus onset
asynchrony (SOA) at study was 3000 ms, with stimuli on screen
for 600 ms followed by fixation.

The test phase consisted of two sessions, each including 18
mini-blocks of 10 trials. The first session immediately followed the
study phase (after a brief verbal interaction to prevent rehearsal),
followed by the second after an unrelated 6 min task. Subjects
were told that in the mini-blocks preceded by the cue, “Remember
living”, previously seen items had all been studied in the Living/
Non-living task, while in those preceded by “Remember syllable,”
they had all been studied in the Syllable task. Two thirds of the
items had been studied and a third were new items, distributed
randomly across mini-blocks. Subjects judged whether they spe-
cifically recollected having studied the word (“Remembered”),
whether they thought the word had been studied but it was just
familiar (“Know”), or it was unstudied (“New”), using standard
“Remember–Know” instructions (Gardiner, 1988). Mini-blocks al-
ternated as at study, with 21 s fixation after each pair. Test phase
SOA was 4400 ms, with stimuli on screen for 600 ms followed by
fixation.
MRI data acquisition and preprocessing

Functional scans were acquired using a 3.0T Medspec S300 MRI
system, with a gradient-echo echo planar (EPI) pulse sequence
(TR ¼ 1200 ms, TE ¼ 27.5 ms, flip angle ¼ 90°). Each EPI volume
comprised 23 interleaved 4 mm thick axial slices angled to the
intercommissural line, with a 1 mm inter-slice gap
(64 � 64 pixels, in-plane resolution 3.125 mm). One encoding
timeseries was acquired in the study phase (755 volumes), and
two retrieval timeseries in the test phases (825 volumes each).
Seven “dummy” volumes were discarded at the start of each run.
Outlier scans (with slices of 45 standard deviations) were re-
placed with the mean of the 2 neighboring scans.

Initial preprocessing was done in SPM 5 (Wellcome Department
of Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/
spm/software/spm5/). Each timeseries was realigned spatially to the
first volume, then normalized using nonlinear basis functions and
resampled to 3 � 3 � 3 mm voxels, using an EPI template based
on the Montreal Neurological Institute (MNI) reference brain (Co-
cosco et al., 1997) in the space of Talairach and Tournoux (Ashbur-
ner and Friston, 1999; Talairach and Tournoux, 1988). No smoothing
was performed. Further preprocessing was carried out in MATLAB
7.6 (www.mathworks.com). Linear trends and frequencies below 1/
180 Hz were removed from each timeseries using SPM5's high-pass
filter function. The timeseries was then normalized and scaled to a
range of (�1,1) to allow for varying ranges of voxel activity using
the Princeton MVPA toolbox (Norman et al., 2006; Detre et al.,
2006; http://www.pni.princeton.edu/mvpa/).

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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Feature selection

Regions of interest (ROIs) were defined using WFU PickAtlas
(http://fmri.wfubmc.edu/). ROIs encompassed lateral PFC (inferior
frontal gyrus (IFG) and middle frontal gyrus (MFG)), bilateral
hippocampus, and two areas previously shown to be engaged in
episodic encoding during the phonological orienting task (bilateral
fusiform gyrus (FusG) and left superior occipital gyrus (LSOG;
Otten and Rugg, 2001). Prefrontal ROIs were defined for each
hemisphere separately (LIFG, RIFG, LMFG & RMFG), as age-related
differences in lateralization of memory function in PFC were of
potential interest (Morcom et al., 2003; Cabeza, 2002). Within
each ROI, we used the analysis of variance (ANOVA) feature se-
lection utility in the Princeton toolbox to select voxels showing the
most significant differences between the two task conditions (se-
mantic and phonological) in each training (encoding phase) da-
taset. In order to check whether MVPA results varied according to
the threshold used for feature selection, we generated 3 separate
feature sets for each training dataset and ROI, comprising the 500,
150 and 50 most significant voxels. For each ROI, the best per-
forming feature set in the Placebo condition ridge regression
analysis of task specificity (encoding) effects was then used for all
subsequent analyses of memory specificity and drug effects, and
for the correlation analysis (see Multi-voxel pattern analysis: age-
related differences, Task specificity, below).

Multi-voxel pattern analysis using ridge regression

We used multivariate pattern analysis (MVPA) to investigate the
specificity of the patterns of neural activity in the semantic and
phonological encoding tasks (task specificity), and the specificity
with which information encoded using these two tasks was later
retrieved (memory specificity). Machine learning algorithms are
now widely used to decode neural activity (Polyn et al., 2005;
Haynes and Rees, 2006; Kamitani and Tong, 2005). The fidelity with
which they can discriminate between two cognitive conditions
provides a measure of the distinctiveness of different patterns of
neural activation. MVPA measures were computed for each subject
and drug condition using the Princeton MVPA toolbox (Norman
et al., 2006; Detre et al., 2006; http://www.pni.princeton.edu/mvpa/
). We used a penalized ridge regression algorithm because of its
sensitivity to intermediate activation values at training and at test,
and its ability to compensate for multicollinearity among features
(Coutanche et al., 2011; Zhang and Yang, 2003; Poppenk and
Norman, 2012). This means that predictions of test set data are
continuous rather than binary. To assess the performance of the
algorithm for each subject and drug session we calculated the cor-
relation coefficient of its predictions with the labels of the testing
set using the inbuilt performance metrics in the Princeton's toolbox,
giving test set data values from �1 to 1 (chance ¼ 0).

The first analyses assessed task specificity, i.e., the distinctive-
ness of neural patterns during the two orienting tasks (semantic
and phonological) within the study phase (encoding). Subjects'
encoding timeseries were subdivided into 8 equal subsets, each
comprising one mini-block. To account for hemodynamic lag the
design was convolved with SPM8's canonical hemodynamic re-
sponse function (HRF). A ridge regression algorithm was then
trained on 7 of these subsets and tested on the 8th in a leave-one-
out cross validation procedure with 8 iterations. Before application
of the algorithm to the test data, we ran a nested cross-validation
procedure on the training data for the Placebo condition to de-
termine the optimum values for the ridge regression penalty
parameter which controls the maximum value of the sum of the
squares of the voxel weights (Coutanche et al., 2011). The optimum
value within the range (0, 0.01, 0.1, 1, 10, 100, 1000, 10,000) did not
differ between age groups (median value across ROIs and selected
feature sets in both groups ¼ 50; interquartile range ¼ 130, for
Kruskal–Wallis tests in each ROI for selected feature sets, p 4 .05).
These individually determined penalty parameters were employed
for all subsequent analyses.

Next, we investigated memory specificity in a combined study
and test phase (encoding–retrieval) analysis. Memory specificity
was defined as the accuracy with which the algorithms trained to
discriminate between the encoding tasks were able to predict the
retrieval task in each ROI. For this analysis, all 8 pairs of encoding
mini-blocks were used as training data, and each retrieval phase's
9 pairs of mini-blocks served as 2 independent test runs. Memory
specificity measures were computed for both retrieval phases and
the final measure of memory specificity for each subject and drug
session was the average performance of the ridge regressor across
the two phases. We note that because the encoding and retrieval
mini-blocks contained different numbers of trials (15 and 10, see
above), this difference could contribute to lower values for mem-
ory specificity than for task specificity. However, scan numbers
and therefore data points available for the ridge analysis were
closely similar between the two phases (37.5 and 36.6). Moreover,
an overall difference between levels of task specificity and mem-
ory specificity was expected, since they are assumed to reflect very
different processes (see Introduction).

Multi-voxel pattern analysis using correlation distance metric

To check the reproducibility of the ridge regression results and
for comparability with prior studies of dedifferentiation in aging, we
also measured memory specificity using a correlation distance me-
tric of neural distinctiveness (Carp et al., 2010b; Haxby et al., 2001).
To allow for hemodynamic delay, the fixation scans and the first
7 scans of each mini-block were discarded giving 30 scans from each
encoding and retrieval mini-block. Voxel values were then averaged
across the remaining scans in each semantic and phonological task
mini-block for the study and test phases, and across mini-blocks,
and Pearson's product moment correlation coefficients computed
within and between tasks between the encoding phase and the
retrieval phase. Memory specificity was defined as the neural dis-
tinctiveness of activity patterns in the two different tasks across the
two phases of the episodic memory task. Memory specificity was
calculated as the difference between the average correlation within
similar tasks (semantic encoding & semantic retrieval and phono-
logical encoding & phonological retrieval) and the average correla-
tion between different tasks (semantic encoding & phonological
retrieval and phonological encoding & semantic retrieval).
Results

Task performance

Detailed behavioral analyses of both study and test phases are
included in the previous report on the encoding data (Morcom et al.,
2010). The pattern of findings was unchanged in this larger sample.
Performance on the two orienting tasks in the study phase did not
differ according to age group or drug condition, and both groups
were highly accurate (90% for young, 89% for old). In the test phase,
the main index of memory performance was the discrimination
index Pr for hits and false alarms, collapsed over Remember and
Know responses (Phit � Pfalse alarm, Snodgrass and Corwin, 1988). Pr
did not differ between age groups on Placebo (t o 1), but there was
a main effect of drug with a linear trend (F(1.8, 53.6) ¼ 3.29,
p ¼ 0.049; F(1,29) ¼ 4.26, p ¼ .048), mainly reflecting a reduction
in Pr on Sulpiride across both groups (mean ¼ 0.43) relative to
Placebo and Bromocriptine (means ¼ 0.47;). As in the previously
reported sub-group of subjects, although this effect did not interact
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with age (F(1.8, 53.6) ¼ 1.33), it was driven mainly by a reliable
linear effect of drug in the older group taken alone. (Response bias,
as indexed with Br (Pfalse alarm / 1 � (Phit � Pfalse alarm), (Snodgrass
and Corwin, 1988)), was also more liberal on Sulpiride
(mean ¼ 0.46; for Placebo and Bromocriptine, means ¼ 0.38 and
0.41; values 40.5 indicate a relatively liberal bias to respond “old”).
Valid recollection and familiarity measures were available for a
subset of 16 young and 13 older adults; these did not show reliable
drug or group effects. In addition, the depth of processing effect
(better memory following semantic than phonological encoding;
Craik and Lockhart, 1972) did not differ between groups (mean
probability of recollection ¼ .53 and .28 in the young respectively,
and .50 and .27 in the older group; age effects n.s.) or as a result of
the pharmacological manipulation.

Multi-voxel pattern analysis: age-related differences

Task specificity
Encoding phase task specificity in the Placebo condition was

assessed using ridge regression, and the results were also used to
determine the optimal feature set size for each ROI for the mem-
ory specificity and drug analyses (see Methods: Feature selection).
Results for all feature sets are given in Inline Supplementary Table
S1. Cross-validation showed that the ridge algorithm accurately
discriminated between the semantic and phonological orienting
tasks in all ROIs and individual subjects (p o 0.01 for all). Average
ridge accuracy across ROIs and feature sets was 0.78 in both the
young and the older group (individual values ranged in the young
group from 0.47 in hippocampus to 0.98 in LIFG; in the older
group, from 0.61 in hippocampus to 0.97 in LIFG).

Inline Supplementary Table S1 can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.03.031.
Fig. 2. Age-related differences in memory specificity (Placebo session). ROIs are overl
mricro/mricron/; sections at x ¼ 30, y ¼ 18, z ¼ 12). A. Plots show accuracy of the ridge
at encoding (chance ¼ 0). Mean accuracy across feature set sizes is shown for each age
retrieval (within-task correlation–between-task correlation). Error bars represent the w
Results for details of analyses.
The feature sets selected for each ROI were those with the
maximum ridge performance on Placebo which avoided any con-
founds of training set performance with age. Ridge accuracy was
better for larger feature sets in PFC, and this did not differ ac-
cording to age. Therefore the 500 voxel feature sets were selected
for memory specificity and drug analyses for these ROIs. In HC,
task specificity did not differ according to age and was greatest for
the smaller feature sets, so these were used for further analyses. In
LSOG, the intermediate feature sets of 150 voxels were selected to
balance for the slight (but non-significant) increase in task speci-
ficity with # voxels in the older group, and decrease in the young.
In FusG, the 150 voxel feature set was selected, in which task
specificity was maximal and equivalent across age groups.

We also tested for associations between encoding phase task
specificity and individual differences in performance in the se-
lected feature sets using ANCOVA with covariates of mean-cor-
rected Pr (see Results: Task performance for definition) and the
interaction of Pr x group (one older subject was excluded from
these analyses due to an outlier Pr value, 42.5 SD from the mean).
These used Pr on Placebo as the covariate. These showed no as-
sociations in IFG or MFG (max F ¼ 1.11). In posterior ROIs, beha-
vioral associations were not reliable. Marginally significant main
effects of Pr in HC and FusG (p ¼ .089; p ¼ .063) reflected trends
for task specificity to be greater in better performers across both
age groups; such trends could not complicate the interpretation of
any age-related differences in memory specificity or in dopami-
nergic drug effects.

Memory specificity
The results of the encoding–retrieval memory specificity ana-

lysis for the Placebo condition are illustrated in Figs. 2 and 3. For
each ROI, ridge regression MVPA measures of memory specificity
aid on the T1 MNI template from MRIcron (http://www.mccauslandcenter.sc.edu/
regression for predicting the task at retrieval when trained to discriminate the tasks
group. B. Plots show the mean correlation distance metric between encoding and
ithin-group standard error of the mean. See Methods for details of measures and

dx.doi.org/10.1016/j.neuroimage.2015.03.031
dx.doi.org/10.1016/j.neuroimage.2015.03.031
http://www.mccauslandcenter.sc.edu/mricro/mricron/
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Fig. 3. Dopaminergic modulation of memory specificity in hippocampus assessed using ridge regression. A. Scatter plots show the relation between memory specificity (y-
axis) and baseline individual memory performance — (x-axis) in young and older age groups in the 3 drug conditions. Baseline individual memory performance is indexed
by Pr on Placebo. Best fit regression lines of memory specificity to Baseline Pr within each age group and drug condition are also shown (note that although raw Pr values are
given here, ANCOVA analyses used within-group mean corrected Pr values; see Results). B. The bar graph shows mean memory specificity for each age group and drug
condition. Error bars represent the within-group standard errors.
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for the selected feature sets were subjected to ANOVA with the
factor of age group. Further analyses with the additional factor of
hemisphere tested for lateralization differences where group dif-
ferences were apparent in one ROI. We then tested for brain–be-
havior associations using ANCOVA with the additional covariates
of Pr (on Placebo) and Pr x group (see Task specificity and Feature
selection). Where covariate effects were present, we checked that
these remained significant when individual age was also included
in the model, to rule out potential confounds between perfor-
mance- and age-related effects within groups (Hofer and Sliwinski,
2001). Except where noted, this was the case. Following ridge
analyses, we conducted replication analyses using the correlation
distance metric to assess consistency of results across MVPA me-
trics. These are reported where there were positive findings from
the ridge analysis. In summary, consistent age-related differences
in memory specificity were found in left PFC (LIFG and LMFG) and
in hippocampus.

Prefrontal cortex. In LIFG, memory specificity assessed with ridge
regression was reduced in the older group relative to the young (F
(1,30) ¼ 9.09, p ¼ 0.005; for replication with correlation distance
metric (F(1,30) ¼ 15.80; p o 0.001). In the older group, memory
specificity was not significantly greater than chance. In RIFG, group
differences were not reliable (F o 1), but effects did not vary
significantly by hemisphere (for interaction with group, F
(1,30) ¼ 1.48, p ¼ 0.233). Direct comparison with encoding phase
neural specificity measures also confirmed that the age-related
reduction in memory specificity was significantly greater than
(non-significant) group differences in task specificity at encoding
(for group x task phase, F(1,27) ¼ 5.12, p ¼ 0.032). ANCOVA
showed no brain–behavior associations in LIFG. In RIFG, there was
an association between memory specificity and memory perfor-
mance across groups (for ridge, F(1,27) ¼ 4.39, p ¼ 0.049; for
correlation, F(1,27) ¼ 6.65, p ¼ 0.017), although significance was
Table 1
Drug effects on encoding phase task specificity (ridge regression). Means (SDs) are given
conditions (see Table 1).

ROI (# voxels)/drug session Younger group
Sulpiride Placebo Bro

LIFG (500) 0.93 (0.03) 0.84 (0.07) 0.9
RIFG (500) 0.89 (0.08) 0.80 (0.09) 0.8
LMFG (500) 0.92 (0.06) 0.83 (0.06) 0.9
RMFG (500) 0.92 (0.06) 0.84 (0.06) 0.9
HC (50) 0.84 (0.07) 0.69 (0.04) 0.8
LSOG (150) 0.88 (0.05) 0.73 (0.08) 0.8
FusG (150) 0.86 (0.06) 0.78 (0.06) 0.8
reduced with age in the model, for ridge, F(1,26) ¼ 1.92, n.s.; for
correlation, F(1,26) ¼ 5.86, p ¼ 0.023). Analysis across task spe-
cificity and memory specificity ridge regression measures showed
that this association with performance was common to both, as
reflected in a significant main effect of Pr (F(1,27) ¼ 5.02,
p ¼ 0.017; for task x Pr, F(1,27) ¼ 1.73, n.s.).

Ridge analysis for left middle frontal gyrus (LMFG), as in LIFG,
revealed a group difference in memory specificity favoring the
young (F(1,30) ¼ 7.08, p ¼ 0.012; for replication analysis with
correlation, F(1,30) ¼ 8.74, p ¼ 0.006), with ridge accuracy again
at chance in the older group. As in LIFG, direct comparison con-
firmed that the group difference was driven by memory specificity
relative to encoding phase task-specificity (for task phase main
effect, F(1,30) ¼ 7.94, p ¼ 0.008). In RMFG, as in RIFG, group dif-
ferences were not significant (F(1,30) ¼ 1.2, n.s.), but laterality
analysis did not show reliable age-related differences by hemi-
sphere. Brain–behavior analysis in MFG did not reveal any sig-
nificant findings.

Because the correlation measure of neural distinctiveness is a
function of correlations both within and between tasks, age differ-
ences in memory specificity could be driven by effects onwithin-task
correlations, between-task correlations, or both (see Carp et al.,
2010b). Post hoc tests in PFC showed that both within-task and be-
tween-task correlation effects contributed to the group differences in
LIFG (main effect of group for within- F(1,30) ¼ 12.8 p ¼ 0.001; for
between-, F(1,30) ¼ 13.1, p ¼ 0.001) and in LMFG (for within-, F
(1,30) ¼ 9.3 p ¼ 0.005; for between-, F(1,30) ¼ 15.2, p o 0.001).

Hippocampus. In HC, ridge analysis showed reduced memory
specificity in the older group (F(1,30) ¼ 6.50, p ¼ 0.016). There
was also a positive association between memory specificity and
memory performance (for Pr, F(1,27) ¼ 8.77, p ¼ 0.006) and a
marginal age-related difference in this association (for group x Pr,
F(1,27) ¼ 3.12, p ¼ 0.089). The presence of robust group
for analyses of the selected feature sets in the Sulpiride, Placebo and Bromocriptine

Older group
mocriptine Sulpiride Placebo Bromocriptine

2 (0.05) 0.92 (0.05) 0.82 (0.07) 0.90 (0.06)
9 (0.09) 0.90 (0.06) 0.77 (0.08) 0.90 (0.06)
2 (0.05) 0.92 (0.04) 0.83 (0.05) 0.91 (0.06)
2 (0.05) 0.92 (0.07) 0.82 (0.07) 0.92 (0.04)
3 (0.07) 0.83 (0.09) 0.72 (0.07) 0.85 (0.08)
8 (0.08) 0.88 (0.06) 0.77 (0.09) 0.87 (0.09)
7 (0.06) 0.87 (0.09) 0.78 (0.06) 0.88 (0.07)
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differences in the association between memory specificity and
memory performance was confirmed by a direct comparison be-
tween task specificity at encoding (for which brain–behavior as-
sociations were non-significant; see last section) and memory
specificity. This revealed a significant interaction between task
phase, group and Pr (F(1,27) ¼ 4.59, p ¼ 0.041). Correlation ana-
lysis replicated the interaction of group with memory performance
(for group x Pr, F(1,26) ¼ 6.17, p ¼ 0.019). In the young only,
memory specificity was robust for both measures (F(1,14) ¼ 10.93,
p ¼ 0.005 for ridge; F(1,15) ¼ 5.75, for correlation, p ¼ 0.030) and
was positively associated with performance (F(1,14) ¼ 10.86,
p ¼ 0.005 for ridge; F(1,14) ¼ 9.71, p ¼ 0.008 for correlation).

Posterior cortex. There were no reliable age-related differences in
memory specificity in the posterior ROIs on Placebo. In FusG, ridge
analysis did not show reliable age-related differences in memory
specificity (F(1,30) ¼ 2.57, p ¼ 0.119), nor significant brain–beha-
vior associations (for Pr, F(1,27) ¼ 4.01, p ¼ 0.056; for group x Pr, F
(1,27) ¼ 3.82, p ¼ 0.062). As in RIFG, analysis across neural spe-
cificity measures for both task phases showed a positive overall
relation with individual performance across age groups (for Pr
main effect, F(1,27) ¼ 6.23, p ¼ 0.019; for interaction with task
phase, F ¼ 1.23).

In LSOG, memory specificity was age-invariant (for group,
F o 1) and robust across age groups (for intercept across age
groups F(1,30) ¼ 38.73, p o 0.001 for ridge, F(1,30) ¼ 28.43,
p o 0.001 for correlation). It did not vary with individual memory
performance (F o 1 for Pr effects).

Multi-voxel pattern analysis: dopaminergic drug effects

Encoding phase: task specificity
There was a pronounced age-invariant dopaminergic modula-

tion of the ridge measure of task specificity in all ROIs (see Table 1;
for drug, min F ¼ 22.68, max p o 0.001; for group x drug, max
F ¼ 1.11, min p ¼ 0.335). In both age groups, task specificity was
increased by both Sulpiride and Bromocriptine relative to Placebo
(for pairwise contrasts, all p o 0.001). However, no age-depen-
dent dopaminergic effects were observed. The drugs did not
modulate brain–behavior relations.

Memory specificity
In hippocampus there was a dopaminergic modulation of the

age-related differences in memory specificity which varied with
individual differences in memory performance, illustrated in Fig. 3.
Memory specificity did not show reliable dopaminergic effects in
PFC or posterior ROIs; details of these analyses are not reported
(summary data for all ROIs are given in Inline Supplementary Ta-
bles S2 and S3).

Inline Supplementary Tables S2 and S3 can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2015.03.031.

Ridge analysis in hippocampus revealed that young and old
groups differed in drug effects on the association of memory
specificity with Pr (see Fig. 3; for group x drug x Pr, F
(1.7,43.3) ¼ 6.85, p ¼ 0.004; for drug x Pr, F(1.7,43.3) ¼ 4.49,
p ¼ 0.022; for group x drug, F(1.8,51.7) ¼ 2.54, p ¼ 0.095). The
correlation analysis replicated the interaction of group with drug
and Pr (F(2.0,50.9) ¼ 4.66, p ¼ 0.014). Critically, as for the baseline
age-related effects, direct comparison between the ridge neural
specificity measures in the two task phases showed that the age-
dependent modulation of memory specificity was distinct from
the age-invariant modulation of encoding phase task specificity
described above for HC and in the other ROIs (for task phase x drug
x group x Pr, F(1.6,42.8) ¼ 5.66, p ¼ 0.010).

Post hoc tests in the young revealed dopaminergic modulation of
memory specificity regardless of performance (for drug, F
(1.6,22.2) ¼ 4.42, p ¼ 0.031), with a quadratic trend reflecting re-
duction in memory specificity on both Sulpiride and Bromocriptine
relative to Placebo (F(1,14) ¼ 8.02, p ¼ 0.013). This group also
showed a dopamine-insensitive positive relation between memory
specificity and memory performance (for Pr main effect, F
(1,14) ¼ 8.16, p ¼ 0.013; for drug x Pr, F ¼ 2.32, p ¼ 0.130). In the
older group, drug effects varied according to individual differences
in memory performance (for drug x Pr, F(1.7,20.7) ¼ 6.96,
p ¼ 0.006 for ridge and F(1.8,21.6) ¼ 6.90, p ¼ 0.006 for replication
with correlation metric), with a clear linear trend from the Sulpiride
through Placebo to the Bromocriptine condition (F(1,12) ¼ 10.62,
p ¼ 0.007 for ridge, F(1,12) ¼ 15.05, p ¼ 0.002 for correlation).

Within the older group, this memory specificity effect also
differed reliably from any drug effects on encoding phase task
specificity (for task phase x drug x Pr, F(1.8,22.0) ¼ 5.01,
p ¼ 0.018). The only discrepancy between the ridge and correla-
tion indices of memory specificity was that although both showed
a strong linear trend, the ridge measure suggested a predominant
Bromocriptine effect (see Fig. 3; for pairwise comparison with
Placebo for drug x Pr, F(1,12) ¼ 12.63, p ¼ 0.004 for ridge; F
(1,12) ¼ 1.53, p ¼ 0.240 for correlation), while the correlation
metric suggested a predominant Sulpiride effect (F(1,12) ¼ 6.62,
p ¼ 0.024 for correlation; F o 1 for ridge). While on Placebo
memory specificity did not vary with performance in the older
group (F o 1 for both measures), Bromocriptine induced a more
negative association between memory specificity and perfor-
mance, with memory specificity increasing in poorer performers
and decreasing in better performers within the older group (for Pr
effect on Bromocriptine F(1,12) ¼ 7.56, p ¼ 0.018 for ridge; F
(1,12) ¼ 1.24, p ¼ 0.288 for correlation). Sulpiride had the oppo-
site effect, inducting a more positive association of memory spe-
cificity and Pr (F(1,12) ¼ 3.27, p ¼ 0.096 for ridge, F(1,12) ¼ 11.01,
p ¼ 0.006 for correlation).

Post hoc tests were also conducted with individual linear drug
effects on memory specificity as the dependent measure (on Bro-
mocriptine–Sulpiride). These confirmed reliable interactions of age
group and Pr (for ridge, F(1,26) ¼ 11.77, p ¼ .022; for correlation, F
(1,26) ¼ 6.55, p ¼ .017). Analyses of the relations between linear
performance effects (Pr on Bromocriptine–Sulpiride) and linear
drug effects did not reveal any significant effects (F o 1 for all).
Discussion

Our results show that contextual reinstatement during episodic
memory retrieval is less specific in older adults, as predicted by
the dedifferentiation account of cognitive aging (Carp et al., 2010b;
Li et al., 2001; Park et al., 2004). The data support the proposal that
age-related dedifferentiation impacts on episodic memory and
impairs memory specificity (Li et al., 2005; St-Laurent et al., 2014).
In both young and older age groups, highly specific distributed
patterns of neural activity distinguished the processing of se-
mantic and phonological task contexts during the encoding phase,
but reinstatement of these task-related patterns at retrieval –

memory specificity – was reduced in the older adults in PFC and
hippocampus. This reduction in the distinctiveness of retrieved
representations was not accounted for by age-related differences
in the specificity with which the original task contexts were re-
presented. Task specificity and memory specificity also showed
dissociable dopaminergic sensitivity with age-invariant and age-
dependent effects, respectively. In hippocampus, memory specifi-
city varied linearly with dopamine stimulation in the older group
and this modulation tracked individual differences in memory
performance. The dopaminergic effect in hippocampus was dis-
tinct from a generalized age-invariant increase in task specificity
on both Sulpiride and Bromocriptine. Our data support the notion

dx.doi.org/10.1016/j.neuroimage.2015.03.031
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that dopaminergic function in old age impacts hippocampal
memory processes (Chowdhury et al., 2012; Kaasinen et al., 2000;
Morcom et al., 2010; Stemmelin et al., 2000; Wilson et al., 2006).

Findings in hippocampus under Placebo were as predicted. The
robust reinstatement of task-specific activity during episodic re-
trieval in the young group is consistent with recent reports that
elements of specific memory traces within the hippocampus are
reactivated during recollection (Chadwick et al., 2011; Staresina
et al., 2012; but see Ritchey et al., 2013), although at the current
spatial resolution activity in adjacent cortical regions cannot be
excluded. Hippocampal reinstatement was not detectable in the
older adults, even though distinctiveness of the original two task
contexts was, if anything, slightly greater in this group. This is the
first report of an age-related reduction in memory specificity in
hippocampus and the first to use trial-unique stimuli, converging
with recent findings in cortical regions for reinstatement at the
level of individual items (St-Laurent et al., 2014). Models of hip-
pocampal function specify that it is critical for the pattern se-
paration of distinct memory traces for highly similar events and
their later reinstatement by pattern completion (Marr, 1982;
O'Reilly and McClelland, 1994; Treves and Rolls, 1994), functions
which appear to be compromised in aging (Wilson et al., 2006;
Yassa et al., 2011).

It is important to note that the group difference in neural
memory specificity did not reflect a simple absence of recollection
in the older adults: recollective experience was just as likely in this
group, and received the same boost from semantic as opposed to
phonological processing. Instead, the findings indicate a reduction
in the distinctiveness of reinstatement assumed to support con-
textual recollection (Danker and Anderson, 2010; St-Laurent et al.,
2014). Recovery of episodic detail is typically impoverished in
older adults even when subjective recollection occurs (e.g. Levine
et al., 2002). Our findings indicate that the decline in recollection
of episodic detail in old age (Schacter et al., 1997; Spencer and Raz,
1995) is accompanied by a reduction in the distinctiveness of
contextual representations. The data suggest an age-related re-
duction in the specificity of hippocampal encoding, storage and/or
retrieval of these representations which impacts on their later
reinstatement during recollection.

Age-related reductions in memory specificity in left dorso-
lateral and ventrolateral PFC were prominent while memory
specificity was age-invariant in LSOG. However, the data do not
necessarily suggest selective anterior changes as predicted by the
frontal aging hypothesis (West, 1996): although group differences
were not clear cut in fusiform gyrus, memory specificity in that
regionwas numerically greater in the young and non-significant in
the older adults, consistent with other studies (Carp et al., 2010a,b,
2011; Goh et al., 2010; Park et al., 2010, 2012; St-Laurent et al.,
2014). Critically, as in hippocampus, the group differences in cor-
tical memory specificity were task-dependent: representations of
task context in the encoding phase were well-differentiated in
both age groups, unlike contextual reinstatement. It is funda-
mental to the neural dedifferentiation hypothesis that less differ-
entiated representations be able to explain the marked age-related
declines in higher-order functions, notably fluid intelligence, pro-
cessing speed and – as examined in the present study – episodic
memory (Li et al., 2001). Our results support this proposal, as do
recent demonstrations of associations between neural category-
specificity in older adults and fluid processing (Park et al., 2010),
working memory load (Carp et al., 2010a), and episodic memory
rather than perception (St-Laurent et al., 2014). In terms of brain–
behavior relations, the present study also shows for the first time
an association between an index of representation specificity and
task performance which is age-dependent. This is consistent with
the assumption of the dedifferentiation account that declines in
specificity accounts of age-related cognitive change.
The results of our psychopharmacological manipulation pro-
vide some support for the theory that a decline in dopamine
transmission underpins age-related dedifferentiation (Li et al.,
2001). In hippocampus, Sulpiride induced greater memory speci-
ficity in older adults whose memory was better at baseline (on
Placebo) relative to those whose memory was poorer. The result-
ing brain–behavior association for the group as a whole on Sul-
piride resembled that in the young on Placebo. Conversely, Bro-
mocriptine induced a negative association of memory specificity
and memory performance in the older group, boosting memory
specificity in poorer relative to better performers (see Fig. 3). This
partially supports our first prediction, and our prior findings
(Morcom et al., 2010), indicating an association between dopa-
minergic-sensitivity of memory processing and individual mem-
ory ability in older adults only. However this association did not
involve just a greater sensitivity in poorer performers, but a
varying pattern of response according to baseline level of perfor-
mance. While consistent with the dopamine hypothesis of aging,
this does not fit the simple view that dopaminergic decline both
reduces memory performance and increases dopamine sensitivity
via a single mechanism. This result is considered in more detail
below. The finding of an age- and individual performance-related
dopaminergic modulation of hippocampal memory specificity, and
the findings of Morcom et al. (2010), are also in line with recent
behavioral genetics data which implicate individual differences in
dopamine receptor and transporter genotypes in individual dif-
ferences in episodic memory in later life (Li et al., 2013; Papenberg
et al., 2013, 2014).

As noted in the Introduction, we previously found that en-
coding phase activity in the older group in MTL predicted later
forgetting rather than remembering, and proposed that older
adults may encode less distinctive memory representations which
may not support specific recollection (Morcom et al., 2010). This is
consistent with the current findings under Placebo. However, the
dopaminergic effects in the present study suggest a need for
modification of our previous account of the subsequent forgetting
effects. This predicts that an intervention which enhances the
subsequent forgetting effects would also tend to reduce memory
specificity. However, Bromocriptine increased memory specificity
in older adults with poorer memory at the same time as enhancing
subsequent forgetting effects (see Fig. 3). The latter effects may
instead reflect a form of “partial compensation”, which may im-
prove subsequent memory specificity when it is engaged but may
be engaged only when there has been some underlying loss of
memory function (Daselaar and Cabeza, 2005; de Chastelaine
et al., 2011; Morcom and Johnson, in press). This would be in
keeping with the linear increase in memory performance in the
older group with the increase in dopamine signaling, alongside the
subsequent forgetting effects in the older group, i.e., association of
activity in this region with unsuccessful encoding (although the
behavioral effect did not vary reliably with individual differences
in performance).

The dopaminergic modulation of distributed task-specific ac-
tivity in the encoding phase was unexpected, with age-invariant
increases under both Sulpiride and Bromocriptine. There were no
accompanying behavioral effects on the phonological and se-
mantic decisions, although the age-invariant Sulpiride effect on
decision criterion in the memory task may reflect neuromodula-
tory mechanisms also affecting processing during one or both of
the two orienting tasks. The task specificity measure was included
as a baseline for the memory specificity measure, and likely re-
flected a range of linguistic, mnemonic and executive processes
engaged in the two tasks. In pharmacological neuroimaging,
nonspecific effects of drugs such as modulations of cerebral blood
flow are a potential concern (Honey and Bullmore, 2004). These
seem unlikely to account for highly process-specific effects such as
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those on memory specificity, but might contribute to the wide-
spread effects on task specificity. Whatever the nature of the latter
effect, the critical point for interpretation of the episodic memory
findings is that the age-dependent dopaminergic modulation of
memory specificity in hippocampus differed clearly from the age-
invariant effects on task specificity. The performance-related drug
effects in the older group only are consistent with the literature
suggesting age-related changes in dopaminergic neuromodulation
and reveal a greater general sensitivity to perturbations in dopa-
mine signaling than in the young.

Our current and earlier investigations converge to support the
possibility that age-related memory impairment is associated with
an imbalance in hippocampal dopaminergic regulation. Older
adults were more sensitive to dopaminergic perturbation than the
young: D2-like blockade was associated with improved memory
function (greater hippocampal memory specificity) in better older
performers and D2-like stimulation with improved function in
poorer performers. A hippocampal locus of this effect is consistent
with associations of aging and age-related memory decline with
loss of dopamine neurons and D2-like receptors in this region
(Kaasinen et al., 2000) (Stemmelin et al., 2000). Dopamine reg-
ulates hippocampal function by modulation of its cortical inputs,
directly via CA1 (Otmakhova and Lisman, 1998) and indirectly via
entorhinal cortex (Pralong and Jones, 1993; Caruana et al., 2006).
Thus the direction of effects may depend on cortical inputs as well
as baseline function (Fujishiro et al., 2005; Umegaki et al., 2001).
Behavioral and neuroimaging investigations in humans have
found that D2-like modulation can enhance or impair cognitive
function according to baseline function (e.g., Mehta et al., 2005,
2008; Reeves et al., 2010), consistent with the literature on in-
verted U functions in PFC (see Cools and D'Esposito, 2011) and
their alteration in aging (Mattay et al., 2006), as well as with the
present data.

Given the systemic dopaminergic manipulation, however, it is
also possible that upstream effects – for example in striatum – can
explain the MTL responses (Honey and Bullmore, 2004; Morcom
et al., 2010). We found no evidence that the age-related differences
in memory specificity in PFC were mediated by changes in dopa-
minergic transmission (Braver et al., 2001; Li et al., 2001). How-
ever, this null finding requires cautious interpretation. Future
studies should investigate the possibility that the critical age
changes mediating memory dedifferentiation in lateral PFC involve
D1-like receptors which are numerous in this region (Bäckman
et al., 2011). Whether or not cortical dopaminergic decline impacts
on episodic memory, our findings in MTL are at least a marker of
dopaminergic dysregulation, and hint that it may be possible to
improve this regulation by adjusting dopamine signaling. Future
studies are needed to establish the behavioral as well as the neural
impact of such adjustments.
Acknowledgments

This research was funded mainly by a Fellowship to AMM from
Research into Ageing, UK (no. 249), and by an RCUK Academic
Fellowship at the University of Edinburgh. Some of the research
was conducted by Hunar Abdulrahman as part of a dissertation for
the MSc in Neurosciences at the University of Edinburgh. The re-
search was also supported by a Human Brain Project grant from
the National Institute of Mental Health and the National Institute
of Biomedical Imaging and Bioengineering. PCF was supported by
a Wellcome Trust Senior Fellowship in Clinical Science
(WT095692MA), and by the Bernard Wolfe Health Neuroscience
Fund. ETB is a part-time (50%) employee and shareholder of GSK.
AMM is a member of the University of Edinburgh Centre for
Cognitive Ageing and Cognitive Epidemiology, part of the cross-
council Lifelong Health and Wellbeing Initiative, Grant number
G0700704/84698. We are grateful to members of the Wolfson
Brain Imaging Centre (Cambridge).
Appendix A. Supplementary data

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2015.03.031.
References

Alvarez, P., Squire, L.R., 1994. Memory consolidation and the medial temporal-lobe
— a simple network model. Proc. Natl. Acad. Sci. U. S. A. 91, 7041–7045.

Ashburner, J., Friston, K.J., 1999. Nonlinear spatial normalization using basis func-
tions. Hum. Brain Mapp. 7, 254–266.

Backman, L., Nilsson, L.-G., 1996. Semantic memory functioning across the adult life
span. Eur. Psychol. 1, 27–33.

Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.C., Farde, L., 2006. The correlative
triad among aging, dopamine, and cognition: current status and future pro-
spects. Neurosci. Biobehav. Rev. 30, 791–807.

Bäckman, L., Karlsson, S., Fischer, H., Karlsson, P., Brehmer, Y., Rieckmann, A.,
Macdonald, S.W., Farde, L., Nyberg, L., 2011. "Dopamine D 1 receptors and age
differences in brain activation during working memory.". Neurobiol. Aging
32.10, 1849–1856.

Baltes, P.B., Lindenberger, U., 1997. Emergence of a powerful connection between
sensory and cognitive functions across the adult life span: a new window to the
study of cognitive aging? Psychol. Aging 12, 12–21.

Braver, T.S., Barch, D.M., Keys, B.A., Carter, C.S., Cohen, J.D., Kaye, J.A., Janowsky, J.S.,
Taylor, S.F., Yesavage, J.A., Mumenthaler, M.S., Jagust, W.J., Reed, B.R., 2001.
Context processing in older adults: evidence for a theory relating cognitive
control to neurobiology in healthy aging. J. Exp. Psychol. Gen. 130, 746–763.

Cabeza, R., 2002. Hemispheric asymmetry reduction in older adults: The HAROLD
model. Psychol. Aging 17, 85–100.

Caley, C.F., Weber, S.S., 1995. Sulpiride: an antipsychotic with selective dopami-
nergic antagonist properties. Ann. Pharmacother. 29, 152–160.

Carp, J., Gmeindl, L., Reuter-Lorenz, P.A., 2010a. Age differences in the neural re-
presentation of working memory revealed by multi-voxel pattern analysis.
Front. Hum. Neurosci. 4.

Caruana, Douglas A., et al., 2006. Dopamine has bidirectional effects on synaptic
responses to cortical inputs in layer II of the lateral entorhinal cortex. J. Neu-
rophysiol. 96.6, 3006–3015.

Carp, J., Park, J., Polk, T.A., Park, D.C., 2010b. Age differences in neural distinctiveness
revealed by multi-voxel pattern analysis. NeuroImage 56, 736–743.

Carp, J., Park, J., Hebrank, A., Park, D.C., Polk, T.A., 2011. Age-related neural ded-
ifferentiation in the motor system. PLoS ONE 6.

Chadwick, M.J., Hassabis, D., Maguire, E.A., 2011. Decoding overlapping memories in
the medial temporal lobes using high-resolution fMRI. Learn. Mem. 18,
742–746.

Chowdhury, R., Guitart-Masip, M., Bunzeck, N., Dolan, R.J., Düzel, E., 2012. Dopa-
mine modulates episodic memory persistence in old age. J. Neurosci. 32,
14193–14204.

Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Evans, A.C., 1997. Brainweb: online in-
terface to a 3D MRI simulated brain database. NeuroImage 5, 425.

Cools, R., D'Esposito, M., 2011. Inverted-U-shaped dopamine actions on human
working memory and cognitive control. Biol. Psychiatry 69, E113–E125.

Coutanche, Marc N., Thompson-Schill, Sharon L., Schultz, Robert T., 2011. Multi-
voxel pattern analysis of fMRI data predicts clinical symptom severity. Neuro-
image 57.1, 113–123.

Craik, F.I., Lockhart, R.S., 1972. Levels of processing: a framework for memory re-
search. J. Verbal Learn. Verbal Behav. 11, 671–684.

Danker, J.F., Anderson, J.R., 2010. The ghosts of brain states past: remembering
reactivates the brain regions engaged during encoding. Psychol. Bull. 136.

Daselaar, S., Cabeza, R., 2005. Age-related changes in hemispheric organization. In:
Cabeza, R., Nyberg, L., Park, D.C. (Eds.), Cognitive Neuroscience of Aging: Linking
Cognitive and Cerebral Aging. Oxford University Press, New York, pp. 325–353.

Detre, G., Polyn, S.M., Moore, C., Natu, V., Singer, B., Cohen, J., Haxby, J.V., Norman, K.
A., 2006. The multi-voxel pattern analysis (MVPA) toolbox. Poster presented at
the Annual Meeting of the Organization for Human Brain Mapp, Florence, Italy.

de Chastelaine, M., Wang, T.H., Minton, B., Muftuler, L.T., Rugg, M.D., 2011. The
effects of age, memory performance, and callosal integrity on the neural cor-
relates of successful associative encoding. Cereb. Cortex 21.

Fujishiro, H., Umegaki, H., Suzuki, Y., Oohara-Kurotani, S., Yamaguchi, Y., Iguchi, A.,
2005. Dopamine D-2 receptor plays a role in memory function: implications of
dopamine-acetylcholine interaction in the ventral hippocampus. J. Psycho-
pharmacol. 182, 253–261.

Gardiner, J.M., 1988. Functional aspects of recollective experience. Mem. Cogn. 16,
309–313.

Goh, J.O., Suzuki, A., Park, D.C., 2010. Reduced neural selectivity increases fMRI

dx.doi.org/10.1016/j.neuroimage.2015.03.031
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0005
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0005
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0005
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0010
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0010
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0010
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0015
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0015
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0015
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0035
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0035
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0035
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0035
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0340
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0340
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0340
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0340
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0340
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0020
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0020
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0020
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0020
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0025
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0025
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0025
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0025
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0025
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9000
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9000
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9000
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0040
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0040
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0040
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0045
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0045
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0045
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9005
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9005
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9005
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9005
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0055
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0055
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0055
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0050
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0050
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0060
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0060
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0060
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0060
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0065
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0065
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0065
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0065
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0070
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0070
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0075
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0075
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0075
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9010
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9010
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9010
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9010
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0080
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0080
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0080
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0085
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0085
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0090
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0090
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0090
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0090
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9015
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9015
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9015
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0345
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0345
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0345
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0100
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0100
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0100
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0100
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0100
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0105
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0105
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0105
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0110


H. Abdulrahman et al. / NeuroImage 153 (2017) 211–220220
adaptation with age during face discrimination. NeuroImage 51, 336–344.
Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P., 2001.

Distributed and overlapping representations of faces and objects in ventral
temporal cortex. Science 293, 2425–2430.

Haynes, John-Dylan, Rees, Geraint, 2006. Decoding mental states from brain ac-
tivity in humans. Nature Rev. Neurosci. 7.7, 523–534.

Head, D., Rodrigue, K.M., Kennedy, K.M., Raz, N., 2008. Neuroanatomical and cog-
nitive mediators of age-related differences in episodic memory. Neu-
ropsychology 22 (4), 491.

Hofer, S.M., Sliwinski, M.J., 2001. Understanding ageing— an evaluation of research
designs for assessing the interdependence of ageing-related changes. Ger-
ontology 47.

Honey, G., Bullmore, E., 2004. Human pharmacological MRI. Trends Pharmacol. Sci.
25, 366–374.

Johnson, J.D., McDuff, S.G.R., Rugg, M.D., Norman, K.A., 2009. Recollection, famil-
iarity, and cortical reinstatement: a multivoxel pattern analysis. Neuron 63,
697–708.

Kaasinen, V., Vilkman, H., Hietala, J., Nagren, K., Helenius, H., Olsson, H., Farde, L.,
Rinne, J.O., 2000. Age-related dopamine D2/D3 receptor loss in extrastriatal
regions of the human brain. Neurobiol. Aging 21, 683–688.

Kamitani, Y., Tong, F., 2005. Decoding the visual and subjective contents of the
human brain. Nature Neurosci. 8.5, 679–685.

Kuhl, B.A., Rissman, J., Chun, M.M., Wagner, A.D., 2011. Fidelity of neural reactiva-
tion reveals competition between memories. Proc. Natl. Acad. Sci. U. S. A. 108,
5903–5908.

Levine, B., Svoboda, E., Hay, J.F., Winocur, G., Moscovitch, M., 2002. Aging and au-
tobiographical memory: dissociating episodic from semantic retrieval. Psychol.
Aging 17, 677–689.

Li, S.C., Lindenberger, U., Sikstrom, S., 2001. Aging cognition: from neuromodula-
tion to representation. Trends Cogn. Sci. 5, 479–486.

Li, S.C., Naveh-Benjamin, M., Lindenberger, U., 2005. Aging neuromodulation im-
pairs associative binding — a neurocomputational account. Psychol. Sci. 16,
445–450.

Li, S.-C., Papenberg, G., Nagel, I.E., Preuschhof, C., Schroeder, J., Nietfeld, W., Bertram,
L., Heekeren, H.R., Lindenberger, U., Baeckman, L., 2013. Aging magnifies the
effects of dopamine transporter and D2 receptor genes on backward serial
memory. Neurobiol. Aging 34, 358-e1.

Luciana, M., Collins, P.F., Depue, R.A., 1998. Opposing roles for dopamine and ser-
otonin in the modulation of human spatial working memory functions. Cereb.
Cortex 8, 218–226.

Marr, D., 1982. Vision. WH Freeman, San Francisco.
Mattay, V.S., Fera, F., Tessitore, A., Hariri, A.R., Berman, K.F., Das, S., Meyer-Linden-

berg, A., Goldberg, T.E., Callicott, J.H., Weinberger, D.R., 2006. Neurophysiolo-
gical correlates of age-related changes in working memory capacity. Neurosci.
Lett. 392, 32–37.

McClelland, J.L., McNaughton, B.L., Oreilly, R.C., 1995. Why there are com-
plementary learning-systems in the hippocampus and neocortex — insights
from the successes and failures of connectionist models of learning and
memory. Psychol. Rev. 102, 419–457.

McDuff, S.G.R., Frankel, H.C., Norman, K.A., 2009. Multivoxel pattern analysis re-
veals increased memory targeting and reduced use of retrieved details during
single-agenda source monitoring. J. Neurosci. 29.

Mehta, M.A., Hinton, E.C., Montgomery, A.J., Bantick, R.A., Grasby, P.M., 2005. Sul-
piride and mnemonic function: effects of a dopamine D2 receptor antagonist
on working memory, emotional memory and long-term memory in healthy
volunteers. J. Psychopharmacol. 19, 29–38.

Mehta, M.A., Montgomery, A.J., Kitamura, Y., Grasby, P.M., 2008. Dopamine D2 re-
ceptor occupancy levels of acute sulpiride challenges that produce working
memory and learning impairments in healthy volunteers. J. Psychopharmacol.
(Berl) 196, 157–165.

Morcom, A.M., Johnson, W., 2015. Neural reorganization and compensation in
aging. J. Cogn. Neurosci. . http://dx.doi.org/10.1162/jocn_a_00783 (in press)

Morcom, A.M., Bullmore, E.T., Huppert, F.A., Lennox, B., Praseedom, A., Linnington,
H., Fletcher, P.C., 2010. Memory encoding and dopamine in the aging brain: a
psychopharmacological neuroimaging study. Cereb. Cortex 20, 743–757.

Morcom, Alexa M., et al., 2003. Age effects on the neural correlates of successful
memory encoding. Brain 126 (1), 213–229.

Müller, U., von Cramon, D.Y., Pollmann, S., 1998. D1-versus D2-receptor modulation
of visuospatial working memory in humans. J. Neurosci. 18, 2720–2728.

Nelson, H.E., 1982. The National Adult Reading Test (NART). NFER-Nelson, Windsor,
Berkshire.

Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V., 2006. Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends cognit. sci. 10 (9), 424–430.

Oranje, B., Gispen-de Wied, C.C., Westenberg, H.G.M., Kemner, C., Verbaten, M.N.,
Kahn, R.S., 2004. Increasing dopaminergic activity: effects of L-dopa and bro-
mocriptine on human sensory gating. J. Psychopharmacol. 18, 388–394.

O'Reilly, R.C., McClelland, J.L., 1994. Hippocampal conjunctive encoding, storage,
and recall: avoiding a trade-off. Hippocampus 4, 661–682.

Otmakhova, Nonna A., Lisman, John E., 1998. "D1/D5 dopamine receptors inhibit
depotentiation at CA1 synapses via cAMP-dependent mechanism.". J. Neurosci.
18.4, 1270–1279.

Otten, Leun J., Rugg, Michael D., 2001. "Task-dependency of the neural correlates of
episodic encoding as measured by fMRI.". Cereb. Cortex 11.12, 1150–1160.
Papenberg, G., Backman, L., Nagel, I.E., Nietfeld, W., Schroeder, J., Bertram, L.,
Heekeren, H.R., Lindenberger, U., Li, S.-C., 2013. Dopaminergic gene poly-
morphisms affect long-term forgetting in old age: further support for the
magnification hypothesis. J. Cogn. Neurosci. 25, 571–579.

Papenberg, G., Baeckman, L., Nagel, I.E., Nietfeld, W., Schroeder, J., Bertram, L.,
Heekeren, H.R., Lindenberger, U., Li, S.-C., 2014. COMT polymorphism and
memory dedifferentiation in old age. Psychol. Aging 29, 374–383.

Park, D.C., Polk, T.A., Park, R., Minear, M., Savage, A., Smith, M.R., 2004. Aging re-
duces neural specialization in ventral visual cortex. Proc. Natl. Acad. Sci. U. S. A.
101, 13091–13095.

Park, J., Carp, J., Hebrank, A., Park, D.C., Polk, T.A., 2010. Neural specificity predicts
fluid processing ability in older adults. J. Neurosci. 30, 9253–9259.

Park, J., Carp, J., Kennedy, K.M., Rodrigue, K.M., Bischof, G.N., Huang, C.-M., Rieck, J.
R., Polk, T.A., Park, D.C., 2012. Neural broadening or neural attenuation? In-
vestigating age-related dedifferentiation in the face network in a large lifespan
sample. J. Neurosci. 32.

Payer, D., Marshuetz, C., Sutton, B., Hebrank, A., Welsh, R.C., Park, D.C., 2006. De-
creased neural specialization in old adults on a working memory task. Neu-
roreport 17, 487–491.

Polyn, S.M., Natu, V.S., Cohen, J.D., Norman, K.A., 2005. Category-specific cortical
activity precedes retrieval during memory search. Science 310, 1963–1966.

Poppenk, J., Norman, K.A., 2012. Mechanisms supporting superior source memory
for familiar items: A multi-voxel pattern analysis study. Neuropsychologia 50
(13), 3015–3026.

Pralong, E., Jones, R.S.G., 1993. "Interactions of Dopamine with Glutamate‐and
GABA‐mediated Synaptic Transmission in the Rat Entorhinal Cortex In Vitro.".
European J. Neurosci. 5.6, 760–767.

Reddymasu, S.C., Soykan, I., McCallum, R.W., 2007. Domperidone: review of phar-
macology and clinical applications in gastroenterology. Am. J. Gastroenterol.
102, 2036–2045.

Reeves, S., Mehta, M., Howard, R., Grasby, P., Brown, R., 2010. The dopaminergic
basis of cognitive and motor performance in Alzheimer's disease. Neurobiol.
Dis. 37, 477–482.

Ritchey, M., Wing, E.A., Labar, K.S., Cabeza, R., 2013. Neural similarity between
encoding and retrieval is related to memory via hippocampal interactions.".
Cerebral Cortex 23.12, 2818–2828.

Schacter, D.L., Koutstaal, W., Norman, K.A., 1997. False memories and aging. Trends
Cogn. Sci. 1, 229–236.

Snodgrass, J.G., Corwin, J., 1988. Pragmatics of measuring recognition memory:
applications to dementia and amnesia. J. Exp. Psychol. 117, 34–50.

Spencer, W.D., Raz, N., 1995. Differential effects of aging on memory for content and
context: a meta-analysis. Psychol. Aging 10, 527–539.

Staresina, B.P., Henson, R.N.A., Kriegeskorte, N., Alink, A., 2012. Episodic reinstate-
ment in the medial temporal lobe. J. Neurosci. 32, 18150–18156.

Stemmelin, J., Lazarus, C., Cassel, S., Kelche, C., Cassel, J.C., 2000. Im-
munohistochemical and neurochemical correlates of learning deficits in aged
rats. Neuroscience 96, 275–289.

St-Laurent, M., Abdi, H., Bondad, A., Buchsbaum, B.R., 2014. Memory reactivation in
healthy aging: evidence of stimulus-specific dedifferentiation. J. Neurosci. 34,
4175–4186.

Talairach, J., Tournoux, P., 1988. Co-planar Stereotaxic Atlas of the Human Brain.
George Thieme Verlag, Stuttgart.

Treves, A., Rolls, E.T., 1994. Computational analysis of the role of the hippocampus
in memory. Hippocampus 4, 374–391.

Umegaki, H., Munoz, J., Meyer, R.C., Spangler, E.L., Yoshimura, J., Ikari, H., Iguchi, A.,
Ingram, D.K., 2001. Involvement of dopamine D-2 receptors in complex maze
learning and acetylcholine release in ventral hippocampus of rats. Neu-
roscience 103, 27–33.

Von Bahr, C., Wiesel, F.A., Movin, G., Eneroth, P., Jansson, P., Nilsson, L., Ogenstad, S.,
1991. Neuroendocrine responses to single oral doses of remoxipride and sul-
piride in healthy female and male volunteers. Psychopharmacology 103,
443–448.

Wagner, A.D., Davachi, L., 2001. Cognitive neuroscience: forgetting of things past.
Curr. Biol. 11, R964–R967.

West, R.L., 1996. An application of prefrontal cortex function theory to cognitive
aging. Psychol. Bull. 120, 272–292.

Wiesel, F.A., Alfredsson, G., Ehrnebo, M., Sedvall, G., 1982. Prolactin response fol-
lowing intravenous and oral sulpiride in healthy human subjects in relation to
sulpiride concentrations. Psychopharmacology 76, 44–47.

Wilson, I.A., Gallagher, M., Eichenbaum, H., Tanila, H., 2006. Neurocognitive aging:
prior memories hinder new hippocampal encoding. Trends Neurosci. 29,
662–670.

Yassa, M.A., Lacy, J.W., Stark, S.M., Albert, M.S., Gallagher, M., Stark, C.E., 2011.
Pattern separation deficits associated with increased hippocampal CA3 and
dentate gyrus activity in nondemented older adults. Hippocampus 21 (9),
968–979. http://dx.doi.org/10.1002/hipo.20808.

Yonelinas, A.P., Widaman, K., Mungas, D., Reed, B., Weiner, M.W., Chui, H.C., 2007.
Memory in the aging brain: doubly dissociating the contribution of the hip-
pocampus and entorhinal cortex. Hippocampus 17 (11), 1134–1140.

Zhang, J., Yang, Y., 2003. Robustness of Regularized Linear Classification Methods in
Text Categorization. Proceedings of SIGIR-2003, 26st ACM International Con-
ference on Research and Development in Information Retrieval, pp. 190–197.

http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0110
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0110
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0115
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0115
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0115
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0115
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9020
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9020
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9020
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9025
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9025
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9025
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0120
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0120
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0120
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0125
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0125
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0125
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0130
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0130
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0130
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0130
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0135
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0135
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0135
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0135
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9030
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9030
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9030
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0140
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0140
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0140
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0140
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0145
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0145
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0145
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0145
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0150
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0150
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0150
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0155
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0155
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0155
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0155
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0350
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0350
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0350
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0350
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0165
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0165
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0165
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0165
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0170
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0175
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0175
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0175
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0175
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0175
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0180
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0180
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0180
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0180
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0180
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0185
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0185
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0185
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0190
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0190
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0190
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0190
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0190
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0195
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0195
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0195
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0195
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0195
http://dx.doi.org/10.1162/jocn_a_00783
http://dx.doi.org/10.1162/jocn_a_00783
http://dx.doi.org/10.1162/jocn_a_00783
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0200
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0200
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0200
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0200
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9035
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9035
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9035
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0205
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0205
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0205
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0210
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0210
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9040
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9040
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9040
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0215
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0215
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0215
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0215
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0220
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0220
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0220
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9045
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9045
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9045
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9045
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9050
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9050
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9050
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0225
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0225
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0225
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0225
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0225
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0230
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0230
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0230
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0230
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0235
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0235
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0235
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0235
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0240
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0240
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0240
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0245
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0245
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0245
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0245
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0250
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0250
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0250
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0250
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0255
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0255
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0255
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9055
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9055
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9055
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9055
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9060
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9060
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9060
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9060
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0260
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0260
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0260
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0260
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0265
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0265
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0265
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0265
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0360
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0360
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0360
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0360
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0275
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0275
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0275
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0280
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0280
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0280
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0285
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0285
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0285
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0295
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0295
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0295
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0300
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0300
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0300
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0300
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0290
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0290
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0290
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0290
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0305
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0305
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0310
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0310
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0310
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0315
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0315
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0315
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0315
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0315
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0365
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0365
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0365
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0365
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0365
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0320
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0320
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0320
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0325
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0325
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0325
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0330
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0330
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0330
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0330
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0335
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0335
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0335
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf0335
http://dx.doi.org/10.1002/hipo.20808
http://dx.doi.org/10.1002/hipo.20808
http://dx.doi.org/10.1002/hipo.20808
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9070
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9070
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9070
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9070
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9075
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9075
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9075
http://refhub.elsevier.com/S1053-8119(15)00213-X/rf9075

	Dopamine and memory dedifferentiation in aging
	Introduction
	Methods
	Subjects
	Experimental design and task
	MRI data acquisition and preprocessing
	Feature selection
	Multi-voxel pattern analysis using ridge regression
	Multi-voxel pattern analysis using correlation distance metric

	Results
	Task performance
	Multi-voxel pattern analysis: age-related differences
	Task specificity
	Memory specificity
	Prefrontal cortex
	Hippocampus
	Posterior cortex


	Multi-voxel pattern analysis: dopaminergic drug effects
	Encoding phase: task specificity
	Memory specificity


	Discussion
	Acknowledgments
	Supplementary data
	References




