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Abstract The gene desert upstream of the MYC oncogene on chromosome 8q24 contains

susceptibility loci for several major forms of human cancer. The region shows high conservation

between human and mouse and contains multiple MYC enhancers that are activated in tumor cells.

However, the role of this region in normal development has not been addressed. Here we show

that a 538 kb deletion of the entire MYC upstream super-enhancer region in mice results in 50% to

80% decrease in Myc expression in multiple tissues. The mice are viable and show no overt

phenotype. However, they are resistant to tumorigenesis, and most normal cells isolated from

them grow slowly in culture. These results reveal that only cells whose MYC activity is increased by

serum or oncogenic driver mutations depend on the 8q24 super-enhancer region, and indicate that

targeting the activity of this element is a promising strategy of cancer chemoprevention and

therapy.

DOI: 10.7554/eLife.23382.001

Introduction
Deregulated expression of the MYC oncogene is associated with many cancer types (Reviewed in

Albihn et al., 2010; Dang, 2012; Evan, 2012). MYC acts primarily as a transcriptional activator that

increases expression of many genes required for RNA and protein synthesis above the level that is

required in resting cells. In cancer cells, aberrantly elevated levels of MYC drive global amplification

of transcription rates, providing the cells with necessary resources for rapid proliferation (see, for

example Brown et al., 2008; van Riggelen et al., 2010; Ji et al., 2011; Lin et al., 2012;

Sabò et al., 2014; Walz et al., 2014).

Transcription of the MYC gene is regulated by a diverse array of regulatory elements located

both upstream and downstream of the MYC transcription start site (TSS). Variants in the MYC

upstream region contribute to inherited susceptibility to most major forms of human cancer, and

account for a very large number of cancer cases at the population level (Amundadottir et al., 2006;

Gudmundsson et al., 2007; Yeager et al., 2007; Al Olama et al., 2009; Yeager et al., 2009). For

example, the polymorphism rs6983267 linked to colorectal (Tomlinson et al., 2007) and prostate

(Yeager et al., 2007) cancers contributes more to cancer morbidity and mortality than any other
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known inherited variant or mutation, including the inherited mutations in classic tumor suppressors

such as RB, TP53 and APC. Through computational and experimental analyses, we and others have

shown that the risk allele G of rs6983267 creates a strong binding site for the colorectal-cancer asso-

ciated transcription factor Tcf7l2 (Pomerantz et al., 2009; Tuupanen et al., 2009). This binding site

is located within the Myc-335 enhancer element that is dispensable for mouse viability, but required

for efficient Tcf7l2-driven intestinal tumorigenesis (Sur et al., 2012b).

More recently, another enhancer element, located 1.47 Mb downstream of Myc was shown to be

required for formation of acute lymphoblastic leukemia (ALL) in mice (Herranz et al., 2014). How-

ever, in contrast to the Myc-335 element, this element is also required for normal T-cell develop-

ment. Thus, the mechanism by which individual Myc enhancer elements contribute to normal

development and tumorigenesis is still unclear.

Several studies have shown that the 8q24 region contains a large number of additional enhancer

elements (see, for example [Hallikas et al., 2006; Ahmadiyeh et al., 2010; Yan et al., 2013;

Yao et al., 2014]) and super-enhancers that are active in many different types of human cancer

(Hnisz et al., 2013; Lovén et al., 2013; Zhou et al., 2015). The MYC-associated super-enhancers

are activated during the process of tumorigenesis (Hnisz et al., 2013), and downregulation of super-

enhancer activity leads to selective inhibition of MYC expression (Lovén et al., 2013). Thus, MYC-

associated super-enhancer activity is required for tumorigenesis, but the role of these elements in

normal tissue morphogenesis and homeostasis has been unclear.

To address this problem, we have in this work generated multiple mouse strains deficient of regu-

latory elements upstream of the Myc promoter. Since this region contains multiple tumor type and

tissue -specific enhancers and super-enhancers, for the sake of clarity we refer to the deleted region

here as the ‘super-enhancer region´. By analysis of the mice, we found that the entire super-enhancer

eLife digest Our cells each contain close to 20,000 genes, which provide the instructions

needed to build our bodies and keep us alive. At any one time in the life of the cell, only some of

these genes are active. The activity of each gene is constantly regulated to allow the cell to respond

to changes in its environment. Enhancers are sections of DNA, outside of the genes, that act as

molecular switches controlling the activity of genes. A gene can have many such enhancers; each

enhancer is linked to a particular set of signals and having multiple enhancers allows the same gene

to be activated by different signals in different tissues in the body.

Changes to enhancers can have serious consequences. By altering the activity of genes, an

enhancer can have widespread effects on the health and behavior of a cell, including transforming it

from healthy to cancerous. The small differences in enhancers also make some people more

susceptible to cancers than others. If we can identify enhancers whose activity is commonly altered

in cancers, it could be possible to target them through treatment. Yet, it is not clear whether

targeting enhancers in this way could be effectively used to treat cancer without damaging healthy

cells.

Now, Dave, Sur et al. have examined a large enhancer region with known links to several

different cancers – including prostate, breast and colon cancers – to uncover whether it also plays a

critical role in healthy cells and if it could be safely targeted for treatment. The region has multiple

enhancers for a cancer-linked gene called MYC and is implicated in many cancer-associated deaths

every year. This particular enhancer region is found in both humans and mice, which share many

genes in common. Using genetic engineering, Dave, Sur et al. removed this enhancer region from

the genetic information of a group of mice. The experiment showed that mice without the enhancer

region were completely healthy. Also, when tested for cancer development, these mice were much

less susceptible to several major types of cancer.

This investigation reveals that it may be possible to create drugs to shut down or inhibit certain

enhancers to prevent or treat cancer without damaging healthy cells. However, this is currently just

one example in mice under laboratory conditions. Further research is needed to determine if a

similar approach can be developed to treat patients in the clinic.

DOI: 10.7554/eLife.23382.002
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region conferring multi-cancer susceptibility contributes to MYC expression in vivo, yet is not

required for mouse embryonic development and viability. However, this region is required for the

growth of normal cells in culture and cancer cells in vivo. As cultured cells are exposed to serum,

which is a signal of tissue damage, this finding suggests that tumor cells and cells responding to

damage signals share regulatory mechanisms that are dispensable for normal physiological growth

control.

Results

Functional mapping of the super-enhancer region upstream of Myc
To dissect functional significance of the 8q24 region during normal development, we generated

series of Myc alleles in mice using homologous recombination in ES cells. These include the Myc-335

enhancer deletion allele we have described previously (Sur et al., 2012b), and deletions of two addi-

tional conserved enhancer elements, Myc-196 and Myc-540, both of which are active in mouse intes-

tine and colorectal cancer cells. In addition, we generated a point mutation that inactivates a

conserved CCCTC-Binding factor (CTCF) site 2 kb upstream of the Myc TSS. This site has previously

been reported to be required for MYC expression (Gombert and Krumm, 2009), and to have insula-

tor activity (Gombert et al., 2003) (Figure 1a). Each allele contained loxP site(s) in the same orienta-

tion to allow conditional knockouts of the enhancers, and to facilitate generation of large deletions

and duplications by interallelic recombination (Wu et al., 2007). All alleles were bred to homozygos-

ity, and resulted in generation of viable mice. Expression of Myc in the colon of Myc-196�/� and

Myc-540�/� mice was not markedly altered, suggesting that these elements have little effect on reg-

ulation of Myc in the intestine under normal laboratory conditions (Figure 1b). Myc expression level

was also normal in Myc-CTCFmut/mut mouse colon despite loss of CTCF and cohesin (Rad21) binding

to the region proximal to the Myc promoter (Figure 1c).

Mice lacking the Myc super-enhancer region are viable and fertile
As the individual mutations and deletions had limited effect, we next decided to generate two large

deletions in the Myc locus using interallelic recombination between the Myc-CTCFmut loxP site and

the loxP sites at Myc-335� and Myc-540�, yielding deletions of 365 kb (GRCm38/mm10

chr15:61618287–61983375) and 538 kb (chr15:61445326–61983375), respectively (Figure 2a). The

resulting alleles, Myc42-367 and Myc42–540, were then segregated out from the corresponding dupli-

cations, and bred to homozygosity. Given the very large regions that were deleted (Figure 2b), we

expected to see a strong phenotype. However, no overt phenotype was identified in the Myc42-367/

42-367 mice. The mice were born at the expected mendelian ratio, and both males and females were

viable and fertile. Analysis of Myc expression, however, revealed a strong decrease in Myc expres-

sion in the colon and ileum of the mice (not shown).

The larger deletion, Myc42–540, could also be bred to homozygosity, and both males and females

were viable. Given that the entire Myc regulatory region spans more than 2 Mb of DNA and is

located on both sides of the Myc coding region (Rosenbloom et al., 2013; Sloan et al., 2016), the

deletion is not expected to be equivalent to deletion of the Myc gene itself. Still, the viability of the

mice is striking, since the region deleted contains regions linked to risk for myeloma, chronic lym-

phocytic leukemia and pancreatic, thyroid, bladder, prostate, breast, and colon cancers (Chung and

Chanock, 2011; Sahasrabudhe et al., 2015; Mitchell et al., 2016; Zhang et al., 2016). To charac-

terize the mice further, we analyzed histology and MYC expression in the tissues where these tumors

originate from. This analysis revealed normal morphology of mammary gland, spleen, bladder, pros-

tate and colon in Myc42–540/42–540 mice (Figure 2c).

Loss of the super-enhancer region leads to tissue-specific changes in
Myc expression
Although the Myc42–540/42–540 mice exhibited a normal phenotype, Myc expression was altered in a

tissue-specific manner in these mice. This is expected since this region contains individual tissue spe-

cific regulatory elements. The expression of Myc was strongly decreased in colon, small intestine

and prostate of these mice (Figure 3a and not shown). Immunohistochemical analysis of MYC

expression in intestine revealed strong decrease of nuclear staining, and loss of MYC expression
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Figure 1. Cancer susceptibility region upstream of Myc contains several conserved enhancer elements that are dispensable for normal mouse

development and MYC expression. (a) Comparison of Myc locus between human and mouse. The susceptibility regions for prostate cancer (PrCa),

chronic lymphocytic leukemia (CLL), breast cancer (BrCa), colorectal cancer (CRC) and bladder cancer (BlCa) are marked. Red vertical lines mark the

location of the Tcf7l2-binding CRC Myc enhancers in the two species. The lower panel shows the regional conservation probability predicted by

PhastCons (hg19 assembly, UCSC) with non-overlapping sliding windows for the whole region and each enhancer locus with a size of 500 bp and 10 bp,

respectively. (b) Deletion of Myc-196 and Myc-540 enhancer elements does not affect Myc expression in the colon as determined by qPCR analysis

(Myc-196�/� n = 2, Myc-540�/� n = 3 and wild-type n = 5). See Figure 1—source data 1 for details. (c) Mutation of the Myc-CTCF site causes loss of

CTCF and Rad21 binding at the Myc locus (top panel). Binding of CTCF and Rad21 at a control Actb locus is not affected. Red and black arrowheads

denote binding sites at Myc and Actb loci, respectively; green: Myc-CTCFmut/mut, blue: wild-type. The gene body for Myc and Actb is shown below the

respective panels. The qPCR analysis reveals that despite loss of CTCF/cohesin binding, the expression of Myc mRNA is not altered in the colon (for

qPCR, Myc-CTCFmut/mut n = 4, wild-type n = 3). See Figure 1—source data 1 for details. Error bars denote one standard deviation.

DOI: 10.7554/eLife.23382.003

The following source data is available for figure 1:

Source data 1. Myc transcript levels in wild-type and mutant mice in Figure 1b-c.

DOI: 10.7554/eLife.23382.004

Dave et al. eLife 2017;6:e23382. DOI: 10.7554/eLife.23382 4 of 25

Research article Cancer Biology

http://dx.doi.org/10.7554/eLife.23382.003
http://dx.doi.org/10.7554/eLife.23382.004
http://dx.doi.org/10.7554/eLife.23382


61.4M 62M

M
yc

-1
96

M
yc

-5
40

M
yc

-3
35

M
yc

Wild-type

M
yc

-C
T

C
F

m
ut

Δ2-367 /Δ2-367Myc

Wild-type Δ2-540 /Δ2-540Myc

nolo
C

etatsor
P

reddal
B

neelp
S

H3K27ac

H3K4me3

Tcf7l2

Myc-540 Myc-335 Myc-196 Myc-CTCF
mut

c d

Chr15

0

15

15

0

0

0

0

15

15

15

T
o

ta
l 
B

 c
e

lls
 (

x
1

0
  
)

7

Spleen

T
o

ta
l 
B

 c
e

lls
 (

x
1

0
  
)

7

2

1

3

Bone marrow

2

4

6

8

0

yra
m

ma
M

0

10
3

10
4

10
5

0 103 104 105

0

10
3

10
4

10
5

0 103 104 105

Wild-type

Δ2-540 /Δ2-540Myc

GR1/MAC1/TER119/CD3ε/NK1.1

C
D

19

FSC/SSC,singlets,PI-

B

Δ2-540 /Δ2-540Myc

B

53.4

37.7

a

b

Figure 2. Deletion of the 8q24 super-enhancer region is well tolerated during normal development and homeostasis. (a) Schematic representation of

the 365 kb and 538 kb deletions. (b) Myc42–540/42–540 deletion removes a region containing several active enhancer elements upstream of Myc as shown

by ChIP-seq analysis of histone H3 lysine 27 acetylation (H3K27ac) and lysine four trimethylation (H3K4me3). The deletion also removes several Tcf7l2

ChIP-seq peaks. Signal from Myc42–540/42–540 and wild-type mice are shown in green and blue, respectively. Red arrowheads and horizontal lines mark

Figure 2 continued on next page
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from the transit amplifying cell compartment. However, expression of MYC was still detected at the

base of the crypt in the region where the intestinal stem cells are known to reside (Figure 3b). These

results are consistent with the role of the deleted region in tumorigenesis of colon and prostate. To

analyze the effect of decreased MYC expression on the proliferation in the transit amplifying

Figure 2 continued

the different enhancer positions. (c) Haematoxylin/ Eosin stained sections of spleen, bladder, prostate, colon (Bar = 100 mm) and Carmine Alum stained

whole mounts of mammary glands, Bars = 3 mm, 100 mm (inset) showing normal development and homeostasis of different organs in Myc42–540/42–540

mice. (d) Myc42–540/42–540 mice have a reduced number of B-cells compared to the wild-types. Left panel: FACS plots of a representative Myc42–540/42–

540 and wild-type mouse spleen showing B-cell (B) population. Right panel: Scatter dot plot of total number of B cells in the spleen and bone marrow of

wild-type (squares), n = 5 and Myc42–540/42–540 (filled circles), n = 5. Each point represents individual mouse. Line represents the median. See

Figure 2—source data 1 for details. The number of CD4+ and CD8+ T-cells is not affected by the deletion (see Figure 2—figure supplement 1 and

appendix 1).

DOI: 10.7554/eLife.23382.005

The following source data and figure supplements are available for figure 2:

Source data 1. B cell numbers in the wild-type and MycD2-540/D2-540 mice in Figure 2d.

DOI: 10.7554/eLife.23382.006

Figure supplement 1. The loss of the Myc super-enhancer region results in a decrease in the number of B-cells, but no major defects in hematopoiesis.

DOI: 10.7554/eLife.23382.007

Figure supplement 1—source data 1. B and T-cell populations in the wild-type and MycD2-540/D2-540 mice in Figure 2—figure supplement 1a.

DOI: 10.7554/eLife.23382.008
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Figure 3. Tissue-specific effect of Myc42–540/42–540 deletion on MYC expression. (a) qPCR data showing the percentage of Myc expression in Myc42–540/

42–540 relative to the wild-type in colon (Co) n = 4, prostate (Pr) n = 2, bladder (Bl) n = 5, spleen (Sp) n = 4 and mammary gland (Ma) n = 3. Red line

marks the expression level (100%) in wild-type mice. Error bars indicate one standard deviation. See Figure 3—source data 1 for details. (b)

Immunohistochemistry shows reduced expression of MYC (n = 3 for each genotype) protein in intestinal crypts of Myc42–540/42–540 mice without any

significant effect on proliferation as indicated by Ki-67 (n = 2 for each genotype) immunostaining, Bar = 10 mm. Brown: IHC staining, Blue: Haematoxylin

staining.

DOI: 10.7554/eLife.23382.009

The following source data is available for figure 3:

Source data 1. Myc transcript levels in MycD2-540/D2-540 mice relative to the wild-types in Figure 3a.

DOI: 10.7554/eLife.23382.010
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compartment, we performed immunohistochemistry (IHC) for the proliferation marker Ki-67. Both

the wild-type and Myc42–540/42–540 had similar proliferative activity in the intestinal crypts

(Figure 3b).

In contrast to colon and prostate, Myc expression was not markedly affected in the bladder, and

was elevated in the spleen (Figure 3a). To analyze the cellular composition of the spleen, we per-

formed flow cytometric analysis of markers for hematopoietic stem cells and lymphoid lineage cells.

Myc42–540/42–540 mice had a near normal hematopoietic compartment (Figure 2d). The only

observed difference was a small reduction of B cells in the Myc42–540/42–540 mice compared to the

wild-type mice both in the spleen and the bone marrow. In contrast to the decrease in B-cells, the T

cell numbers were not affected by the deletion (Figure 2—figure supplement 1a). This finding is

consistent with the published data that regulatory elements controlling T-cell development and

T-cell acute lymphoblastic leukemia are located 1.47 Mb downstream of the Myc ORF

(Herranz et al., 2014).

To identify regulatory elements that could explain the effect in B-cells, we performed ChIP-seq

analysis of chromatin from LSK-Flt3neg hematopoietic stem cells and mature B-cells isolated from

wild-type mice. This analysis identified two B-cell specific regulatory elements. The Myc 2–540 dele-

tion results in loss of one of the elements, and moves the other element very close to the Myc TSS

(Figure 2—figure supplement 1b). Although the exact regulatory mechanism is not clear and

requires further study, the above data is consistent with a role of the super-enhancer region in devel-

opment of chronic lymphocytic leukemia, which is primarily a B-cell malignancy. However, the

decrease in B-cell number does not affect viability, and the Myc42–540/42–540 mice are healthy and

do not display an immune-deficient phenotype under normal ‘clean’ mouse housing conditions in

the absence of known pathogenic microorganisms.

To compare the role of the 8q24 super-enhancer region in growth of cells in vivo and in cell cul-

ture, we isolated fibroblasts from the skin of adult Myc42–540/42–540 and wild-type mice. Based on

presence of active histone marks, and undermethylation of focal elements, the super-enhancer

region is active in fibroblasts from both humans and mice (Figure 4a and Figure 4—figure supple-

ment 1). However, the resident fibroblasts in the skin of Myc42–540/42–540 mice appeared normal as

judged by Vimentin expression (Figure 4b). Ki-67 staining (IHC) of skin sections showed comparable

proliferation levels in wild-type and Myc42–540/42–540 mice (Figure 4b). In contrast, most lines of

fibroblasts (6 out of 7) isolated from Myc42–540/42–540 mice grew slower in culture compared to fibro-

blasts isolated from wild-type mice (Figure 4c; p-value=0.0256, Mann-Whitney one tailed test).

Deletion of the Myc super-enhancer region affects MYC target gene
expression only under culture conditions
To understand the mechanism by which the deletion of the 8q24 super-enhancer region has a differ-

ential effect on growth during normal tissue homeostasis and growth under culture conditions, we

subjected both the mouse tissues and cultured cells to RNA-seq analysis. Analysis of mouse tissues

confirmed the changes in Myc expression observed by qPCR (Figure 5a and Figure 5—figure sup-

plement 1). Surprisingly, despite more than 80% decrease of Myc expression in the colon, very few

genes were downregulated in the tissues, and none of the significantly altered genes were known

MYC targets (Supplementary file 1). These results suggest that expression of canonical MYC target

genes is not sensitive to decreases in MYC protein level during normal tissue homeostasis. In con-

trast to the in vivo situation, where Myc is downregulated but key target genes are not affected, in

cultured Myc42–540/42–540 fibroblasts that grew slowly in culture, the downregulation of Myc lead to

a loss of expression of key target genes that drive cell growth and division. Upstream regulator anal-

ysis performed using Ingenuity Pathway Analysis revealed that the highest-ranked potential regulator

for the identified gene set was MYC (Figure 5b).

Measured by FPKM values, the cultured wild-type fibroblasts had higher Myc mRNA levels than

normal tissues, whereas the cultured null fibroblasts had Myc levels that were comparable to or

lower than those of normal wild-type tissues. The elevated Myc levels in cultured cells are caused by

serum stimulation, as Myc mRNA levels are low in serum-starved fibroblasts and strongly induced by

serum (Ref. [Dean et al., 1986] and our unpublished data). These results indicate that the 8q24

super-enhancer region is dispensable for normal tissue homeostasis under conditions where MYC

activity is relatively low. However, the region is required for induction of MYC activity to levels that
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are high enough to drive the expression of MYC target genes above their basal levels during patho-

logical growth.

The Myc super-enhancer region is required for tumorigenesis in mice
We have shown earlier that deletion of a 1.7 kb Myc-335 enhancer sequence located at the 8q24

super-enhancer region is required for intestinal tumorigenesis in mice (Sur et al., 2012b). As the

super-enhancer region deleted in Myc42–540/42–540 mice carries risk also for other cancer types,

including breast and bladder cancer, we tested the susceptibility of the Myc42–540/42–540 mice to

carcinogen induced bladder and mammary tumorigenesis. The Myc42–540/42–540 mice were not resis-

tant to N-Butyl-N(4-hydroxybutyl) nitrosamine (BBN) induced bladder tumors. Both wild-type (n = 8)
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Figure 4. Myc42–540/42–540 deletion results in a proliferation defect of adult skin fibroblasts cultured in vitro. (a) The super-enhancer region deleted in

the Myc42–540/42–540 has under methylated DNA as determined through bisulfite sequencing of the wild-type fibroblasts grown in culture. H3K27ac

ChIP-seq shows the presence of active enhancer marks within this region in the wild-type fibroblasts whereas the Myc42–540/42–540 fibroblasts show a

complete absence of the super-enhancer region. The Myc super-enhancer region is also active in human fibroblasts (see Figure 4—figure supplement

1). (b) Normal morphology and proliferation of resident fibroblasts in the mouse skin as determined by Vimentin and Ki-67 IHC staining respectively in

both the wild-type (n = 3) and Myc42–540/42–540 mice (n = 3), Bar = 50 mm. Brown: IHC staining, Blue: Haematoxylin staining (c) Representative phase

contrast images of wild-type and Myc42–540/42–540 primary fibroblasts showing growth defect of Myc42–540/42–540 fibroblasts in culture.

DOI: 10.7554/eLife.23382.011

The following figure supplement is available for figure 4:

Figure supplement 1. The Myc super-enhancer region is also active in human fibroblasts.

DOI: 10.7554/eLife.23382.012
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and Myc42–540/42–540 (n = 8) mice developed urothelial changes ranging from hyperplasia to high

grade invasive urothelial carcinoma after 5 months of BBN treatment. In contrast, comparison of

median tumor-free survival times of wild-type and Myc42–540/42–540 mice exposed to mammary-

tumor inducing dimethylbenz[a]anthracene/ medroxypregesterone (DMBA/MPA) regimen revealed

that the Myc42–540/42–540 mice were partially resistant to mammary tumorigenesis (Figure 6a). The

median tumor-free survival time for the wild-type and Myc42–540/42–540 mice was 88 and >120 days,

respectively. Although we cannot pinpoint the specific regions that contribute to breast tumorigene-

sis by analysis of the Myc42–540/42–540 mice, our work is consistent with the presence of a breast can-

cer susceptibility locus in humans at a region syntenic to the deletion. The region is distinct from the

colon cancer susceptibility locus that harbors Myc-335.

To determine whether additional elements outside of the Myc-335 region are playing a role in

tumorigenesis, we crossed the Myc42–540/42–540 mice with the Apcmin mouse that is susceptible to

intestinal tumors. The Myc42–540/42–540 mice had fewer polyps than the Myc-335�/� mice in the
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Figure 5. Differential effect of Myc42–540/42–540 deletion on MYC target gene expression. (a) Scatter plot comparing the average Fragments per

kilobase of exons per million fragments mapped (FPKM) values of gene transcripts in colon and spleen of wild-type (n = 4) and Myc42–540/42–540 (n = 4)

mice. Genes showing significant (q < 0.05) differential expression are marked in red (Myc) or green (other genes). For median FPKM values of gene

transcripts see Figure 5—figure supplement 1 (b) Upstream regulator analysis of RNA-seq data shows that the highest ranked potential regulator

affected in the slow growing Myc42–540/42–540 fibroblasts is MYC. The activation z-scores are to infer the activation states of predicted upstream

regulators. The overlap p-values were calculated from all the regulator-targeted differential expression genes using Fisher’s Exact Test. Two

independent Myc42–540/42–540 fibroblasts lines were analysed to confirm the downregulation of Myc. Ingenuity pathway analysis performed on one of

these is shown.

DOI: 10.7554/eLife.23382.013

The following figure supplement is available for figure 5:

Figure supplement 1. Scatter plot comparing the median of FPKM values of gene transcripts in colon of wild-type (n = 4) and Myc42–540/42–540 (n = 4)

mice.

DOI: 10.7554/eLife.23382.014
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Apcmin background. In this study the wild-type mice had on an average 56 polyps at around 4

months of age (n = 5) when they had to be euthanized for ethical reasons similar to what we

reported previously. The Apcmin; Myc42–540/42–540 looked healthy and had on an average 2.4 polyps

even at 6 months of age (n = 5) compared to an average of 14.33 polyps reported for the Apcmin;

Myc-335�/� null mice at 4 months of age (Figure 6b). Together with our earlier findings, these

results indicate that loss of the 8q24 super-enhancer region makes mice resistant to both genetically

and chemically induced tumors.

We further tested the requirement of this region for the proliferation of cancer cell lines in cul-

tures. We found that the corresponding region (hg19: chr8:128226490–128746456) was also

required for GP5d colon cancer cell growth, as indicated by progressive loss of cells bearing a

CRISPR/Cas9 induced deletion of the region during co-culture with unedited cells in the population

(Figure 6c).
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Figure 6. Myc �2 to �540 kb genomic region is required for the growth of cancers in vivo and cancer cells in vitro. (a) Tumor-free survival plots

showing resistance of Myc42–540/42–540 mice to development of DMBA/MPA induced mammary tumors. p-value=0.0002 (Mantel-Cox Log-rank test). See

Figure 6—source data 1 for details. (b) The Myc �2 to �540 kb deletion results in fewer polyps than the Myc-335 deletion alone. p-value=0.00019

(Students T-test, 2-tailed). Apcmin mice were of 4 months of age (n = 5) and Apcmin; Myc42–540/42–540 mice were 6 months old (n = 5) at the time of

analysis. Filled circles correspond to individual mice and red color denotes the median. See Figure 6—source data 1 for details. Bar equals 5 mm. (c)

Crispr-Cas9 mediated deletion of region corresponding to Myc42–540/42–540 in human GP5d colon cancer cells, results in a loss of the edited cells over

time. Top panel shows the active enhancer elements in GP5d cells within this region as determined by ChIP-seq analysis of histone H3 lysine 27

acetylation (H3K27ac). The sites of sgRNAs (black lines) and genotyping primers (blue arrows) used are indicated (not to scale). Red arrows mark the

enhancer regions used in this study. Bottom panel shows the PCR-genotyping of the MYC locus and the control IGH locus showing the specific loss of

the cells with the edited MYC locus over time. GAPDH was used as internal control. The right panel in each set shows absence of any deletion in the

non-transfected cells (day 2). 100 bp ladder DNA molecular weight marker is shown (M).

DOI: 10.7554/eLife.23382.015

The following source data is available for figure 6:

Source data 1. Survival time and intestinal polyp numbers for mice in Figure 6a-b.

DOI: 10.7554/eLife.23382.016
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Discussion
The region around the MYC gene carries inherited risk towards multiple major forms of cancer. On

aggregate, this region contributes more to inherited cancer than any other locus in the human

genome. The risk alleles for different cancer types are located in multiple distinct linkage disequilib-

rium blocks, indicating that different variants contribute to different cancer types. Several of these

regions containing risk variants have been implicated in regulation of MYC expression

(Hallikas et al., 2006; Sur et al., 2012b; Herranz et al., 2014; Uslu et al., 2014), suggesting that a

large number of enhancers within this region can drive tumorigenesis. Some of the identified ele-

ments have also been shown to have roles in normal development (Herranz et al., 2014; Uslu et al.,

2014).

To study the role of the 8q24 region more systematically, we have in this work deleted several

individual enhancer elements, and also analyzed the effect of larger deletions on normal develop-

ment and carcinogenesis in mice. Our analysis of mice lacking a 538 kb region upstream of the Myc

gene suggests that enhancer elements within this region cooperatively enhance Myc expression.

Deletion of individual enhancers in this region has only a weak (Sur et al., 2012b) or no effect on

Myc expression in the mouse intestine in contrast to the deletion of the entire super-enhancer

region, which leads to severe decrease in Myc expression in multiple tissues.

MYC deficient mouse embryos die due to placental defect at E9.5. The embryos are also smaller

in size than wild-type embryos (Davis et al., 1993). However, when Myc is deleted only in the epi-

blast, the embryos grow normally and survive until E11.5, when they die due to defects in hemato-

poiesis (Dubois et al., 2008). None of these defects are observed in mice homozygous for the

deletion of super-enhancer region. The 8q24 super-enhancer region is thus dispensable for MYC

function both in the placenta and during early hematopoiesis. In our mouse colony, the super-

enhancer region deficient mice also do not display the size or weight differences reported for Myc

heterozygous mice that have a 50% reduction in MYC activity (Trumpp et al., 2001). These results

indicate that tissue-specific enhancers that reside outside of the deleted regions drive sufficient

MYC expression in the tissues that contribute to the phenotypes observed in Myc+/� and Myc�/�

mice. Consistently with this, several hematopoietic enhancers have been identified in the region 3’

of the MYC ORF (Hnisz et al., 2013; Shi et al., 2013; Herranz et al., 2014).

Myc heterozygous mice also display increased longevity and enhanced healthspan

(Hofmann et al., 2015). Although the deletion of the super-enhancer region that contains tissue-

specific enhancers regulating MYC expression is not equivalent to a heterozygous deletion of the

Myc gene in the whole body, the Myc42–540/42–540 mice could be an interesting model for identifica-

tion of the tissues that contribute to the longevity phenotype.

Despite decreased levels of MYC in multiple adult tissues, the mice lacking the super-enhancer

region are viable, fertile and display normal tissue morphology in all the tissues we investigated.

They display no overt phenotype and do not have marked defects in cell proliferation. The mice are,

however, resistant to intestinal tumorigenesis, and DMBA-induced mammary tumors, indicating that

this region is important for tumorigenesis also in mice. Our data thus shows that despite the central

role of this region in tumorigenesis (Sur et al., 2012b; Lovén et al., 2013), it is dispensable for nor-

mal tissue development and homeostasis under laboratory conditions. Whereas this result may

appear very surprising, it is consistent with the original identification of this region using genome-

wide association studies (GWAS). GWAS has a high power to identify common variants, and most

variants that are common have only a limited effect on physiological functions. This is because a vari-

ant that has strong positive or negative effect is rapidly fixed or lost, respectively. Thus, GWAS are

specifically biased to find variants that have a relatively large effect on disease, but a small effect on

fitness.

Most genes in mammals do not have haploinsufficient phenotypes. Such buffering could be due

to mechanisms that maintain constant expression level irrespective of gene dose. However, a simpler

buffering mechanism involves either expressing a gene at a very low level where it has no effect, or

at a high level where it can contribute its functions even if its expression level is decreased due to

transcriptional noise or loss-of-function of one allele. A similar two state mechanism where physio-

logical transcription factor (TF) activity levels in the relevant cell types are either too low to drive any

target genes (off state), or high enough to activate all important targets (on state) could also mecha-

nistically explain why most heterozygous null mutations of TF genes have no apparent phenotype.
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Figure 7 continued on next page
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Our analysis of the role of MYC in normal colon is consistent with such a simple buffering model (Fig-

ure 7). However, it should be noted that this buffering mechanism does not operate in all tissues

and under all conditions. For example, Myc gene dose has effects on mouse size, longevity and

hematopoiesis (Davis et al., 1993; Trumpp et al., 2001; Dubois et al., 2008; Hofmann et al.,

2015). In addition, the level of expression of the Myc gene has quantitative effects on cell prolifera-

tion under pathological conditions such as activation of T-cells (Heinzel et al., 2017). These results

indicate that in some situations, MYC is expressed at a level where cell growth responds linearly to

small changes in MYC levels (Figure 7, middle panel). However, the lack of an overt phenotype in

our model under normal physiological conditions in the absence of infection or tissue damage sug-

gests that growth during normal tissue homeostasis in at least some adult tissues does not linearly

respond to changes in MYC levels. The lack of an overt phenotype should not, however, be taken to

mean that the mice have no phenotype at all. As the super-enhancer region contains several highly

conserved DNA segments, and affects cell growth in culture, we expect that it will also affect

responses to tissue damage or some other perturbation that we have not investigated here. There-

fore, further studies are needed to determine the role of the super-enhancer region in various

chronic and acute models of injury and infection.

Based on our data and the earlier literature we propose that under normal physiological condi-

tions in the intestine, the Myc gene regulatory system is in the off state, and a basal level of expres-

sion of the MYC target genes is maintained by a MYC-independent mechanism. The target genes

are thus only sensitive to an increase in MYC levels. Consistently, an 80% decrease of Myc mRNA

expression does not lead to a proliferation defect, or major changes in expression of known MYC

target genes. In contrast, in tumors the system is locked to an on state, where MYC targets are

driven to a maximal level by MYC, and the targets are now only sensitive to a decrease in MYC activ-

ity (Figure 7).

The requirement of MYC in tumor cells appears absolute. In transgenic animal models, overex-

pression of MYC leads to deregulated proliferation and tumor development in multiple tissues

(Felsher and Bishop, 1999; Pelengaris et al., 1999; D’Cruz et al., 2001; Jain et al., 2002;

Shachaf et al., 2004). Furthermore, inhibition of MYC almost invariably causes growth arrest of can-

cer cells both in culture and in vivo (Soucek et al., 2002, 2004; Hart et al., 2014). Despite the

importance of MYC for cancer growth, it appears that the role of MYC in controlling growth during

adult tissue homeostasis is limited. In the adult tissues, MYC is expressed in rapidly proliferating

compartments of the body like the intestinal crypts and skin. Deletion of Myc in these compartments

does not result in prominent proliferation defects (Wilson et al., 2004; Baena et al., 2005;

Bettess et al., 2005; Muncan et al., 2006). Although there is still controversy regarding MYC

requirement for the intestinal homeostasis, in the skin MYC is dispensable under normal adult prolif-

eration and homeostasis in vivo (Oskarsson et al., 2006). It is however required for Ras mediated

tumorigenesis and growth of fibroblasts and keratinocytes in vitro (Mateyak et al., 1997;

Oskarsson et al., 2006). Taken together, these results suggest that MYC is required for pathological

proliferation, but is less important and in many cases dispensable for normal homeostasis of tissues

in the adult. Our results are consistent with these observations.

Prior to our study it was not clear whether the MYC dependence of cancer cells in vivo and nor-

mal cells in culture is due to shared regulatory mechanisms. Our results have uncovered striking

mechanistic similarities between growth of normal cells in culture, and growth of cancer cells in vivo

by showing that MYC expression depend on the same genetic elements in cultured normal cells and

in cancer cells. The similarity between tumor cells and cultured normal cells also suggest that many

Figure 7 continued

adult, MYC is expressed at intermediate levels to elicit response from targets with high affinity binding sites (red). In cancer cells or cells grown in

culture (right), upstream regulators such as Tcf7l2 and b-catenin activate the Myc super-enhancers, driving high levels of MYC expression. This leads to

the formation of MYC/MAX heterodimers that strongly activate transcription of MYC target genes driving cancer cell growth. The high levels of MYC

are also sufficient to induce target genes that harbor low affinity MYC binding sites (grey). The model is consistent with the model of Lorenzin et al

(Lorenzin et al., 2016) who showed genes differ in their response to MYC levels due to differences in the MYC affinity of their promoters. Given that

Myc super-enhancer region is tumor-specific, and induction of the MYC target genes are not required for normal homeostasis, it provides a promising

target for antineoplastic therapies.

DOI: 10.7554/eLife.23382.017
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potential drugs that block cancer cell growth may have been inadvertently discarded due to their

negative effects on growth of normal cells in culture, even when they might not have affected normal

tissue homeostasis in vivo.

Our results show that the MYC super-enhancer region that carries multi-cancer susceptibility in

humans contributes to the formation of multiple tumor types also in mice. Despite its role in tumor

formation, it is dispensable for normal development and homeostasis. Loss of the super-enhancer

region leads to low MYC expression, but the lowered expression does not translate to changes in

expression of MYC target genes in the intestine. Thus, the MYC/MAX/MNT system (Grandori et al.,

2000) that drives cell growth and proliferation is robustly set to an off state during normal homeo-

stasis, whereas in cancer, the system is locked to a pathological on state. This also explains how

physiological growth control can be robust to small perturbations and transcriptional noise. Taken

together, our results reveal an important difference between the transcriptional states of normal and

cancer cells, and suggest that therapeutic interventions that decrease the activity of the Myc super-

enhancer region would be well tolerated.

Materials and methods

Mouse strains
We generated cKO Myc-196 and cKO Myc-540 strains with loxP sites flanking the regions

chr15:61445326–61447611 and chr15:61789274–61791107, respectively (Taconic). These mice were

crossed to EIIa-cre mouse strain (Jackson Laboratory) to generate mice with enhancer deletions.

Myc-CTCFmut mouse strain was generated by mutating the CTCF-binding site at chr15:61983375–

61983647 TGGCCAGTAGAGGGCAC to TGGAACGTCTTGAATGC. In order to generate large dele-

tions at the Myc locus (Myc42-367 and Myc42–540) Myc-367� and Myc-540� were crossed to Myc-

CTCFmut that were also heterozygous for the Rosa26-Cre (Taconic). The Myc-540�, Myc-196� and

Myc-CTCFmut carry one lox P site at the respective loci (chr15:61445326, chr15:61618287 and

chr15:61983375). The loxP site on chr15:61983375 is located immediately 5’ of the mutant CTCF

binding site. We obtained compound heterozygotes carrying the chr15:61445326 or the

chr15:61618287 loxP site together with the loxP site on chr15:61983375 and the Rosa26-Cre. The

compound heterozygotes were screened by PCR for the interallelic recombination and the resultant

deletion and duplication of the intervening sequence. Mice mosaic for the deletion and duplication

were backcrossed to the C57Bl/6 mice in order to segregate the chromosomes carrying the deletion.

The F1 heterozygotes were intercrossed to generate mice with homozygous large deletions. Myc-

335 strain has been previously described (Sur et al., 2012b). All mice used in the study were on a

C57Bl/6 genetic background. All mouse experiments were conducted in accordance with the local

ethical guidelines, after approval of the protocols by the ethics committee of the Board of Agricul-

ture, Experimental Animal Authority, Stockholm South, Sweden (Dnr S50/13, S11/15 and S16/15).

The sequences of the different primer pairs used for genotypings are given in Supplementary file 2.

Mammary gland whole mount analysis
Inguinal mammary glands were removed from 8 week old virgin females and spread on glass slides.

These were fixed for 4 hr in Carnoy’s fixative and subsequently stained O/N with Carmine Alum. The

whole mounts were rinsed and dehydrated through increasing series of ethanol and cleared in

xylene before mounting with the pertex mounting medium.

Quantitative PCR analysis
qPCR was performed as described previously (Sur et al., 2012b). Essentially, total RNA was isolated

from whole tissue by homogenizing in RNA Bee reagent (ambios AMS Biotechnology) followed by

RNA isolation using Qiagen’s RNA MinElute kit according to manufacturers’ protocols. 0.5–1 mg of

total RNA was reverse transcribed using high capacity reverse transcription kit in a 20 ml reaction

(Applied Biosystems). Quantitative PCR in triplicates was performed using the SYBR select master

mix (Applied Biosystems) on the LightCycler 480 instrument (Roche). For normalization, mouse b-

actin transcripts were used as internal controls. Following primer pairs were used for quantitative

PCR analysis.

Dave et al. eLife 2017;6:e23382. DOI: 10.7554/eLife.23382 14 of 25

Research article Cancer Biology

http://dx.doi.org/10.7554/eLife.23382


Myc-Fw: 5’-GGGGCTTTGCCTCCGAGCCT-3’, Myc-Rev: 5’-TGAGGGGCATC GTCGTGGCT-3’, b-

actin-Fw: 5’CTGTCGAGTCGCGTCCACCCG-3’, b-actin-Rev: 5’-CATGCCGGAGCCGTTGTCGAC-3’.

RNA-sequencing
NEBNext Ultra Directional RNA library Prep kit (NEB) was used for preparing the samples for RNA-

seq together with the NEBNext Poly(A) mRNA magnetic isolation module (NEB) according to manu-

facturers protocol. In the case of tissues 1–2 mg and for cultured fibroblasts 200 ng of total RNA was

used as starting material. For library preparation, adapters and index primers from NEBNext Multi-

plex Oligos for Illumina kit were used. The RNA-seq library was sequenced on a HiSeq2000 (Illu-

mina). Sequencing reads were mapped to the mouse reference genome (NCBI37/mm9) using

Tophat2 (version 2.0.13; RRID:SCR_013035) (Kim et al., 2013). Cuffdiff (version 2.2.1; RRID:SCR_

001647) was used for differential gene expression analysis and for graphical representation, Cum-

meRbund package (version 2.8.2; RRID:SCR_014568) (Trapnell et al., 2012) was used. The upstream

regulator analysis was performed on all the significant differentially expressed genes (Cuffdiff

q-value <0.05) using QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood city, www.qia-

gen.com/ingenuity; version 24718999, updated 2015-09-14; RRID:SCR_008653).

ChIP-seq
ChIP-seq was performed as described in (Sur et al., 2012b; Yan et al., 2013) with the following

modifications: Adult 8–10 week old mice were euthanized and colon was removed, rinsed with cold

PBS and cut into fine pieces. Tissue was crosslinked with 1.5% formaldehyde and cultured cells were

crosslinked with 1% formaldehyde for 10 min at room temperature and quenched with 0.33M Gly-

cine. Sequences were mapped to the mouse reference genome (NCBI37/mm9) and human reference

genome (hg19) using Burrows-Wheeler Alignment tool (bwa) (version 0.6.2) (Li and Durbin, 2009)

with default parameters. All antibodies used in ChIP-seq experiments were ChIP-grade. In each

experiment a non-specific IgG was used as control. Following antibodies were used for ChIP-seq

experiments: rabbit anti-H3 lysine 27 acetylation (H3K27ac) (abcam, ab4729: RRID:AB_2118291),

mouse anti-H3 lysine four trimethylation (H3K4me3) (abcam, ab1012; RRID:AB_442796), rabbit anti-

Rad21 (Santa Cruz, sc-98784; RRID:AB_2238151), goat anti-CTCF (Santa Cruz, sc-15914X; RRID:AB_

2086899), rabbit anti-SMC1A (Bethyl Laboratories, A300-055A; RRID:AB_2192467), rabbit IgG (Santa

Cruz, sc-2027; RRID:AB_737197), mouse IgG (Santa Cruz, sc-2025; RRID:AB_737182), goat IgG

(Santa Cruz, sc-2028; RRID:AB_737167). ChIPseq data for Tcf7l2 was used from ENA accession num-

ber PRJEB3354 (Sur et al., 2012a) and for GP5d cells from ENA accession number PRJEB1429

(Yan et al., 2013a). For visualization, ChIP-seq read depth data were average smoothed across win-

dows of 10 pixels (H3K27ac and H3K4me3) or five pixels (Tcf7l2) in UCSC Genome Browser; RRID:

SCR_005780 or alternatively visualized in Integrative Genomics Viewer (IGV, version 2.3; RRID:SCR_

011793).

Bisulfite sequencing
Genomic DNA was isolated using Qiagen’s Blood & Tissue Genomic DNA extraction kit. Around 1

mg of wild-type and 250 ng of Myc42–540/42-540 null fibroblast genomic DNA was sonicated to 300

bp fragments using Covaris S220 sonicator. Subsequent to end polishing and A base addition, cyto-

sine methylated paired end adapters (Integrated DNA technologies) were ligated to the DNA frag-

ments. The adapter sequences are as follows

5’-P-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG

5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT

After adapter ligation 300–600 bp fragments were size-selected on a 2% agarose gel. Bisulfite-

conversion was carried out using ZYMO EZ DNA Methylation-Gold kit (cat. no. D5005). PCR amplifi-

cation with 12 and 18 cycles was carried out to prepare libraries from the wild-type and Myc42–540/

42–540 null mouse fibroblasts, respectively. The primer pair used for PCR amplification was as follows

PE PCR Primer P1:
5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC

TTCCGATCT
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PE PCR Primer P2:
5’-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACC

GCTCTTCCGATCT

The final library was size-selected for 250–300 bp fragments on a 2% agarose gel and 150 bp

sequenced from both ends on two lanes of a HiSeq 4000 (Illumina). Raw sequencing reads were

quality and adapter trimmed with cutadapt version 1.8.1 (RRID:SCR_011841) in Trim Galore version

0.4.0 (RRID:SCR_011847). Trimming of low-quality ends was done using Phred score cutoff 30. In

addition, all reads were trimmed by 2 bp from their 3’ end. Adapter trimming was performed using

the first 13 bp of the standard Illumina paired-end adapters with stringency overlap two and error

rate 0.1. Read alignment was performed against mouse genome mm9 with Bismark (version v0.14.3;

RRID:SCR_005604) (Krueger and Andrews, 2011) and Bowtie 2 (version 2.2.4; RRID:SCR_005476)

(Langmead and Salzberg, 2012). Duplicates were removed using the Bismark deduplicate function.

Extraction of methylation calls was done with Bismark methylation extractor discarding first 10 bp of

both reads and reading methylation calls of overlapping parts of the paired reads from the first read

(–no_overlap parameter). Genomic sites with the coverage of at least 10 reads were considered and

methylation ratios smoothed with loess method across 49 bp windows.

All sequencing data is uploaded to European Nucleotide Archive (ENA, EMBL-EBI; RRID:SCR_

006515) under accession number PRJEB11397 (Dave et al., 2016; http://www.ebi.ac.uk/ena/data/

view/PRJEB11397).

Immunohistochemistry and flow cytometry
Five micron paraffin embedded tissue sections were processed for immuno-histochemistry as previ-

ously described (Sur et al., 2012b). Rabbit polyclonal anti-Myc (Santa Cruz, sc-764; RRID:AB_

631276) (1:500), Rabbit monoclonal anti Ki-67 (abcam, ab16667; RRID:AB_302459) (1:200), Goat

polyclonal anti-Vimentin (Santa Cruz, sc-7557; RRID:AB_793998) (1:500), biotinylated goat anti-Rab-

bit IgG (Vector Laboratories, BA1000; RRID:AB_2313606) and biotinylated rabbit anti-Goat IgG (Vec-

tor Laboratories, BA5000; RRID:AB_2336126) (1:350) antibodies were used. For flow cytometry,

single cell suspensions of spleen and bone-marrow and cells from peripheral blood were stained

with Fc-block (CD16/CD32 clone 93, Biolegend, 101302, RRID:AB_312801) and subsequently with

CD19 (clone 1D3, BD Biosciences, RRID:AB_11154223), TER119 (clone TER119, Biolegend 116210,

RRID:AB_313711), CD3e (clone 145–2 C11, Biolegend 100308, RRID:AB_312673), NK1.1(clone

PK136, Biolegend, 108716, RRID:AB_493590), GR1/LY6G (clone RB6-8C5, Biolegend, 108410, RRID:

AB_313375), CD4 (clone RM4-5, BD Biosciences, 563747) and CD8a (clone 53–6.7, BD Biosciences,

563332). Dead cells were visualized using Propidium iodide. Samples were analyzed using a BD

LSRFortessa instrument.

Isolation and culture of mouse primary fibroblasts
Fibroblasts were isolated from adult mice by dissecting the skin to ~1 mm3 pieces, and allowing the

pieces to adhere to cell culture plates, followed by addition of DMEM medium supplemented with

10% FCS and antibiotics. The fibroblasts were allowed to migrate out from the explants, after which

the cells were collected by trypsinization and passaged in the same media for 1–3 passages. For

growth assays, 2 � 103 cells were plated per well in 96 well plates. Cells were trypsinized and

counted using hemocytometer at respective time points.

Tumor induction
Mammary tumors
Six week-old female mice were implanted s.c. with medroxypregesterone acetate (MPA) pellets (50

mg with a 90 days release period from Innovative Research of America). Subsequently 100 ml of 10

mg/ml dimethylbenz[a]anthracene (DMBA)/oil solution (Sigma) was administered via gavage at 7, 8,

10, 11, 13 and 14 weeks of age. Mice were checked twice a week for development of palpable

tumors. Detection of palpable mass in the mammary gland was taken as the end point for tumor-

free survival analysis.
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Bladder tumors
Ten week-old male mice were administered 0.1% N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN)

(Sigma) in drinking water for five months. At the end of the treatment the mice were sacrificed and

the bladders scored for tumor development.

Intestinal tumors
Apcmin mouse strain (Jackson Laboratory RRID:MGI:5438590) was used as a model for spontaneous

development of intestinal tumors.

CRISPR-Cas9 mediated deletion of super-enhancer region in GP5d cell
line
CRISPR-Cas9 mediated deletion of MYC super-enhancer region on chromosome 8q24 (GRCh37/

hg19 chr8: 128226403–128746490) and Immunoglobulin Heavy (IGH) gene locus on chromo-

some 14q32.33 (GRCh37/hg19 chr14: 106527004–107035452) were carried out in GP5d (Sigma,

95090715; RRID:CVCL_1235, confirmed by STR profiling at ECACC) colon cancer cell line stably

expressing Cas9 protein. A lentiviral plasmid containing Cas9 fused via a self-cleaving 2A pep-

tide to a blasticidin resistance gene, was packaged into lentiviral particles using the packaging

plasmids psPAX2 (a gift from Didier Trono, Addgene plasmid # 12260, RRID:SCR_002037) and

pCMV-VSV-G (a gift from Robert Weinberg (Addgene plasmid # 8454, RRID:SCR_002037). The

virus was used to transduce GP5d colon cancer cells. 48 hr after transduction, GP5d cells

expressing Cas9 (GP5d-Cas9) were selected in 5 mg/ml Blasticidin (Thermo Fisher Scientific Inc.,

Cat. no. A1113903). The single guide RNA (sgRNA’s) were designed (http://www.broadinstitute.

org/rnai/public/analysis-tools/sgrna-design) to span the entire MYC super-enhancer region and

IGH locus (Figure 6), respectively (Eurofins MWG Operon). sgRNAs were cloned into an sgRNA

Cloning Vector (Addgene Plasmid #41824, RRID:SCR_002037) using Gibson assembly master

mix (NEBuilder HiFi DNA assembly Master Mix, Cat no. E2621S). GP5d-Cas9 (2 � 106) cells

were transfected (using FuGENE HD Transfection Reagent, Cat.no E2312) with 10 mg of eight

pooled equimolar sgRNA constructs. Post transfection half of the cultured cells were collected

for PCR genotyping, while the other half was re-plated for culturing. Cells were collected at

day 2, 4 and subsequently every fourth day till day 32. DNA from cells was extracted (using

DNeasy Blood & Tissue Kit, Qiagen Cat. no. 69506) and genotyped with 300 ng of DNA at fol-

lowing conditions - Initial denaturation of 95˚C for 5 min; denaturation of 98˚C for 15 s, anneal-

ing at 60˚C for 30 s, extension at 72˚C for 30 s (30 cycles for MYC super-enhancer region and

35 cycles for IGH gene locus deletion genotyping); final extension at 72˚C, 5 min. Each experi-

ment was done in triplicate. The sequences of the different guide RNAs and primer pairs used

for PCR genotyping of the deletions are given in Supplementary file 2. GP5d cells were cul-

tured in DMEM supplemented with 10% FBS and antibiotics. The cell line was mycoplasma

free.
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Appendix 1

Purification of primary mouse cells
Bone marrow (BM) cells harvested from 8- to 12 weeks old C57BL/6 mice. For isolation of LSK

Flt3- cells, BM cells were subjected to depletion of mature cells using a cocktail of purified

antibodies containing TER119 (TER-119; Biolegend 116202; RRID:AB_313703), CD19 (1D3;

BD, 553783; RRID:AB_395047), CD3 (17A2; BD, 555273; RRID:AB_395697), GR1 (RB6-8C5;

Biolegend, 108402; RRID:AB_313367) and CD11b (M1/70; Biolegend, 101202; RRID:AB_

312785) in combination with sheep anti-rat IgG Dynabeads (Invitrogen; 11035). Non-

depleted cells were stained with Ter119 PECy5 (TER-119; Biolegend, 116210; RRID:AB_

313711), NK1.1 PECy5 (PK136; Biolegend, 108716; RRID:AB_493590), CD3 PECy5 (145–2

C11; Biolegend, 100310; RRID:AB_312675), GR1 PECy5 (RB6-8C5; Biolegend, 108410; RRID:

AB_313375), CD11b PECy5 (M1/70; Biolegend, 101210; RRID:AB_312793), CD19 PECF594

(1D3; BD, 562291; RRID:AB_11154223), KIT (CD117) APCeFlour780 (2B8; eBioscience, 47-

1171-82; RRID:AB_1272177), SCA1 PB (D7; Biolegend, 108120; RRID:AB_493273), FLT3

(CD135) PE (A2F10; Biolegend, 135306; RRID:AB_1877217), CD11C PECy7 (N418;

Biolegend, 117318; RRID:AB_493568), LY6C APC (HK1.4: Biolegend, 128016; RRID:AB_

1732076) and IL7R (CD127) biotin (A7R34 Biolegend 135006; RRID:AB_2126118; visualized

using Streptavidin-QD655; Invitrogen Q10121MP). LSK FLT3- (HSCs) cells were subsequently

FACS sorted as TER119/CD3/GR1/NK1.1/

MAC1low/-CD19-LY6C-CD11C-IL7R-SCA1+KIT+FLT3-. For isolation of mature B cells, BM cells

were subjected to MACS column enrichment of CD45R (B220)+ cells using anti-CD45R

beads (Miltenyi Biotec, 130-049-501). B220 enriched cells were stained with TER119 PECy5

(TER-119), GR1 PECy5 (RB6-8C5), CD11b PECy5 (M1/70), IgD PB (11–26c.2a; Biolegend,

405712; RRID:AB_1937244), IgM PECy7 (11/14; eBioscience 25-5790-82; RRID:AB_469655),

CD19 PECF594 (1D3). Mature B cells subsequently FACS sorted as TER119/GR1/

MAC1-CD19+IgM+IgD+. Propidium iodide (Life technologies, p3566) was used as a dead cell

discriminator when sorting live cells (for RNAseq experiments) and Aqua fluorescent reactive

dye (Life technologies; L34957) when sorting fixed cells (for ChIPseq experiments).

For ChIPseq experiments, fully antibody/viability dye-stained cells (5 � 106 cells/ml) were

fixed by incubation with 1% formaldehyde (ThermoFisher Scientific; 28908) for 10 min at

room temperature (RT). Formaldehyde was quenched using 0.1 vol 1 M glycine and

incubated for 10 min at RT. Cells were additionally washed with 0.1 M glycine before being

resuspended in PBS with 2% FCS prior to FACS sorting. Cell sorting was done on a BD

FACSAriaIII cell sorter (BD Biosciences).

ChIP-sequencing
3 mg of polyclonal anti-H3K27Ac (Diagenode, cat# C15410196, lot# A1723-0041D, RRID:AB_

2637079) or H3K4me2 (Millipore, cat#07–030, lot#2089140 and lot#2309072, RRID:AB_

11213050) antibody was bound to 10 ml Protein G-coupled Dynabeads (ThermoFisher) per

ChIP and incubated with rotation for 4 hr at 4˚C. Pellets of 0.5 � 106 PFA-fixed cells were

resuspended in 100 ml SDS lysis buffer (50 mM Tris/HCl, 0.5% SDS, and 10 mM EDTA),

placed cold for 15 min and sonicated for 12 cycles of 30 s on/30 s off on high power using a

Bioruptor Plus (Diagenode). Samples were centrifuged, and supernatants transferred to new

tubes. After addition of 200 ml of ChIP dilution buffer (50 mM Tris/HCl, 225 mM NaCl, 0.15%

NaDoc, and 1.5% Triton-X) and 4 ml of 50X protease inhibitors (Roche), samples were

incubated at room temperature for 10 min. 10% of each sample was saved for input

controls. Antibody-coated dynabeads were washed, resuspended with cell lysate and

rotated overnight at 4˚C.
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Immunoprecipitated chromatin was washed once with low salt buffer (50 mM Tris/HCl, 150

mM NaCl, 0.1% SDS, 0.1% NaDOC, 1% Triton X-100, 1 mM EDTA), high salt buffer (50 mM

Tris/HCl, 500 mM NaCl, 0.1% SDS, 0.1% NaDoc, 1% Triton X-100, and 1 mM EDTA) and LiCl

buffer (10 mM Tris/HCl, 250 mM LiCl, 0.5% IGEPAL CA-630, 0.5% NaDoc, 1 mM EDTA)

followed by two washings with TE buffer. For reversal of crosslinking, chromatin complexes

and input control samples were diluted in 200 ml ChIP elution buffer (10 mM Tris/HCl, 0.5%

SDS, 300 mM NaCl, and 5 mM EDTA) and 2 ml of 20 mg/ml proteinase K (Thermo Scientific).

Samples were vortexed and incubated shaking overnight at 65˚C. After reverse crosslinking,

1 ml 20 mg/ml RNAse (Sigma) was added and incubated at 37˚C for 30 min. After another 2

hr of incubation with 2 ml of proteinase K at 55˚C, samples were placed in a magnet to trap

magnetic beads and supernatant collected. DNA purification was carried out using Qiagen

MinElute PCR Purification Kit.

DNA concentrations in purified samples were measured using Qubit dsDNA HS Kit

(Invitrogen). Libraries were prepared using Rubicon ThruPLEX DNA-seq 12S Kit, according

to manufacturer’s instructions. 2 ng of chromatin was used when available but samples

below Qubit detection levels (<0.5–1.5 ng) were frequently used. After 11 cycles of PCR

amplification, adapter cleanup was done using Agencourt AmPureXP beads (Beckman

Coulter) at a ratio of 1:0.88. Libraries with an average size of 400–500 bp were pooled and

single-end sequenced (50 cycles) using the Illumina sequencing platform (HiSeq2000).

RNA-sequencing
For RNA extraction 5,000–10,000 cells were sorted into buffer RLT (Qiagen) with b-

mercaptoethanol and total RNA was extracted using Rneasy Micro Kit (Qiagen) according to

manufacturers instructions. On-column DNase I treatment was performed to minimize DNA

contamination. Strand specific RNAseq libraries were prepared using TotalScript RNA-seq

kit (Epicentre) according to the manufacturer’s instructions. Barcoded libraries were pooled

and pair-end sequenced (2 � 50 cycles) using the Illumina platform (mainly HighSeq 2500).

ChIP-seq data analysis
Quality of sequencing samples was assessed with FastQC (v0.11.2). Samples were mapped to

the mm10 genome using Bowtie2 (v2.2.3) with default parameters (Langmead and

Salzberg, 2012). Mapped reads were filtered with HOMER (v4.6) (Heinz et al., 2010) using

the makeTagDirectory command, only keeping uniquely mapped reads and removing

possible PCR duplicates by restricting the tags per base pair to 1 (-tbp 1). Resulting filtered

reads were visualized by generating bigWig files from tag directories, using HOMER’s

makeBigWig.pl with a set fragment length (fragLength 130) and normalization to 10 million

reads (-norm 1e7).

RNA-seq data analysis
Quality of sequencing samples was assessed with FastQC (v0.11.2) (Andrews, 2010). Samples

were mapped to the mm10 genome using STAR (v2.4) with default parameters for paired-

end reads (Dobin et al., 2013). Mapped reads were filtered with HOMER (v4.6) using the

makeTagDirectory command with strand specific pair-end read settings (-sspe), and

removing excessive possible PCR duplicates by restricting the tags per base pair to 3 (-tbp

3). Resulting filtered reads were visualized by generating bigWig files from tag directories,

using HOMER’s makeBigWig.pl with a set fragment length (-fragLength 75), normalization to

10 million reads (-norm 1e7) and stranded data setting (-strand).
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The above sequencing data is accessible via ENA accession number PRJEB20316

(Dave et al., 2017; http://www.ebi.ac.uk/ena/data/view/PRJEB20316).
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