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Markov state models (MSMs) and other related kinetic network models are frequently used to study
the long-timescale dynamical behavior of biomolecular and materials systems. MSMs are often con-
structed bottom-up using brute-force molecular dynamics (MD) simulations when the model contains
a large number of states and kinetic pathways that are not known a priori. However, the resulting
network generally encompasses only parts of the configurational space, and regardless of any addi-
tional MD performed, several states and pathways will still remain missing. This implies that the
duration for which the MSM can faithfully capture the true dynamics, which we term as the validity
time for the MSM, is always finite and unfortunately much shorter than the MD time invested to
construct the model. A general framework that relates the kinetic uncertainty in the model to the
validity time, missing states and pathways, network topology, and statistical sampling is presented.
Performing additional calculations for frequently-sampled states/pathways may not alter the MSM
validity time. A new class of enhanced kinetic sampling techniques is introduced that aims at target-
ing rare states/pathways that contribute most to the uncertainty so that the validity time is boosted
in an effective manner. Examples including straightforward 1D energy landscapes, lattice models,
and biomolecular systems are provided to illustrate the application of the method. Developments
presented here will be of interest to the kinetic Monte Carlo community as well. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4984932]

I. INTRODUCTION

Recent years have witnessed the widespread use of
Markov state models (MSMs)1–5 within the biophysics com-
munity. MSMs are detailed kinetic network models wherein
the configurational space of a biomolecule under study is par-
titioned into states. The dynamical evolution of the system is
approximated in terms of state-to-state transitions. The num-
ber of states can range between tens to thousands depending
on the complexity and level of coarse-graining. Each node in
the network denotes a metastable state of the system while the
connections between the nodes provide rates of interconver-
sion between the states. MSMs have become useful tools for
probing the dynamics of nucleic acids and proteins,6–9 e.g.,
folding and unfolding events at long time scales. Though we
restrict ourselves to biomolecular systems, MSMs are closely
related to kinetic Monte Carlo (KMC) models10–12 used in the
materials and reactions areas for studying catalysis,13 crystal
growth,14 material processing,15 and adsorption phenomena16

to name a few. Both approaches solve a master equation and
have benefitted from the exchange of ideas between the respec-
tive communities. For instance, knowledge of the network
structure can be exploited to accelerate the KMC dynam-
ics by eliminating fast degrees of freedom.17–20 Despite their
widespread usage, some aspects of MSM construction are still
poorly understood.
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A key step in the MSM construction entails determin-
ing states and kinetic pathways to be included in the model.
The availability of a large number of parallel processors has
enabled rapid construction of high fidelity MSMs using brute-
force molecular dynamics (MD) calculations.21–23 Herein
states and kinetic pathways are identified via coarse-graining
several independent MD trajectories. The MD trajectories can
be seeded from different starting configurations, which allows
for better sampling of the configurational space. Other simula-
tion techniques offering resolution greater than the MSMs can
also be employed.24–26 Enhanced thermodynamic-sampling
techniques that can sample rare events with large energy bar-
riers can aid in the efficient construction of the model.27–31

However, often overlooked is an additional challenge asso-
ciated with building MSMs (and indeed with KMC models
as well32); namely, a fundamental limitation remains that the
entire configurational space cannot be sampled by a finite num-
ber of MD trajectories, i.e., a MSM is never complete. Even
when the MD trajectories used for network-building collec-
tively exceed microsecond time scales, there are bound to be
rare states and pathways missing from the MD data. When
relevant states and pathways are missing from the constructed
MSM, thermodynamic/kinetic quantities being sought can be
inaccurate. The main purpose of this article (as part of the
Special Topic Issue on Reaction Pathways) is to highlight the
danger arising from missing relevant states and pathways in a
network, develop a strategy to quantify the completeness of a
kinetic network model, and identify regions of configuration
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space relevant to the dynamical evolution, which can guide
further network construction.

Many network-building procedures entail pruning/
lumping of states and kinetic pathways to enforce detailed
balance and avoid absorbing states. Although the length of the
MD trajectory used to build a network is generally reported,
it is not enough to establish the maximum duration for which
the dynamics is faithfully predicted by the network model.
In the worst case, missing states can be important to the
ensemble-average quantities calculated from an “incomplete”
network model. Given that network models are nowadays gen-
erated by seeding the MD calculations starting from different
states while using a variety of computational tricks, compar-
ing the dynamics from models for the same system is subject
to error/uncertainty resulting from the missing kinetic infor-
mation. A conceptual framework that accounts for missing
states/pathways will bolster endeavors to generate reliable
network models.

Estimators for missing rates from a state first developed
in Refs. 33 and 34 have been applied to different material
systems.32,35–37 However, more than the missing rates, concep-
tually, it is the time scale where the missing pathways become
relevant to the dynamics that is of interest. Extending our pre-
vious work, the largest time scale where the network model
continues to yield the correct dynamics, termed as the validity
time for the model, is introduced here. The validity time allows
one to systematically compare the behavior of two models of
the same system while accounting for known kinetic rates,
topology, and relaxation times of the network, as well as miss-
ing pathways and states that have not been included in the
model. The main idea is contingent on identifying states that
may have a large probability flux into configurational space
that is not part of the existing model. One can then compute
the validity time where the error in the dynamics is small, i.e.,
the existing network model can be regarded as complete till its
validity time and is safe to use. The theoretical underpinning
of the validity time is discussed in Sec. II.

An enhanced kinetic-sampling technique called pro-
grammed state-constrained calculation is presented that guides
selection of states where additional MD must be performed to
extend the validity time. The usefulness of the validity time is
illustrated in Sec. III with the help of prototype network models
that are completely known to us at the outset. We demonstrate
application of MSMs of a desired validity time to the study
of stretched deca-alanine under tension in Sec. IV. Using the
validity time, we conclude that a large number of rarely visited
states are also relevant to the dynamics. The MSMs provide
new physical insights into state-specific properties that are
crucial towards understanding the folding/unfolding mecha-
nism and the forces required for pulling the molecule. Finally,
conclusions are presented in Sec. V.

II. VALIDITY TIME FOR A MARKOV STATE MODEL

Consider a MD trajectory of a duration τMD. Analysis of
the trajectory using a combination of distance metrics38–43 and
clustering methods,4,44 and tests for the Markovian approxima-
tion (e.g., implied time scales for discrete-time MSMs23 and
tests for first-order behavior for continuous time MSMs36,45)

can yield information about the states of the system and the
associated kinetic rates. Although states are randomly visited
in the trajectory, the occupation πS(t) for a Markov state S at
time t is deterministic and is given by the master equation

d
dt
πS(t) =

∑
S′,S

kS′→SπS′(t) −
∑
S′,S

kS→S′πS(t). (1)

Here, kS→S′ is the kinetic rate from state S to state S′, and
kS′→SπS′ and kS→S′πS denote the inflow and outflow probabil-
ity flux for S. Kinetic rates can be obtained using a statistical
approach, such as maximum likelihood estimation (MLE).46

While Eq. (1) forms the basis of a MSM, the MSM constructed
using finite MD trajectories is approximate because of vari-
ous errors,47,48 statistical uncertainty,49,50 as well as missing
kinetic information.33,34 Here, we shall focus on error from
the missing kinetic information. Equation (1) can be written
as

dπ
dt
= Tπ, (2)

the continuous-time MSM, where T is the rate matrix.
Equations (1) and (2) are solved with a specified initial
distribution and rate matrix.

The number of states and pathways in the MSM can
increase when additional MD data are made available. Path-
ways with large (small) probability flux are more (less) likely to
be selected in the dynamics. Due to a number of factors includ-
ing randomness inherent in sampling, time scales accessed, the
network topology, and the starting conformation, it is possible
that certain pathways that have a reasonably large probability
flux are still missing in the MD trajectory. As a consequence,
states that can be reached only via the missing pathways are
also missing in the MSM. It is well known that topologically
different MSMs are often generated for the same system when
MD calculations are seeded from different starting conforma-
tions that are separated by large free energy barriers (even when
enhanced conformation sampling techniques are used27,51–56).
The MD time spent in each state is a key parameter that affects
the MSM accuracy.

It is convenient to define a time τV termed as the MSM
validity time such that all kinetic pathways that are likely to be
selected within τV are present in the existing MSM. Pathways
that are less relevant can be missing from the MSM without
affecting the accuracy of the kinetic model. MD data pertaining
to less relevant pathways do not result in appreciable increase
in τV . Next, we relate τV to the MD time.

A. Core, periphery, and missing states

States in Eq. (1) can be partitioned into three types: core,
periphery, and missing states. A state where the system has
resided for a significant time in the MD calculation is termed
a core state. The probability flux out of the core states can be
estimated from the MD data, i.e., they constitute the source
terms in Eq. (1). For the remainder of our discussion, a MSM
is the core network model, and we use these terms interchange-
ably. The MSM is ergodic since it is possible to reach a core
state from any part of the network. States that are visited for
a short time in the MD calculation preventing estimation of
kinetic rates from such states with reasonable confidence are
termed as periphery states. Note that the rates from core states
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to periphery states might be available. The need for periphery
states will become clear in Sec. II D. These states are redun-
dant at the MSM validity times. Periphery states correspond
to absorbing or sink states in Eq. (1). The dynamics of periph-
ery states can be quite different from the one predicted by
the MSM at longer times. We term a network model compris-
ing of core and periphery states as a full network model. The
validity time of a MSM can be increased by performing addi-
tional MD in the core and periphery states. A periphery state
becomes a core state when sufficient time has been spent in
the state so that one/more kinetic rates can be estimated. States
that have never been visited in the MD trajectory are termed
as missing states. Some missing states later become periphery
or core states as additional MD is performed. Estimates for
the rates from the core states to the missing states are given in
Sec. II B.

Figure 1 shows the structure of the rate matrix in Eq. (2)
constructed with MD where core, periphery, and missing states
are considered. Each off-diagonal term in the row (column) j in
the matrix denotes the kinetic rates into (from) the state j. Core
(periphery and missing) states are placed at the top (bottom)
of the occupation vector on the right-hand side of Eq. (2). The
matrix can be divided into three parts. The top-left (green)
corner involves the core states, i.e., it forms the rate matrix for
the MSM. We lump the periphery and missing states together
as absorbing states. The last column of the matrix contains the
rates from the absorbing states. The rates are set to zero. The
bottom row of the matrix contains estimates of rates (termed
leakage rates) from the core states to the absorbing states. As
we shall show next, the validity time of the MSM is determined
by the leakage rates, which in turn depends on the time spent
in the core states. The validity time for the core network can
be made large when all leakage rates are kept small.

B. Upper bound for the missing rate from a core state

Consider a collection of pathways from a state S with
total rate k. Assuming first order kinetics, the probability of
not selecting these paths in time tS spent in S is exp(−ktS).
The likelihood that the rate equals − ln δ/tS given that these

FIG. 1. Structure of a rate matrix in the master equation [Eq. (2)] when inde-
pendent MD trajectories are used to build a Markov state model (MSM). π(t)
denotes the occupation column vector.

paths are not selected in MD is δ. All values of k that result
in likelihood greater than δ satisfy k < − ln δ/tS . Thus, 1 − δ
can be regarded as a confidence associated with the estimate
for k. An upper bound for the missing rates for a core state S
is given by

kmax
S =

ln(1/δ)
tS

. (3)

Note that the entire MD duration τMD =
∑

S tS . Similarly, an
upper bound for the missing flux consistent with the MD data
is Fmax

S (t) = kmax
S πS(t).

C. Leakage flux from core network

For a core state S, Eq. (1) can be rewritten in terms of the
core (C), periphery (P), and missing (M) states as

dπS

dt
=
∑
S′∈C

(kS′→SπS′ − kS→S′πS) − FS , (4)

where the leakage flux

FS =
∑

S′∈P∪M

(kS→S′πS − kS′→SπS′). (5)

In the worst-case scenario, using Eq. (3) to replace FS with an
upper bound, we define the maximum leakage flux from S as

F leak
S = kleak

S π̂S = π̂S
*
,

ln(1/δ)
tS

+
∑
S′∈P

kS→S′
+
-

. (6)

The caret denotes maximum leakage into the periph-
ery/missing states. State occupations are obtained by solving

d π̂S

dt
=
∑
S′∈C

(kS′→S π̂S′ − kS→S′ π̂S) − F leak
S . (7)

The leakage flux can be ignored when
�����
∑

S′∈C
(kS′→S π̂S′(t)

− kS→S′ π̂S(t))
�����
� F leak

S (t). Once a state with large leakage

is detected, one can analyze the source of leakage. Large leak-
age due to kmax

S implies additional MD in state S would be
beneficial. The other possibility is that one or more periphery
states have become important to the dynamics. By performing
additional MD, a periphery state S′ is converted into a core
state and its contribution to the leakage flux is eliminated. The
flux from the core to periphery states is determined by the
network topology. Topologies where the core states are con-
nected to a large number of periphery states generally have a
short validity time. The missing flux from state S can be made
small by performing MD calculations in S, which extends the
time tS .

The occupation π̃S(t) is obtained by solving the MSM,

d π̃S

dt
=
∑
S′∈C

(kS′→S π̃S′ − kS→S′ π̃S). (8)

Detailed balance is not assumed, i.e., presence of both for-
ward and backward pathways is not required. Dynamics from
the core network [Eq. (8)] and full network [Eq. (7)] mod-
els diverge beyond the validity time. Consider a special case
where the stationary distribution π̃st

S is attained and leakage
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in the full network model becomes significant at time scale τ
beyond the relaxation time scales. We write

d π̂S

dτ
= −kleak

S π̂S; π̂S(0) = π̃st
S . (9)

Since the core network dynamics is fast, the ratio of occupa-
tions for two core states is fixed, i.e., π̂S(τ) = π̂S(0)f (τ) with
f (τ) denoting the probability of residing in the core states at
time τ. Equation (9) is rewritten as

df (τ)
dτ

= −kleak f (τ); f (0) = 1, (10)

and
kleak =

∑
S

kleak
S π̃st

S . (11)

Here, kleak denotes the total leakage rate for the network. The
occupation for a core state S is

π̂S(t) = π̃st
S exp(−kleak t). (12)

In general, Eqs. (7) and (8) need to be solved simultaneously
to determine the validity time for the core network. For conve-
nience, we can approximate the validity time scale τV in terms
of the time constant for leakage, namely,

τV = 1/kleak . (13)

According to Eq. (12), the core state occupations decrease
by a factor of exp(�1) at these time scales. The advantage of
Eq. (13) is that only the core network model needs to be solved
to calculate the validity time using Eq. (11). The assumption
in Eqs. (11)–(13) that the relaxation time scale within the core
network is smaller than the time scale associated with proba-
bility leakage is violated when the MD time accumulated in
core state(s) is shorter than the relaxation time scale. We shall
consider this case in Sec. III B. Note that in this work, a version
of Eq. (13) using the time-dependent occupations is employed
for calculating the validity time.

As an illustration, a MSM constructed for solvated ala-
nine dipeptide at 300 K is shown in Fig. 2. States and kinetic

FIG. 3. Occupation for core states (states 1-5) of Fig. 2 found by solving the
core network [Eq. (8), dashed black line] and full network [Eq. (7), red line]
models at (a) short (log-log) and (b) long (semilog) time scales. Both models
were constructed using MD trajectories. The full network model denotes the
worst-case scenario where probability leakage into periphery/missing states
occurs because of which the core state occupations decay exponentially at
long time scales. The core network model is a compact MSM that does not
contain any periphery/missing states.

pathways were found by analyzing on-the-fly several thousand
MD trajectories as they were being generated in parallel. See
Sec. S3 of the supplementary material for details regarding
setup and comparison to literature results. States 1-5 form the
core network. Detection of states 1-4 is possible within 0.1 µs
MD, while detection of state 5 can require longer trajectories.
States 1 and 3 closely represent the αR conformation of alanine
dipeptide. States 2 and 4 are located in the β/PII/C7eq region
in (φ,ψ) space. Occasionally, the system will visit 11 other
states (see Fig. 2) only to quickly return to the core states. We
consider these 11 states as periphery states. Kinetic rates were
estimated using MLE when a pathway is sighted 10 times or
more. Standard error in rates shown in Fig. 2 is computed using
the Bootstrap method. Figure 3 shows the core state occupa-
tion in dashed lines obtained by solving Eq. (8). Although
the MD trajectory exceeds 0.3 µs, it is conceivable that in the

FIG. 2. Markov state model for sol-
vated alanine dipeptide at 300 K. States
are numbered in the order they were dis-
covered with MD. States 1-5 are core
states and 6-16 are periphery states.
Kinetic rates are shown along with the
number of sightings for the event in
parentheses.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002799
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worst-case scenario absorbing-states will be visited via path-
ways that are missing in the core network model. The leakage
flux, calculated based on the rates from core states to periphery
states and the missing rate from each core state using δ = 0.1,
is included in the full network model of Eq. (7). Equations (7)
and (8) agree at short times [Fig. 3(a)]; however, they diverge
at longer time scales [Fig. 3(b)]. In the worst case, all core
state occupations will decay exponentially with the same rate
consistent with Eq. (9).

Suppose the system is trapped/equilibrated in N core
states corresponding to deep basins in the energy landscape
and periphery states are absent, the MD time tS for a core
state S is proportional to π̃st

S , i.e., tS = π̃st
S τMD. Equation (11)

simplifies to

kleak = N
ln(1/δ)
τMD

. (14)

Subsequent coarse-graining of states into superstates can
result in a more compact MSM, but the validity time is still
determined by the total time spent in the superstate.

D. Programmed state constrained MD

Adaptive sampling methods50,57 that seek rare-configura-
tions so that new MD trajectories can be seeded from such con-
figurations are generally used for calculating thermodynamic
properties. Relevant kinetic information can be gained by effi-
ciently extending the MSM validity time. If state S is poorly
sampled in a dynamical trajectory even though it is relevant,
one will require a longer trajectory with the hope that at some
point enough transitions from the state will be sampled. Such
situations can be tackled using state-constrained MD calcula-
tions. In state-constrained MD calculations, one performs MD
in state S while checking for a transition at regular intervals.
Once a transition is detected, the MD calculation is stopped
and the waiting time and final state are noted. A fresh indepen-
dent MD calculation is seeded from S such that the system is in
thermal equilibrium (see Sec. S1 of the supplementary material
for flowchart). More transitions from S are sought. This pre-
vents the system from freely diffusing over the potential energy
landscape and confines it to a particular state for the purpose of
detecting kinetic pathways from the state, calculating the rates,
and lowering leakage flux of state S. Core- and full-network
models can be constructed efficiently with programmed state-
constrained MD (PSC-MD) by automatically targeting states
with the largest leakage flux and performing state-constrained
MD in those states (see Sec. S2 of the supplementary material
for flowchart).

The PSC-MD scheme usually introduces many periphery
states in the network model as it is used to build the MSM
in patches. Occasionally, states are chosen from one part of
the network for state-constrained MD calculations, and later,
another part may be selected based on the calculated leak-
age flux. When the largest leakage is from core state S to
a periphery state S′, state-constrained MD is performed in
S′ until S′ becomes a core state. To achieve this goal with
regular MD, a trajectory of duration m/(kf πS′) is required,
where m denotes the number of transitions needed for esti-
mating the rate with reasonable statistical accuracy and kf is
the fastest rate from S′. When the occupation πS′ is small, the
time taken using state-constrained MD calculations given by

m/kf is orders of magnitude smaller than the one using regular
MD.

III. PROTOTYPE EXAMPLES

That the validity time is a vital parameter for quantify-
ing the MSM accuracy becomes evident by examining simple
networks that are fully known to us from the outset. We
consider (i) a landscape containing trapping states, which
is representative of deep basins of protein systems, and (ii)
random walk in a corrugated landscape containing shallow
basins reminiscent of a disordered system. This understanding
will be useful later when we study stretched deca-alanine in
Sec. IV.

A. Network with trapping states

Energy landscapes of biomolecular systems often con-
tain low lying minima separated by large barriers. The inset
of Fig. 4 shows a one-dimensional network with 5 states.
Initially the system is in state 2. The rate is calculated as
k = 105 exp(−∆F/kBT ) ps−1, where ∆F is the energy barrier
given in the caption of Fig. 4, kB is the Boltzmann constant,
and T = 300 K is the temperature. Since the barrier for the
move from state 2 to 3 is large (0.35 eV), the system remains
trapped in states 1-2 at short times. States 4 and 5, which are
also kinetic traps, are accessed at longer times.

A dynamical trajectory is generated using a kinetic Monte
Carlo procedure wherein a move is selected randomly from the
current state with a probability proportional to its rate and the
time is advanced by − ln(ξ)/kS . Here, ξ is a uniform random
deviate and kS is the sum of rates from the current state S. A
MSM is constructed with the help of the dynamical trajectory.
Kinetic rates are estimated using MLE when a pathway is
sighted 10 times or more.

The fraction of time spent in a state in the dynamical
trajectory is plotted in Fig. 4. After the initial transient, the
occupations for states 1-2 plateau. Based on the short dynam-
ical trajectory, one may correctly conclude that the MSM
containing only states 1-2 will suffice at short time scales. The
picture changes at the longer time scales. After 50 ns states 4-5
are accessed and the fraction of time spent in states 1-2 decays.

FIG. 4. Fraction of time spent in states belonging to the 1-D network shown
in the inset over the course of the simulation. The x-axis denotes the time
elapsed in a dynamical trajectory. Energy barrier for forward moves from left
to right are 0.3, 0.35, 0.1, and 0.2 eV. Barriers for backward moves from left
to right are 0.2, 0.1, 0.45, and 0.3 eV. The system resides in state 2 at time
t = 0 ps.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002799
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State 3 is not shown in Fig. 4 for convenience. Similar behav-
ior is expected from other dynamical trajectories started from
state 2, although the time required to access states 4-5 will
vary. The relevance of state 3 cannot be ignored as it provides
access to states 4-5. Thus, the MSM should include states 1-5
at longer time scales. So when should one include states 3-5
to ensure that the MSM remains accurate?

PSC calculations were performed with state 2 as the start-
ing state. The validity time is calculated using δ = 0.1. Initially,
the MSM contains only two states and the MSM validity is
extended by performing state-constrained calculations in states
1-2. The leakage rate from Eq. (14), namely, 2 ln(1/δ)/τMD,
is in close agreement with PSC calculations [Fig. 5(a)]. The
validity time keeps increasing with the MD time except for an
abrupt decrease when the periphery states 3-5 are detected
[Fig. 5(b)]. All states and pathways were available in the
MSM at 553 ns. The corresponding validity time was 20.1 ns.
Although we are aware of the total number of states and path-
ways in this toy model, in general for complex systems such as
proteins whether the network model is complete will remain
unknown to us. Therefore, one would continue to search for
newer states and pathways. At longer times, the leakage rate
is given by 5 ln(1/δ)/τMD.

It can be shown that the fraction of time spent in states
1-2 is identical for the dynamical trajectory of Fig. 4 and the
state-constrained calculations of Fig. 5 at short times. Simi-
lar behavior is true for states 4-5 at longer times. Therefore,
conclusions from Fig. 5(b) can be extended to Fig. 4. From
Fig. 5(b), a MSM generated from a 40 ns long dynamical
trajectory is valid only till 8 ns. The MSM of Fig. 4 only
contains the pathways between states 1-2 at 40 ns, i.e., the
pathways missing in the MSM are less relevant to the dynam-
ics till approximately 8 ns. This is confirmed in Fig. 6, where
the time-dependent state occupations are plotted. States 3-5 are
visited before 60 ns in Fig. 4, which corresponds to a validity
time of approximately 10 ns. This implies states 1-5 should
be present in a MSM when 10 ns time scales are accessed.

FIG. 5. (a) Leakage flux calculated using Eq. (14) (dashed line) and state-
constrained calculations (filled circles). (b) Validity time calculated for the
MSM constructed for the network in Fig. 4 using state-constrained calculations
(orange line). The number of core states shown in filled grey circles increases
as the trajectory grows longer. The x-axis in both panels denotes time elapsed
in the dynamical trajectory.

FIG. 6. State occupation for the network shown in Fig. 3 obtained by solving
the MSM with validity time of 104 ns. Initial state is 2.

Figure 6 shows that roughly in 1 in 10 dynamical trajectories
the system will be in state 5 at 10 ns. When 1/10 is set as
the tolerance limit, the dynamical behavior can no longer be
predicted using a two-state MSM, highlighting the importance
of missing pathways.

B. Network with diffusive behavior

Dynamics in a large number of biomolecular and disor-
dered systems can be described in terms of random walk in
shallow energy basins. The inset of Fig. 7(a) shows a periodic
4 × 4 lattice where each site is connected to 4 neighboring
sites, each pathway having a rate of 1 ns�1. A particle, initially
placed at the orange-colored site, can randomly hop to any of
its nearest-neighbor sites. The exact kinetic model contains 16
states and 64 pathways. The state occupation is obtained by
solving the master equation analytically (solid lines in Fig. 7).
Along the lines of Sec. III A, a MSM is constructed using PSC

FIG. 7. State occupation calculated for MSMs of validity time 501 ps (dashed
lines) and 1140 ps (open circles) at (a) short and (b) longer times. The MSM
is constructed for the network in the inset of panel (a). Occupation for initial
(orange), a nearest neighbor (black), and a next nearest neighbor (green) site
is shown in their respective colors. Dependence of the validity time on the
duration of the state constrained trajectory is shown in the inset of panel (b).
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calculations of the total duration of 105 ns. Kinetic rates were
estimated using MLE when a pathway is sighted 10 times or
more. The MSM contains 4 core states, and the validity time
calculated using Eq. (13) is 0.501 ns. Dashed lines in Fig. 7(a)
denote the occupation obtained by solving this MSM. While
the MSM predictions are reasonable at short time scales, devi-
ations are observed later. The large leakage from core states to
periphery states results in a small validity time in diffusing sys-
tems as shown in the inset of Fig. 7(b). A MSM constructed
with 278 ns PSC calculations remains accurate for a longer
period of time (see open-circles). The MSM contains 11 core
states and has a validity time of 1.14 ns. All states and pathways
are available in the core network model once PSC calculations
have accrued 1045 ns.

IV. MARKOV STATE MODEL OF STRETCHED
DECA-ALANINE

Sections I–III lead to the conclusion that the MSM valid-
ity time is always shorter than the duration of MD used to
construct the MSM. This has serious implications on long-
time studies using MSMs. Despite this, crucial insights can be
obtained with MSMs. We demonstrate this aspect by building
a MSM with a desirable validity time to study the kinet-
ics of a deca-alanine molecule in vacuum under tension. A
capped deca-alanine (Ala10) with acetylated N-terminus and
amidated C-terminus was selected for the study. The initial
configuration was obtained from the 104-atom helical model
of Ref. 58. The Cα atoms at the two ends (residues 1 and
10) are tethered to two anchor points by harmonic restraints
with a spring constant of 0.86 (kcal/mol)/Å2 (Fig. 8 inset). The
anchor separation d is kept fixed during the construction of a
MSM and fluctuations in molecular extension, and forces are
measured.

Past studies of deca-alanine demonstrate that unravelling
of the helical structure results in higher free-energy config-
urations, although the presence of metastable configurations
of stretched deca-alanine has not been reported. Hence, spe-
cific 3D metastable structures encountered in the dynamics
are determined as d is varied between 16 and 26 Å. Questions
related to appropriateness of employing the same Markov state

FIG. 8. Occupation for the top-four states using a MSM with 65 ns validity
time when the anchor separation d = 16 Å. The force-spectroscopy setup for
deca-alanine in vacuum at 300 K is shown in the inset. Harmonic restraint
is applied to the light-green colored Cα atoms. Open circles show state 1
occupation from a 5-state MSM with 2 ns validity time (constructed from a
0.57 µs long MD trajectory).

definitions and pathways across different anchor separations
as well as changes in the kinetic rates are examined. Analysis
of dominant configurations helps us probe the importance of
multiple pathways for unravelling of the helical structure as
the molecule is stretched. Since helix winding/unwinding is
a reversible process, helical and stretched configurations co-
exist, which causes the force experienced by the AFM tip to
fluctuate. Ensemble-average forces from MSMs and MD are
compared. Through this study, we conclude that forces are
inaccurately predicted using MSMs with short validity time,
thus highlighting the important role of missing states/pathways
in ensemble-averaged quantities.

MSMs are constructed on-the-fly with 90% confidence
(δ = 0.1) using thousands of short-MD calculations that are run
in parallel as part of the PSC procedure. All MD simulations
were performed with NAMD 2.959 with the CHARMM36
force fields.60 Temperature was held at 300 K using a Langevin
thermostat. Bonds involving hydrogen atoms were constrained
to their equilibrium values using RATTLE.61 An integration
time step of 2 fs was used. States were determined by com-
paring the backbone atoms after aligning the molecule using
the Kabsch algorithm. A tolerance of 3 Å was found to be
suitable for identifying the states. MD snapshots were col-
lected every 0.2 ps because of rapid interconversion between
the states. A transition was said to have successfully occurred
when the system continues to reside in the new state for
at least 1.2 ps after the transition was detected in the MD
trajectory. This prevents recrossing events to be counted as
transitions.

Steered MD simulations were performed with the deca-
alanine for several nanoseconds to obtain a preliminary col-
lection of unfolded structures. These configurations were pro-
vided as inputs to several nanosecond-long regular MD trajec-
tories with chosen anchor separations. A preliminary catalog
of states was constructed that could be employed with dif-
ferent anchor separations. States were indexed in the order
they are found. State-constrained MD calculations, which are
more efficient than regular MD (see Sec. II D), were used to
confirm Markovian behavior (see Sec. S5 of the supplemen-
tary material) and that the kinetic pathways can be described
as a first-order process. Poor MSM validity was achieved
when states or MD duration were selected ad-hoc in the state-
constrained MD calculations. For example, in a preliminary
MSM-building attempt we found a 4 µs long MD trajectory
resulted in a validity time of 0.064 ns, which is the reason why
only PSC-MD calculations are performed.

The full network model consisted of 810 states. Most
states are periphery states. The number of core states and
their relevance varies with anchor separation. State occupa-
tion at d = 16 Å obtained by solving a MSM of 65 ns validity
is shown in Fig. 8. The MSM constructed using a 9 µs tra-
jectory contains 25 core states and 78 pathways. The system
was initially present in state 2 shown in Fig. 9. Rapid conver-
sion to α-helical configuration (state 1) with a large rate of
0.44 ps�1 is observed consistent with previous studies. The
average distance between the terminal Cα atoms is 16.4 Å for
state 1. Another dominant configuration, namely state 288, is
selected beyond 100 ps with nearly 10% probability. State 288
is accessible from state 1 with a small rate of 1.4 ns�1. As a

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002799


152702-8 Bhoutekar et al. J. Chem. Phys. 147, 152702 (2017)

FIG. 9. Network model obtained when the anchor separation is (a) 22 and (b) 23 Å. Only frequently visited states are shown. State 3 (encircled) is the starting
configuration for the subsequent figures.

consequence, state 288 is absent in a MSM with a shorter
validity time and the time-dependent occupation for state 1
from such a MSM is incorrectly predicted (see open circles
in Fig. 8). This behavior is analogous to the one observed in
Fig. 4. State 288 is preferred over state 2 for two reasons.
First, it has an end-to-end distance smaller than that of state 2,
which is favored at compressive conditions. Second, the aver-
age α-helicity for states 1, 2, and 288 are 0.8, 0.2, and 0.74,
respectively. Multiple backbone hydrogen bonds impart more
stability to state 228 than state 2. It appears that a two-state
model (states 1 and 288) might suffice for the calculation of
average force at d = 16 Å.

The abundance of energetically-favorable stretched-out
configurations causes state 288 to lose its relevance at higher
anchor separations, but state 1 still continues to be relevant.
Figure 9 shows the dominant core states for anchor separa-
tions 22 and 23 Å. The unravelling of a helical structure to
an elongated one proceeds via multiple intermediate states.
For instance, one pathway for visiting state 17 from state 1
involves only “local” readjustments. First, a partial opening of
lower coils (C-terminal) is observed (state 1 to 6 via state 2)
followed by subsequent stretching of the lower coils (state
6 to 17). Alternatively, fluctuations in the middle residues
can frequently cause deformation in the helix (state 1 to
3) that may sometimes lead to an elongated configuration
(state 3 to 6). States 2, 3, and 6 have a non-negligible 310-
helicity (see Sec. S4B of the supplementary material). State 6,
which is an essential intermediate for both pathways, can be
reached faster from states 2 and 3 as the anchor separation
is increased. The preferred winding/unwinding mechanism
proceeds predominantly at the C-terminal, i.e., the former
pathway.

In the past, the end-to-end distance has been employed
as a reaction coordinate for stretched deca-alanine. End-to-
end distance distribution for a state tends to be sharply-peaked
with a standard deviation of nearly 1-2 Å; however, the dis-
tribution is a function of the anchor separation. Large over-
lap in end-to-end distribution for the core states makes it

practically impossible to distinguish states when only end-
to-end distances are employed. Inclusion of the 3D structure,
which is implicit in our state description, helps resolve inter-
mediate states and state-specific properties. In particular, we
are interested in the stiffness of deca-alanine, which deter-
mines the force on the AFM tip. The stiffness, calculated using
state-constrained MD calculations, is found to vary from one
state to another depending on the intramolecular interactions.
Presence of strong hydrogen bonds in state 1 results in a large
spring constant of 39.44 pN/Å. On the other hand, state 3
has a smaller spring constant of 25.38 pN/Å. A natural con-
sequence is that the average force experienced by the AFM
tip can be altered by as much as 100 pN in either direction
during a state-to-state transition because of the differences in
the state-specific spring constants. The average force is given
by the sum of force experienced for each state times the state
occupations.

MSMs are sensitive to small changes in the anchor sep-
aration [see Figs. 9(a) and 9(b)]. Pathways between states 6
and 9 are absent in the MSM for d = 22 Å, but they are
dynamically more relevant at validity times of 8 ns when
d = 23 Å. Forward and backward rates are found for many
pairs of states. Exceptions in Fig. 9(a) include the move from
state 1 to 6, although this is not an issue since a stationary solu-
tion is obtained without the requirement of detailed balance.
The rate constants involving the core states vary over several
orders of magnitude between 10�1 and 10�5 ps�1. Exponential
increase/decrease in rates is witnessed between 16 and 26 Å
(see Sec. S4B of the supplementary material). While a handful
states can describe the dynamics for small anchor separations,
additional states should be included in the MSM when the
molecule is stretched extensively. An explosion in the num-
ber of core states is witnessed from 36 to 78 states between
22 and 25 Å. Correspondingly, the validity time plummets by
almost 10 times from 12 ns at 22 Å separation to 1.5 ns at 25 Å
separation for a 0.5 µs long MD trajectory. Note the length of
(PSC-)MD trajectory required to reach the nanosecond-long
validity time.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002799
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Figure 10 shows the evolution obtained with different
MSMs for anchor separations between 22 and 25 Å. The rise
and fall in the relevance of states and kinetic pathways is
witnessed. The initial state of the system is state 3. One might
expect that the helical structures (state 1) would not be selected
at high separations; however, even at 24 Å separation there
is a 1% chance of finding state 1. This is attributed to the
lower energy of state 1 and the small stiffness of the teth-
ers. In other words, it is possible for the tether to stretch to
an extent where state 1 can still be visited in the dynamics at
24 Å separation. State 3 is an important configuration between
22 and 25 Å separation. The maximum state 3 occupation is
witnessed around 23 Å. States 9, 6, and 17 compete with each
other at large anchor separations. As the number of core states
increases, there is an increased chance that the system will
visit these states. The occupation in all other core states com-
bined is shown in the dashed lines in Fig. 10. The time spent
in the top-five states decreases from 96% at 22 Å separation
to 30% at 26 Å separation. Based on Fig. 10, the station-
ary solution for deca-alanine is reached at nearly 100 ps, i.e.,
time-dependent forces can be resolved only at sub-100 ps time
scales.

The free energy difference for a state A with respect
to state B is calculated from the stationary distribution as
∆FA−B = −kBT ln(pA/pB), where p denotes the stationary
occupation of a state. Since the stationary solution depends on
the relevant pathways, absence of one or more pathways can
introduce errors in the free energies. Occupations in Fig. 10
were used to calculate the free-energy difference between the
states. Insights into the separation-dependence of the kinetic
rates can be obtained from the Bell-Evans-Polyani princi-
ple.62,63 Consider states 1 and 2. Since the free energy of state 1
increases with reference to state 2 as deca-alanine is stretched,
the free barrier for the move from 1 to 2 (2 to 1) decreases
(increases), which explains the corresponding shift in the rate
constants (see Sec. S4B of the supplementary material). Sim-
ilarly, the free energy of state 2 decreases with respect to state
3, causing the rate constant from state 2 to 3 to increase. As
shown in Sec. S4A of the supplementary material, the work
done while stretching deca-alanine can be calculated using
the stationary occupations at different anchor separations. The
calculated work is in agreement with previous values in the
literature.

FIG. 10. Probability evolution for different anchor separations. Numbers
denote the state index in Fig. 9. The initial state of the system was state
3. The MSM validity time exceeded 1 ns in all cases.

FIG. 11. Solid lines show the average force acting on the AFM tip when the
deca-alanine is stretched (using MSMs with validity time exceeding 4 ns).
Behavior for anchor separation 22-25 Å is shown. Steady state forces calcu-
lated from the MSM (line) and MD (filled-circles) shown in inset are in good
agreement.

Figure 11 shows the time-dependent ensemble-averaged
force experienced by the AFM tip corresponding to the
evolution shown in Fig. 10 for different anchor separation.
Average forces were computed for the individual core states
using state-constrained MD. Since the force experienced with
state 3 is smaller than with state 1, the average force increases
with time at 22 Å separation as state 1 occupation increases
(see Fig. 10). Although state 3 plays a minor role in the wind-
ing/unwinding of deca-alanine, it is important for calculation
of average forces due to its large occupation. Beyond 23 Å sep-
aration, one finds that state 2 is preferred over state 3. The aver-
age force decreases with time since the force experienced with
state 2 is smaller than with state 3. The average force at steady-
state from the MSM and MD are in good agreement (Fig. 11
inset) validating our MSM. Such an agreement between MD
and the MSM is not witnessed when the validity time is small
as many relevant states are missing. The sudden drop in the
slope of the force-separation curve is attributed to the smaller
stiffness of states encountered at higher separations.

Weaker electrostatic interactions are expected when deca-
alanine is present in water. To mimic the effect of water, we
construct MSMs at anchor separations 16 and 24 Å with a
dielectric constant of 80. In order to find common features in
the dynamical behavior for dielectric constants 1 and 80, the
list of 810 states obtained previously was used as the starting
known structures for our new calculations. Deca-alanine was
initially kept in state 3. The dominant states for anchor sepa-
ration of 16 Å include states 1, 20, 113, and 288. Figure 12(a)
shows that the occupation for state 3 decreases continually in
time. As in Fig. 8, a maximum value of the occupation for state
1 is witnessed. However, the steady state occupation for state
1, namely, 0.401, is much smaller than the one observed in
Fig. 8. The occupation for other states combined increases to
a significant value. We find that 11 states possess steady state
occupations greater than 0.01. By considering the full net-
work model, we conclude that the MSM obtained with 10.8 ns
long MD calculations has a validity time of nearly 30 ps. At
30 ps, the difference in the state 1 occupations in the MSM
and the full network model has exceeded 0.1. More states are
observed with the anchor separation of 24 Å. In all 25 states
possessed a steady state occupation in excess of 0.01 with state
3 being the only state common to both Figs. 10 and 12 with

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002799
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FIG. 12. Probability evolution for
anchor separations 16 Å [panels (a)
and (b)] and 24 Å [panels (c) and (d)]
using the dielectric constant of 80 to
mimic deca-alanine in water. Numbers
denote state index. Initial state of the
system was state 3. Left panels [(a) and
(c)] show results from the MSM while
right panels [(b) and (d)] show results
obtained with the full network model.

d = 24 Å. The total number of core states was found to be 137
using 53 ns long PSC-MD. Figures 12(c) and 12(d) show state
occupations as a function of time from the MSM and the full
network model. Predictions from the two models diverge at
nearly 0.1 ns. One can determine whether states and kinetic
pathways in the present MSM will continue to remain relevant
at longer time scales only by extending the validity time of the
MSM.

V. CONCLUSIONS

MSMs have the potential to become even more powerful
computational tools in the future for studies of biomolecu-
lar, materials, and reacting systems as new advances emerge
that enable one to accurately encode the kinetic and ther-
modynamic information on the multidimensional landscape
in terms of state-to-state transitions. Unfortunately, MSMs
constructed bottom-up from finite MD trajectories are rarely
complete, which has a direct implication on its accuracy. Since
the (kinetic) information content in a single trajectory can be
different from that of an ensemble at the same length of time,
questions related to validity of the MSM due to missing infor-
mation arise. We introduce the fundamental concept of validity
time of a MSM to quantify its completeness. The concept
guarantees that all states and kinetic pathways that are rele-
vant to the dynamics will be present in the MSM provided the
time scales accessed by the model are smaller than its valid-
ity time. Put differently, this concept helps us understand the
time scales where states and pathways missing in the available
MD data or the MSM can become relevant to experimentally
measurable quantities, and differences between the experimen-
tal quantities and MSM predictions might originate from the
missing information in the MSM. Our methodology is flexible
in terms of its ability to handle a wide-range of kinetic rates,
number of states, relaxation times in the network, topology of

the network, as well as missing pathways and states that have
not been found with MD. Development of programmed state-
constrained MD calculations in this work provides an efficient
means for extending validity time of a MSM.

MSMs with sufficiently large validity time provide fol-
lowing key insights into the stretching of deca-alanine.
Unwinding of deca-alanine proceeds mainly via breaking of
hydrogen bonds at the C-terminal. Characterization of states
might not be possible only using simple reaction coordinates
such as end-to-end distance. Each state possesses its own
mechanical characteristics, e.g., spring constants, that ulti-
mately determine the force experienced by the AFM tip in
the force spectroscopy (FS) setup. To calculate the force, one
also needs to accurately estimate the state occupations. It
is not straightforward to guess the relevant states/pathways
at different anchor separations. The list of relevant states
and kinetic pathways, and associated rates, i.e., the network
topology, can change dramatically with the anchor separa-
tion. The size of the MSM increases for large anchor sep-
arations, which has a direct bearing on the amount of MD
required to know the state occupations accurately. Our stud-
ies demonstrate that the absence of relevant states/pathways
in the MSM can lead to incorrect prediction of the kinetic
and thermodynamic quantities being sought, which is the
main reason why studies employing MSMs and other related
kinetic network models should state the validity time of the
model.

SUPPLEMENTARY MATERIAL

See supplementary material for the flow chart for state
constrained and programmed state constrained MD, simula-
tion protocol used for solvated alanine dipeptide, additional
figures for the deca-alanine system, and discussion on test for
Markovian behavior.
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