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Summary

Public data from ECHA online dossiers on 9,801 substances encompassing 326,749 experimental 

key studies and additional information on classification and labeling were made computable. Eye 

irritation hazard, for which the rabbit Draize eye test still represents the reference method, was 

analyzed. Dossiers contained 9,782 Draize eye studies on 3,420 unique substances, indicating 

frequent retesting of substances. This allowed assessment of the test’s reproducibility based on all 

substances tested more than once. There was a 10% chance of a non-irritant evaluation after a 

prior severe-irritant result according to UN GHS classification criteria. The most reproducible 

outcomes were the results negative (94% reproducible) and severe eye irritant (73% reproducible).

To evaluate whether other GHS categorizations predict eye irritation, we built a dataset of 5,629 

substances (1,931 “irritant” and 3,698 “non-irritant”). The two best decision trees with up to three 

other GHS classifications resulted in balanced accuracies of 68% and 73%, i.e., in the rank order 

of the Draize rabbit eye test itself, but both use inhalation toxicity data (“May cause respiratory 

irritation”), which is not typically available.

Next, a dataset of 929 substances with at least one Draize study was mapped to PubChem to 

compute chemical similarity using 2D conformational fingerprints and Tanimoto similarity. Using 

a minimum similarity of 0.7 and simple classification by the closest chemical neighbor resulted in 

balanced accuracy from 73% over 737 substances to 100% at a threshold of 0.975 over 41 

substances. This represents a strong support of read-across and (Q)SAR approaches in this area.
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1 Introduction

In a parallel article (Luechtefeld et al., 2016, this issue), we describe the curation of the data 

made available to the public by the European Chemical Agency (ECHA) until mid-

December 2014. ECHA chemical dossiers describe diverse chemical and toxicological 

studies. These dossiers contain studies mapping to over 300 EPA, OECD and EU guidelines. 

Automation of data extraction from ECHA dossiers enables analysis of testing redundancies, 

construction of computational models, evaluation of endpoint distributions and other data 

analyses. The status of ECHA and the REACH (Regulation (EC) No 1907/2006) legislation 

make the ECHA dossier database extremely valuable to computational toxicology, for the 

evaluation of many study protocols (in vitro, in vivo, read-across and QSAR methods), and 

for systematic analyses in general. In this article, we use this data to assess eye irritation 

testing.

Eye irritation is the production of changes in the eye following the application of a test 

substance to the anterior surface of the eye of rabbits, which are followed for reversibility for 

21 days after application (OECD Test Guideline 405, in vivo) (OECD, 2012a), also known 

as the Draize rabbit eye test. Draize eye irritation presents one of the most criticized and 

contested animal tests still in use today. It has been the subject of criticism both on the basis 

of irreproducibility and subjectivity as well as animal welfare considerations, and its 

replacement has therefore been the target of alternative methods development (Wilson et al., 

2015; York and Steiling, 1998). However, Draize testing has remained in use with only small 

modifications since 1944 (Draize et al., 1944).

Under the European chemicals legislation REACH, substances produced or imported in 

volumes greater than 1 ton per annum must be assessed for eye irritation potential. 

Substances belonging to the 1 to 10 ton per annum tonnage band should use in vitro 
methods; above this tonnage the use of the Draize test is recommended (Grindon et al., 

2008). Recent progress in the validation of alternative methods (Vinardell and Mitjans, 

2008; Hartung, 2010) supports their use in weight-of-evidence evaluations, but no method to 

fully replace the animal test has yet been accepted. Until now, three methods have been 

adopted by the Organization for Economic Cooperation and Development (OECD) as partial 

replacements of the Draize test to classify substances as inducing serious eye damage: These 

are two organotypic assays, the Bovine Corneal Opacity and Permeability (BCOP) test 

method (OECD test guideline (TG) 437) and the Isolated Chicken Eye (ICE) test method 

(OECD TG 438) (OECD, 2013a), both based on slaughterhouse materials, and a cell-based 

assay, the Fluorescein Leakage (FL) test method (OECD TG 460) (OECD, 2012b). Two of 

these alternative methods (BCOP and ICE) were recently adopted by the OECD also for the 

identification of substances not requiring a classification for serious eye damage/eye 

irritation (OECD, 2013a). Two other test methods, namely the cytosensor microphysiometer 

(Hartung et al., 2010) and the short-time exposure test (Sakaguchi et al., 2011; Takahashi et 
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al., 2008), a cytotoxicity-based in vitro assay that is performed on a confluent monolayer of 

Statens Seruminstitut Rabbit Cornea (SIRC) cells, are currently in the process of regulatory 

acceptance by the OECD. Several other eye irritation methods are listed in the OECD test 

guideline proposals of 2015 (SkinEthic, in vitro macromolecular test, and others1). Finally, 

the EPA recently published strategies for testing antimicrobial cleaning products2.

The hope to develop testing strategies to replace the Draize test by combining several 

animal-free methods has raised expectations. Combination methods following the top-down 

bottom-up approach have been proposed (Scott et al., 2010; Kolle et al., 2011; Hartung, 

2010).

The number of animals used for Draize testing is fairly small compared to the more 

demanding tests, e.g., for reproductive toxicity (Hartung and Rovida, 2009; Rovida and 

Hartung, 2009), which is owed to the small number of rabbits required per test article (i.e., 

1–3 animals) according to a stepwise testing strategy in OECD Test Guideline 405 for the 

determination of the eye irritation/corrosion properties of substances. However, the severity 

of suffering and the limitations of the assay, noted as early as 1971 (Weil and Scala, 1971) 

and confirmed more recently (Adriaens et al., 2014), call for special attention.

The EU 7th Amendment to the Cosmetic Directive (76/768/EEC), now Regulation 

1223/2009, banned animal testing for new cosmetic ingredients and requires non-animal 

alternatives for safety assessment. These pressures motivate the creation of computational 

and in vitro test models for eye irritation tests and others (Hartung, 2008). However, the lack 

of large public databases of Draize results has inhibited the progress of computational 

modeling (Hartung and Hoffmann, 2009). Only most recently (Adriaens et al., 2014) a larger 

database was compiled from in vivo rabbit eye irritation data registered in the New 

Chemicals Database (NCD) of the former European Chemicals Bureau (ECB) and three 

reference substances databases (Eye Irritation Reference Substances Data Bank (ECE-TOC), 

the ZEBET database and the Laboratoire National de la Santé (LNS) database), which 

included, after a quality check of the Draize eye test data, 1,860 studies. However, this 

database is not publicly available.

Since the existing literature for eye irritation until recently lacked large reference datasets, 

QSAR and other in silico as well as integrated testing strategies were evaluated only for 

small datasets. In December 2014, Verma and Matthews described the evaluation of an FDA/

CFSAN-developed artificial neural network for the prediction of eye irritation on 2,928 

substances with specificities and sensitivities in the 80-90% range (Verma and Matthews, 

2015). The construction of their database relied on manual curation of a large number of 

publications with Draize results (Cronin et al., 1994; Andersen, 1999; Bagley et al., 1999; 

Cho et al., 2012; Sugai et al. 1990, 1991). Their work shows the value of the increased size 

of a dataset, but their reliance on aggregation of literature results suffers from a lack of a 

central repository. We should not rely on literature aggregation for toxicological datasets if 

possible, as doing so is inherently error-prone and non-scalable to other endpoints.

1http://www.oecd.org/env/ehs/testing/TGP%20work%20plan_declassification_July%202015.pdf
2http://www2.epa.gov/pesticide-registration/alternate-testing-framework-classification-eye-irritation-potential-epa
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This publication analyses results of Draize experiments and related data available in ECHA 

chemical dossiers3. We explore the internal reproducibility of Draize results in these 

dossiers and demonstrate simple models for the prediction of eye irritation using chemical 

structures, Globally Harmonised System (GHS) hazards and Draize endpoints (cornea, iris, 

conjunctivae and chemosis).

2 Methods

2.1 Database construction

The database for these analyses was created from ECHA dossier pages as described 

(Luechtefeld et al., 2016, this issue). Automated extraction by linguistic search engines of 

data from ECHA online dossiers enables analysis of diverse chemical study data. Extracted 

REACH data were stored as a queryable collection of documents in a Mongo database4 

(Chodorow, 2013; Godbillon, 2015). Every document in the extracted database is identified 

by a unique set of three fields:

– ECNumber: substance identifier (e.g., “214-306-9”)

– Type: study description (e.g., “exp key acute toxicity dermal”)

– Num: disambiguates repeat studies (1, 2, 3,…)

Studies in ECHA contain fields for “materials and methods”, “results and discussions”, 

“administrative data” among others. The final extracted database contains over 10,000 

dossiers representing a substantial but incomplete extraction of the entire ECHA repository. 

The resulting database on 9,801 substances encompasses 326,749 experimental key studies, 

additional dossier information on classification and labeling and other miscellaneous data. 

3,420 substances contain studies for a Draize test and form the basis of this study.

2.2 Reproducibility assessment

We evaluate Draize reproducibility by answering, “What is the probability a Draize test 

outcome agrees with another Draize test outcome for the same chemical?” This question is 

answered by constructing conditional probabilities for each category:

The above formula gives the probability of a Type 1 result for the Draize test given a Type 1 

result for another Draize test of the same chemical. Ti = 1 represents a test (identified by the 

number i) with outcome Type 1. The given equation is simply the definition of conditional 

probability. This reproducibility refers to multiple tests in potentially different labs and 

should not be confused with traditional inter-/intralaboratory reproducibility.

3http://echa.europa.eu/
4https://www.mongodb.org
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2.3 Draize endpoint modeling

OECD TG 405, known as the Draize test, describes how data is obtained for scoring criteria 

for acute eye irritation/corrosion (OECD, 2012a). The Draize test involves application of a 

chemical of interest to white albino rabbit eyes in vivo. Damage is scored for cornea, iris, 

conjunctivae and chemosis. Each ocular endpoint has subjective scoring rules described in 

Table 1. GHS hazards describe how Draize endpoint scores can be mapped to 4 categories of 

irritation: Type 1, Type 2A, Type 2B and non-irritating. Type 1 and Type 2 irritants are 

differentiated by reversibility with Type 1 irritants causing serious or irreversible eye 

damage that persists for 21 days post-exposure. Type 2 irritants are reversible before 21 

days. Type 2A and Type 2B irritants are differentiated by the severity of irritation with Type 

2A irritants more severe than Type 2B and further subcategorized if effects are fully 

reversible within 7 days of substance application. Eye irritation categories are defined from 

endpoint features. The classification strategy for H318 (Draize Type 1), H319 (Draize Type 

2A) and H320 (Draize Type 2B) is generated in Figure 4 from classifications given by the 

Infectious Disease Research Institute (IDRI)5 and defined by the UN GHS. OECD guideline 

data is interpreted according to the following rules (OECD, 2012a): Type 2A versus 2B can 

be determined by 7 day reversibility of effects. Severity of cornea and iris effects with 21-

day reversibility differentiate Type 1 and 2A.

For each substance we derived from all the Draize studies an average value for each Draize 

endpoint (iris, cornea, etc.) and a maximum value for each endpoint. The ECHA Draize 

studies report Draize endpoint values, thus allowing for the sum and maximum values to be 

found for these endpoints.

In addition, we derived one “reversibility” feature matching the study and endpoint with the 

longest reversibility time. For example, for a chemical with a chemosis endpoint that shows 

a reversibility period greater than 21 days we apply the value “irreversible” to the 

“reversibility” feature. Finally, the classification and labeling hazard value reported in the 

given substance’s ECHA dossier was used to define a Draize GHS category corresponding 

to the category of Draize response (Type 1, 2A, 2B). The features for this model are 

described below:

1. Chemosis mean: chemosis mean scores

2. Chemosis max: max of chemosis scores for substance

3. Iris mean: mean iris scores

4. Iris max: max iris scores

5. Cornea mean: mean of cornea scores

6. Cornea max: max of cornea scores

7. Conjunctivae mean: mean of conjunctivae scores

8. Conjunctivae max: max of conjunctivae scores

5http://www.idri.org/GHS/HazClassSummary.pdf
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9. Reversibility: longest endpoint reversal period

10. Draize GHS Category: H318 = Type 1, H319 = Type 2A, H320 = Type 2B

2.4 Decision tree construction

Decision trees constructed for prediction of eye irritation category from Draize endpoint 

features (iris, cornea, conjunctivae, reversibility, etc.) and Draize GHS categories (H318, 

H319, H320) used Weka’s J48 decision tree algorithm (Quinlan, 2014; Hall et al., 2009). 

Briefly, this algorithm works by iteratively selecting the attribute yielding the greatest 

reduction in entropy. Decision trees are useful for finding predictive rules and for visualizing 

relationships in the data.

2.5 K-nearest neighbor

Selection of PubChem fingerprints requires the mapping of EC-Numbers to PubChem 

chemical identifiers. The PubChem power user gateway was used for this purpose (Cheng et 

al., 2014). Similarity approaches require construction of chemical-chemical similarity and 

implementation of algorithms. PubChem 2D conformational substructure fingerprints were 

generated using the Chemistry Development Kit, an open-source Java chemistry package 

(Steinbeck et al., 2003). Weka’s IkB algorithm was used with k set to 1 and different 

thresholds selected for minimum similarity (Aha et al., 1991; Hall et al., 2009). PubChem 

2D conformation chemical substructure fingerprints are binary vectors signifying the 

presence or absence of 881 different substructures. Chemical similarity approaches typically 

suffer from activity cliffs and poor accuracy when using small chemical datasets. We 

measured chemical similarity via the PubChem 2D conformational fingerprints and the 

Jaccard (Tanimoto) distance. This is a relatively simple approach to similarity; more 

advanced approaches include self-organizing maps, which could define similarity within the 

context of eye irritation categorizations.

The chemical similarity graph was constructed using the Fruchterman Reingold algorithm as 

implemented by Gephi with area = 1000, gravity = 10, speed = 1.0 (Fruchterman and 

Reingold, 1991; Bastian et al., 2009). This layout algorithm works via simulating a physical 

process whereby neighboring (similar) vertices attract each other and dissimilar vertices 

repel.

3 Results and discussion

In addition to allowing analysis via computational models, availability of large numbers of 

Draize studies allows for more generalized analyses. Many substances were tested in 

multiple Draize studies. Approximately 25% of the 1,841 substances for which a mode eye 

irritation category could be extracted are irritants. Figure 1 gives prevalence of the mode 

Draize outcome for each substance with at least one Draize study. Figure 2 shows the 

number of Draize studies per year (as defined by the ECHA reference date) and shows a rise 

and peak around 1985 with a decade long decline afterwards.
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3.1 Analysis of Draize scoring

The mapping of Draize results to eye irritant categories is well defined. However, the scoring 

of individual endpoints is of varying degrees of subjectivity, and observations of reversibility 

may be more reproducible than observer assessment of damage (swelling, reddening, etc.) 

both in terms of inter-observer variation and animal variation. Therefore, one might expect 

eye irritant categories more dependent on subjective features to be less reproducible.

Investigation of acute eye toxicity reveals a large number of substances with relevant in vitro 
and repeated in vivo studies. In total 10,524 studies were extracted with the following 

characteristics:

1. “Eye” contained in study type

2. Materials and methods data exists

3. Results and discussions data exists

4. Klimisch reliability score of 1 or 2 (Klimisch et al., 1997), indicating reliability 

of the reporting of the data.

Of the 10,524 studies retrieved this way, 7,706 reported an in vivo OECD TG 405 (Draize 

test), 2,076 were read-across based on OECD TG 405 results from other substances, 292 

report OECD TG 437 (Bovine Corneal Opacity Test) (OECD, 2013a), 41 report OECD TG 

438 (Isolated Chicken Eye Test) (OECD, 2013b) and in 409 cases we were unsuccessful in 

extracting an associated OECD TG.

Surprisingly, out of 9,782 Draize studies (in vivo and read-across) there are only 3,420 

unique substances, indicating frequent retesting of substances for eye irritation hazard (Tab. 

2). Indeed, after skin irritation (OECD 404) and repeat dose toxicity (OECD 422), the 

Draize test is the most commonly executed OECD TG for a human health endpoint in the 

dataset.

ECHA dossiers give eye irritation categorization in natural language with values such as 

“category 1”, “corrosive”, “cat. I”, “highly irritating”, etc. Test evaluation involves an 

irritation score for iris, conjunctivae, cornea and chemosis. Substances are categorized as 

Type 1 (“serious irreversible damage”), Type 2A (“reversible irritation”), Type 2B 

(“reversible mild irritation”) and non-irritating (Wilson et al., 2015). With knowledge of 

GHS criteria these study interpretations can be mapped to standard eye irritation categories 

through text analysis. Our approach to natural language text analysis could only map to the 

appropriate category with high confidence for 491 of the 1,279 substances with repeat 

studies. Figure 3 visualizes the relationship between irritation categories and scoring for iris, 

conjunctivae, cornea and chemosis, with more severe damage equating to a higher score (see 

Tab. 1).

Our analysis indicates a greater difference in observed severity between Type 2A and Type 

2B than any other consecutive categories. This figure is built from 4,134 Draize studies, 

where the submitter’s interpretation could be mapped to a standard category. The difference, 

given by OECD, between Type 1 and Type 2 categories is a question of reversibility, 

whereas the difference between 2A and 2B is a question of severity (Wilson et al., 2015). 
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The individual scores in Figure 3 describe severity irrespective of reversibility. While the 

subjective nature and subsequent variability of severity values is clear in Figure 3, we still 

see a strong reduction in severity scores in the progression from Type 1 to Type 2A, Type 2B 

and non-irritant categories.

By observing the dependency of eye irritation categories on severity data, we can speculate 

on the biological features of endpoint-specific data. The predication of Type 1/Type 2 on 

reversibility makes it unsurprising that Type 1/Type 2 categories are not well separated by 

severity scores. Conjunctivae scoring best separates categories and thus delivers the greatest 

information content. The cornea endpoint differentiates Type 1 and Type 2A more 

completely than other endpoints, suggesting that corneal damage repair is less probable than 

other endpoints. Chemosis and iris scoring show little separation between Type 1 and Type 

2A, suggesting that these forms of damage are more easily repaired. The low prevalence of 

iris and cornea damage relative to conjunctivae and chemosis damage in the Type 2B 

category indicates that these endpoints are perhaps less sensitive to irritating substances. 

Alternatively, different Draize endpoints may be activated by different chemical/biological 

mechanisms.

With access to the specific results of the Draize studies, it would be possible to create 

models of each Draize endpoint, and perhaps thereby identify potential differential 

mechanisms of iris, cornea, conjunctivae or chemosis damage.

3.2 Reproducibility

In order to assess the reproducibility of Draize eye irritation scoring, conditional 

probabilities for each category were constructed: Table 3 considers the reported eye irritation 

categories for all substances with at least two Draize tests and an extractable eye irritation 

category (491 substances). For example, Table 3 gives a 10.4% chance of a non-irritant 

evaluation given a prior Type 1 evaluation. The most probable repeat test outcome given a 

result of Type 2A or Type 2B is non-irritant. The highest reliability values in Table 3 come 

from prior negative outcomes (94% probability of future negative outcome) and severe eye 

irritation (74% probability given same class prior).

When juxtaposed to Figure 3, the similarity between Type 2B and a non-irritant outcome 

becomes more apparent: 77 out of 86 substances with multiple Draize tests and at least one 

Type 2B result also have at least one result of non-irritant. In other words, it would appear 

that the Draize test cannot reliably distinguish between these categories – something that 

should be kept in mind when evaluating the reliability of an in vitro replacement or machine 

learning approach.

3.3 Modeling

Having established that Draize results are reproducible only with some caveats, we next 

attempted to build in silico models for the Draize eye test. We decided to model eye 

irritation category by using the follow features:

1. Features of the Draize test (endpoint mean, max and reversibility values see 

Section 2.3)
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2. Other GHS hazards

3. Chemical similarity via substructure analysis.

By building a model based on features of the Draize test, we can determine whether the 

existing eye irritation classifications align with the rules given by GHS eye irritation hazard 

criteria. Modeling of Draize test results via other GHS hazards allows for consideration of 

redundant testing – if other GHS hazards have high positive or negative predictive value, 

then there is likely some potential for test reduction. Finally, analysis of Draize results via 

chemical substructures allows for visualization of the distribution of Draize types over the 

chemical universe. We should expect that sufficiently similar substances will have similar 

Draize outcomes. Cases where this hypothesis is not true may present opportunities to 

discover novel mechanisms of eye irritation or extend our understanding of the applicability 

of read-across.

3.3.1 Draize endpoint modeling—Eye irritation categories were modeled from a 

number of endpoint features as described in Section 2.3. Substances for this dataset were 

filtered from all REACH substances by selecting only those with endpoint data for every 

feature and only using studies that match ECHA’s “exp key acute eye toxicity” label and 

OECD TG 405. The resulting dataset is composed of 391 substances (Tab. 4). A larger 

dataset of 1943 substances was also constructed by relaxing the “data required for every 

endpoint” requirement and achieved similar results (85% accuracy and a similar 

Classification And Regression Tree (CART)). Unfortunately only 6 Type 2B substances 

exist in this dataset, and this class value was discarded from the options due to 

underrepresentation.

These 9+1 features (see Section 2.3) and eye irritation category given for 391 substances are 

reduced into a classification and regression tree through the simple Quinlan approach of 

attribute selection via maximum information gain (Quinlan, 2014). An ideal decision tree 

should match closely with Figure 4, which is a human-made decision tree matching GHS 

criteria.

The decision tree resulting from the Quinlan approach (built from all data) is seen in Figure 

5. This tree is in remarkable agreement with Figure 4. Differences in Figure 5 from Figure 4 

are indicated by the yellow star for Type 1. Notably, only 10 of 18 substances falling into 

this errant leaf node held category Type 1. Cornea and conjunctivae thresholds identified by 

CART are close to those derived from GHS criteria, although the learned decision tree does 

fail to identify the difference between a corneal opacity score greater than or equal to 3.0 

versus greater than or equal to 2.0.

The relatively strong reproduction of Figure 4 via decision tree learning and ECHA data 

indicates, as expected, that GHS acute eye hazard labeling is predictable algorithmically 

based on the Draize test outcomes and that our natural language based data extraction from 

ECHA is in good agreement with GHS values. It should be noted that individual animal data 

was not used in this analysis; only entire Draize tests and mean animal responses or 

maximum animal responses were applied.
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3.3.2 Modeling of Draize eye irritation outcomes from other GHS hazard 
classifications—Large datasets in ECHA dossiers can be used to identify testing 

redundancies and strategies. To evaluate redundancies within GHS categorizations, i.e., here 

whether eye irritation can be predicted from other hazards, we built a dataset of 5,629 

substances classified as “irritant” if positive for H318, H319 or H320 and “non-irritant” 

otherwise. The resulting dataset contains 1,931 Draize irritants and 3698 non-irritants. The 

dataset contains “positive”, “negative”, or unknown values for 72 GHS hazards in the 

REACH extraction. Table 5 identifies individual GHS hazard-positive predictive values and 

hazard-negative predictive values. These are constructed for datasets consisting of all 

substances with a “positive” or “negative” value for Draize testing and the given hazard.

Hazards with less than 100 positive predictions (true positives + false positives) or less than 

100 negative predictions (true negatives + false negatives) were filtered out. Notably, the 

physical hazards (H200s) and environmental hazards (H400s) are not very predictive of 

Draize outcome (with the exception of H290 “may be corrosive to metals”). Many of the 

health hazards are predictive. Of the health hazards (H300s), H302 (“harmful if 

swallowed”), H315 (“causes skin irritation”), H335 (“may cause respiratory irritation”) and 

H317 (“may cause allergic skin reaction”) all show high positive predictive values.

H312 “Harmful in contact with skin” has only an 80% positive predictive value for Draize 

hazards over 194 substances: this means 15 substances are positive for H312 and negative 

for H318, H319 and H320. Closer inspection of dossiers for three of these substances 

(ECNumbers 248-363-6, 200-858-8 and 248-363-6) reveal ECHA dossier evaluations of 

“conclusive but insufficient data for classification” for “serious eye damage/eye irritation”. 

Additionally, H318, H319 and H320 do not occur in the “hazard statements” field in these 

chemical dossiers. However, when these substances are inspected using the ECHA 

classification and labeling inventory database6, they are found to be positive for H318, H319 

or H320 – indicating a disagreement between published ECHA dossiers and the C&L 

inventory for at least a subset of substances. Given these inconsistencies, we may expect 

other misclassifications of GHS hazards in the ECHA dossiers, which may explain other 

cases of lack of concordance (e.g., H314 “causes severe skin burns and eye damage” and 

Draize endpoints). Complete access to ECHA classification and labeling data would enable 

development of improved datasets for predicting eye irritation. The unintuitive nature of 

these hazard relationships makes human misclassification inevitable.

While these inconsistencies make modeling more difficult, we can still evaluate models by 

combining GHS values to predict H318, H319 or H320. To do this, we exhaustively 

searched all possible combinations of 3 hazards, for a total of 59,640 combinations (72!/69!

*3!) and built datasets where the selected hazards had “positive” or “negative” values for 

each chemical in the subset. Decision trees were then built from these subsets with high-

positive or high-negative predictive value.

The two presented subset trees (Fig. 6) were built by Weka software using the J48 algorithm 

corresponding to the rules “H335 or H302 or H314” and “H335 or H315 or H314”. These 

6http://echa.europa.eu/information-on-chemicals/cl-inventory-database
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two decision trees resulted in balanced accuracies of 68% and 73%, which is within the 

range of accuracy of the Draize rabbit eye test itself. Noteworthy, both use inhalation 

toxicity data (“May cause respiratory irritation”), which are not typically available.

3.3.3 Modeling of Draize eye irritation outcomes from chemical structure—To 

evaluate the effectiveness of chemical structural similarity approaches for this hazard, we 

created a dataset of substances with at least one Draize study and a mapping to PubChem. 

The resulting dataset contains 929 substances, which can be found in PubChem. In Figure 7 

we see a Fruchterman Reingold layout visualization of this similarity map. The map shows 

some clustering of Draize irritants (red, orange and yellow).

Next we tested the naïve approach to similarity modeling by using k-nearest neighbors with 

k set to 1. In this approach every chemical eye irritation category is predicted via the eye 

irritation category of the closest neighbor. We evaluated the models by setting different 

thresholds for the minimum allowed similarity. A chemical, B, is only used for prediction of 

another chemical, A, if it has similarity ≥ T, where T is a threshold. Table 6 shows the results 

of this analysis including the sensitivity, specificity and balanced accuracy for predicting 

chemical eye irritant/non-irritant. Starting with a threshold of 0.7, we see a resulting 

balanced accuracy of 73% over 737 substances. As the threshold is increased we see steady 

increases in balanced accuracy, sensitivity and specificity with a corresponding drop in the 

number of substances with at least one neighbor.

These strong balanced accuracies resulting from the simple approach of KNN with k = 1 and 

Tanimoto 2D structural distance lend credence to the similarity approach for chemical 

classification in the domain of Draize eye test classification. This represents a strong support 

of read-across and (Q)SAR approaches in this area, which can reduce testing with increasing 

confidence as larger datasets begin to cover more of the chemical universe.

In our search we found no existing satisfactory (Q)SAR models for eye irritation. However, 

the accuracies demonstrated here show promise for a potential similarity-based approach for 

eye irritation.

4 Conclusions

With 9,782 Draize studies on 3,420 unique substances, we created, based on ECHA’s 

publicly available registrations, a larger Draize dataset than any publicly available database. 

The fact that the ECHA database was not optimized for such data-mining creates some 

uncertainties as many text fields are not standardized, making queries difficult. A number of 

quality controls, consistency checks, and the plausibility of the overall results give this first 

analysis strong confidence. However, the demonstrated value of these data for the scientific 

community should urge a systematic publication of the REACH data.

The first assessment addresses the prevalence of this health hazard and its sub-categories: 

34% of the substances were eye irritants, somewhat higher than suggested in an earlier 

analysis of the New Substances Database of the former ECB with 17.4% eye irritants 

(Adriaens et al., 2014) showing differences in the type of substances registered between 

1981 and 2008 and those under REACH in the initial phase, i.e., predominantly high-
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production volume substances. This is important for the development of testing strategies 

(Hartung et al., 2013; Hoffmann et al., 2005; Rovida et al., 2015). The current analysis is 

certainly biased by the tiered introduction of substances into REACH. The first two 

deadlines included substances of higher tonnage levels and suspected carcinogenic, 

mutagenic and reproductive toxicants. However, a small number of new substances already 

has been introduced.

The extensive re-testing of substances documented here (up to 90 times for the two most 

commonly tested substances, 69 substances with 45 tests) allowed a thorough analysis of the 

reproducibility of the test. They confirm the reproducibility issues already described by Weil 

and Scala in 1971; very often this problem has been belittled by stating that these studies 

were done before OECD guideline standardization and GLP. They also confirm the 

assessments by Adriaens et al. (2014) about the test’s reproducibility. Their database 

includes fewer substances, but had access to the raw data, allowing intra-assay variability 

assessment. This demonstrates the extent to which access to the full REACH datasets could 

strengthen assessments. Analysis of the individual scores used to assign the overall eye 

irritation category showed some inconsistencies and redundancies, which could be useful, 

especially if the detailed information from the non-public parts of the dossiers is made 

accessible, for a possible revision of the scoring system.

The preliminary analysis and mining of the dataset shows that there is both considerable 

predictivity from chemical structure (our analysis based on the closest chemical neighbor 

with data) and biological activity (our analysis based on other GHS classifications). Neither 

alone has adequate accuracy to supplant the Draize test, although given the reproducibility 

problems of the assay, this result might actually be contested. Here, no attempt was made to 

use the information from chemico-physical properties, dedicated in vitro assays for eye 

irritation, toxicokinetic information or biological profiling as attempted in ToxCast7 or the 

Tox218 program, all of which could likely considerably boost the predictive value of the 

knowledge-base. Follow-up research should focus on the integration of external databases 

with the ECHA data to create stronger models for eye irritation.

Making this dataset available will allow such analysis by the scientific community. The 

relatively impressive predictive value of the naïve approaches attempted here, however, 

strongly supports read-across (Patlewicz et al., 2014) and in silico approaches.
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Fig. 1. Prevalence of outcomes for substances tested with OECD TG 405 (Draize rabbit eye test) 
in REACH registrations 2008–2014
Mode outcome was used for substances with multiple OECD TG 405 studies.
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Fig. 2. 
Number of Draize rabbit eye tests per year found in REACH registrations 2008–2014
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Fig. 3. Eye irritation category endpoint scores
Built from 4,134 Draize studies where the result could be mapped to a standard Draize 

category. Box plots describe score distributions for iris, cornea, conjunctivae and chemosis 

endpoints given different Draize categories and are based on the “score” parameter for 

Draize tests. Reversibility is not considered in this analysis. Scores outside of Draize 

definitions (given in Tab. 1) are the results of incorrect inputs in ECHA dossiers.
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Fig. 4. Draize endpoint classification strategy as represented by IDRI
The flowchart shows how eye irritation classifications are made for Type 1, Type 2A, Type 

2B and non-irritant categories. Corn = cornea score, chem = chemosis score, 7 Day Reverse 

= Status of 7 day phenotype reversibility, 21 Day reverse = Status of 21 day phenotype 

reversibility. It should be noted that substances causing serious or irreversible eye damage 

(“corrosion”) that persists within 21 days post-exposure are also considered Type 1.
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Fig. 5. GHS Draize category decision tree from Draize endpoint data
Decision tree trained using CART algorithm from severity and reversibility features using 

391 substances for which eye irritation category could be defined. Note that this decision 

tree closely matches the criteria defined in GHS hazards. Cornea μ stands for the mean 

cornea score from Draize studies for a chemical, cornea max is the maximum observed 

cornea score from Draize studies for a chemical (see Section 2.3).
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Fig. 6. Decision trees built from subset analysis of hazards dataset
Subsets generated from substances with hazard classifications for all hazards in decision 

tree. These decision trees indicate strong relationships between GHS hazard classifications.
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Fig. 7. Fruchterman Reingold layout of a chemical similarity map for substances with rabbit eye 
irritation data in REACH registrations 2008–2014
929 substances with at least one Draize study and a mapping to PubChem were included. 

Chemical similarity was expressed as Jaccard (Tanimoto) index. Red = Type1, Orange = 

Type2A, Yellow = Type2B, Blue = non-irritant. Size of node is proportional to number of 

neighbors (larger nodes have more neighbors).
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Tab. 1

Description of Draize Scoring Rules

Endpoint Description Range

Cornea degree opacity and ulcerations 0–4

Iris swelling, hyperaemia 0–2

Conjunctivae redness, vessel discernibility 0–3

Chemosis swelling, lids closed/open 0–4
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Tab. 2

Repetitions of TG 405 in REACH registrations 2008–2014

Repeats Number of substances Example ECNumber

90   2 613-683-0,295-445-2

45 69 940-595-2,295-431-6

18   1 931-203-0

15   2 700-762-0,692-840-5

13 38 934-268-3,931-515-7

12   2 918-317-6,500-513-4

11   2 931-700-2,226-109-5

10   2 232-395-2,939-581-9

  9   1 267-291-6

  8 27 940-730-5,940-728-4

  7 32 940-727-9,940-726-3

  6 75 931-745-8,300-226-2

  5 56 939-578-2,939-575-6

  4 135 939-693-8,939-621-5

  3 254 939-715-6,939-688-0

  2 593 208-778-5,941-224-7

  1 2388 293-029-5,273-224-1
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Tab. 4

Confusion Matrix for Dataset 1 CART

(row predicted, column class) 1 2A Non

1 49 21 1

2A 7 121 9

Non 4 14 165

ALTEX. Author manuscript; available in PMC 2017 June 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luechtefeld et al. Page 27

Ta
b

. 5

A
ll 

ha
za

rd
 c

la
ss

if
ic

at
io

ns
 th

at
 m

ak
e 

>
 1

00
 p

os
iti

ve
 a

nd
 n

eg
at

iv
e 

pr
ed

ic
tio

ns
 o

f 
D

ra
iz

e 
ra

bb
it 

ey
e 

ou
tc

om
es

 a
s 

gi
ve

n 
by

 h
az

ar
d 

cl
as

si
fi

ca
tio

ns
 f

or
 H

31
8,

 

H
31

9 
or

 H
32

0 
in

 R
E

A
C

H
 r

eg
is

tr
at

io
ns

 2
00

8–
20

14

H
az

ar
d

P
P

V
T

P
+F

P
N

P
V

T
N

+F
N

B
A

C
To

ta
l

D
es

cr
ip

ti
on

H
29

0
0.

81
11

2
0.

69
36

27
0.

53
37

39
M

ay
 b

e 
co

rr
os

iv
e 

to
 m

et
al

s

H
30

1
0.

60
20

0
0.

67
53

39
0.

52
55

39
To

xi
c 

if
 s

w
al

lo
w

ed

H
30

2
0.

61
99

1
0.

72
45

50
0.

61
55

4
H

ar
m

fu
l i

f 
sw

al
lo

w
ed

H
31

1
0.

59
15

3
0.

68
46

82
0.

52
48

35
To

xi
c 

in
 c

on
ta

ct
 w

ith
 s

ki
n

H
31

2
0.

80
19

4
0.

69
46

40
0.

54
48

34
H

ar
m

fu
l i

n 
co

nt
ac

t w
ith

 s
ki

n

H
31

4
0.

67
50

8
0.

70
50

30
0.

57
55

38
C

au
se

s 
se

ve
re

 s
ki

n 
bu

rn
s 

an
d 

ey
e 

da
m

ag
e

H
31

5
0.

68
98

8
0.

74
45

53
0.

64
55

41
C

au
se

s 
sk

in
 ir

ri
ta

tio
n

H
33

0
0.

63
10

2
0.

68
33

06
0.

52
34

08
Fa

ta
l i

f 
in

ha
le

d

H
33

1
0.

64
17

6
0.

69
32

31
0.

54
34

07
To

xi
c 

if
 in

ha
le

d

H
33

2
0.

51
42

6
0.

69
29

87
0.

55
34

13
H

ar
m

fu
l i

f 
in

ha
le

d

H
33

4
0.

61
12

2
0.

69
20

16
0.

54
21

38
M

ay
 c

au
se

 a
lle

rg
y 

or
 a

st
hm

a 
sy

m
pt

om
s…

H
33

5
0.

80
36

3
0.

71
40

69
0.

59
44

32
M

ay
 c

au
se

 r
es

pi
ra

to
ry

 ir
ri

ta
tio

n

H
34

1
0.

53
11

8
0.

68
48

57
0.

51
49

75
Su

sp
ec

te
d 

of
 c

au
si

ng
 g

en
et

ic
 d

ef
ec

ts

H
41

2
0.

52
58

3
0.

68
46

77
0.

54
52

60
H

ar
m

fu
l t

o 
aq

ua
tic

 li
fe

 w
ith

 lo
ng

-l
as

tin
g…

PP
V

 =
 p

os
iti

ve
 p

re
di

ct
iv

e 
va

lu
e,

 T
P+

FP
 =

 tr
ue

 p
os

iti
ve

s 
+

 f
al

se
 p

os
iti

ve
s,

 N
PV

 =
 n

eg
at

iv
e 

pr
ed

ic
tiv

e 
va

lu
e,

 T
N

 +
 F

N
 =

 tr
ue

 n
eg

at
iv

es
 +

 f
al

se
 n

eg
at

iv
es

, B
A

C
 =

 b
al

an
ce

d 
ac

cu
ra

cy
. T

ot
al

 =
 th

e 
to

ta
l n

um
be

r 
of

 
su

bs
ta

nc
es

 th
at

 h
ad

 b
ot

h 
th

e 
gi

ve
n 

ha
za

rd
 a

nd
 H

31
8,

 H
31

9,
 H

32
0.

ALTEX. Author manuscript; available in PMC 2017 June 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luechtefeld et al. Page 28

Ta
b

. 6
K

-n
ea

re
st

 n
ei

gh
bo

r 
ap

pr
oa

ch
 w

it
h 

K
=1

 fo
r 

su
bs

ta
nc

es
 w

it
h 

ra
bb

it
 e

ye
 ir

ri
ta

ti
on

 d
at

a 
in

 R
E

A
C

H
 r

eg
is

tr
at

io
ns

 2
00

8–
20

14

92
9 

su
bs

ta
nc

es
 w

ith
 a

t l
ea

st
 o

ne
 D

ra
iz

e 
st

ud
y 

an
d 

m
ap

pi
ng

 to
 P

ub
C

he
m

 w
er

e 
in

cl
ud

ed
. W

ek
a’

s 
Ik

B
 a

lg
or

ith
m

 w
as

 u
se

d 
w

ith
 k

 s
et

 to
 1

 a
nd

 d
if

fe
re

nt
 

th
re

sh
ol

ds
 s

el
ec

te
d 

fo
r 

m
in

im
um

 J
ac

ca
rd

 (
Ta

ni
m

ot
o)

 s
im

ila
ri

ty
 r

eq
ui

re
d 

fo
r 

ch
em

ic
al

 p
re

di
ct

io
n.

T
Su

bs
ta

nc
es

Se
ns

it
iv

it
y

T
P

+F
N

Sp
ec

if
ic

it
y

T
N

+F
P

B
A

C

0.
7

73
7

0.
64

24
8

0.
81

48
9

0.
73

0.
72

5
70

3
0.

64
23

8
0.

81
46

5
0.

73

0.
75

64
1

0.
65

21
5

0.
83

42
6

0.
74

0.
77

5
60

4
0.

66
19

7
0.

85
40

7
0.

75

0.
8

54
5

0.
66

16
9

0.
85

37
6

0.
76

0.
82

5
48

8
0.

67
14

2
0.

86
34

6
0.

77

0.
85

41
6

0.
68

11
4

0.
87

30
2

0.
7

0.
87

5
35

1
0.

71
87

0.
89

26
4

0.
80

0.
9

27
2

0.
78

63
0.

91
20

9
0.

85

0.
92

5
19

7
0.

77
44

0.
92

15
3

0.
84

0.
95

13
5

0.
86

28
0.

95
10

7
0.

91

0.
97

5
41

1.
00

5
1.

00
36

1.
00

T
 =

 th
re

sh
ol

d,
 th

e 
m

in
im

um
 p

er
ce

nt
 r

eq
ui

re
d 

to
 c

on
si

de
r 

a 
ch

em
ic

al
 a

 n
ei

gh
bo

r. 
Su

bs
ta

nc
es

 =
 th

e 
nu

m
be

r 
of

 s
ub

st
an

ce
s 

w
ith

 a
t l

ea
st

 o
ne

 n
ei

gh
bo

r 
m

ee
tin

g 
th

e 
th

re
sh

ol
d 

re
qu

ir
em

en
t. 

T
P 

+
 F

N
 =

 tr
ue

 
po

si
tiv

es
 +

 f
al

se
 n

eg
at

iv
es

, T
N

 +
 F

P 
=

 tr
ue

 n
eg

at
iv

es
 +

 f
al

se
 p

os
iti

ve
s,

 B
A

C
 =

 b
al

an
ce

d 
ac

cu
ra

cy
.

ALTEX. Author manuscript; available in PMC 2017 June 07.


	Summary
	1 Introduction
	2 Methods
	2.1 Database construction
	2.2 Reproducibility assessment
	2.3 Draize endpoint modeling
	2.4 Decision tree construction
	2.5 K-nearest neighbor

	3 Results and discussion
	3.1 Analysis of Draize scoring
	3.2 Reproducibility
	3.3 Modeling
	3.3.1 Draize endpoint modeling
	3.3.2 Modeling of Draize eye irritation outcomes from other GHS hazard classifications
	3.3.3 Modeling of Draize eye irritation outcomes from chemical structure


	4 Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Tab. 1
	Tab. 2
	Tab. 3
	Tab. 4
	Tab. 5
	Tab. 6

