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ABSTRACT

In this paper, we propose a functional view on the
in silico prediction of transcriptional regulation. We
present a method to predict biological functions regu-
lated by a combinatorial interaction of transcription
factors. Using a rigorous statistic, this approach
intersects the presence of transcription factor bind-
ing sites in gene upstream sequences with Gene
Ontology termsassociatedwith thesegenes.Wedem-
onstrate that for the well-studied set of skeletal mus-
cle-related transcription factors Myf-2, Mef and TEF,
the correct functions are predicted. Furthermore,
starting from the well-characterized promoter of a
gene expressed upon lipopolysaccharide stimula-
tion, we predict functional targets of this stimulus.
These results are in excellent agreement with micro-
array data.

INTRODUCTION

The regulation of transcription is a major mechanism control-
ling the spatial and temporal activity of genes, thereby gov-
erning the organization of biological processes in eukaryotic
organisms. A complex signaling machinery transduces
external and internal stimuli to the activities of transcription
factors which are the major means of transcriptional regula-
tion. Through this, eukaryotic cells are equipped to adapt
adequately to the environment and to orchestrate events
like proliferation and differentiation. In contrast to prokar-
yotes, where transcriptional regulation can be understood in
terms of induction by single factors, the regulation in eukar-
yotes is mainly carried out by sophisticated interactions of
multiple transcription factors. Additionally, the regulatory
sites are distributed over large regions of the genome including
intronic sequences (1,2). It is rare that individual binding sites
are strongly conserved, only the combinatorial action gives
rise to a specific control. Therefore, understanding complex

gene regulatory networks in higher organisms is an extremely
difficult task.

Considering the importance of transcriptional regulation
and the vast amount of genomic data available, automated
inference of the gene regulatory network is a major challenge
in the post-genomic era. However, a straight forward search
for transcription factor binding sites represented by consensus
sequences or weight matrices leads to the curse of false
positives. Wasserman and Sandelin (3) estimate that a simple
search for binding sites results in only one functional site
per 1000 predictions. Consequently, other available bio-
logical properties of gene regulation have to be exploited to
improve computational predictions. For instance, groups of
co-regulated genes from expression profiling (4,5), phylo-
genetically conserved regions (6,7) and the clustering of bind-
ing sites (8) are studied. Nevertheless, the specificity of
binding site prediction is still unsatisfactory (3) and expensive
experimental studies such as ChIP on chip experiments
(2,9,10) are necessary.

In this paper, we propose a functional view on the gene
regulatory network by utilizing the growing systematic rep-
resentation of expert knowledge compiled in the Gene Onto-
logy (11). We use public software to extract upstream regions
of genes (12) and to predict clusters of binding sites (8). Then
the genes with a common cluster in their upstream regions are
searched for statistical association with annotations from the
Gene Ontology. For this purpose, a novel program GOSSIP
(Gene Ontology Significance Statistical Interpretation Pro-
gram; N. Bl€uuthgen, K. Brand, B. Cajavec, M. Swat, H. Herzel
and D. Beule, submitted for publication) that takes precisely
multiple sample correction into account is used. This approach
allows prediction of biological functions controlled by com-
binatorial action of transcription factors. In a preceding paper,
we have demonstrated that this approach works for predicting
the functional regulation of both a single factor and a com-
bination of two well-characterized factors (13). Here, we
address the inference of more complex, combinatorial regu-
lation by several transcription factors. First, we test and verify
our algorithm using a well-studied set of transcription factors
that co-regulate skeletal muscle gene expression (14). It turns
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out that without using a priori knowledge about the functional
targets of these factors, we can predict their function correctly.
Subsequently, we show that our approach can also bridge the
gap between detailed studies of the regulation of single genes
and genome-wide analysis. Fessele et al. (15) have unveiled
the transcription factors that differentially regulate the expres-
sion of the chemokine RANTES upon lipopolysaccharide
(LPS) stimulation in monocytes. We apply our framework
to this set of transcription factors and compare the predicted
functions with profiles of publicly available microarray data.
The results show a remarkable similarity, although the micro-
array data have been generated in a different organism and
after a long stimulation, allowing also indirect regulation.

MATERIALS AND METHODS

Algorithm

The analysis presented in this paper combines two algorithms
(see Figure 1). First, we perform a genome-wide search of the
genes that are potentially regulated by the factors under con-
sideration. For this purpose, the Cluster-Buster program (8) is
applied to predict clusters of transcription factor binding sites
in upstream regions of the genes. To avoid problems arising
from subjective parameter tuning, we use the default para-
meters of the program.

Second, we test whether the genes with a predicted cluster
are associated with biological processes. This is performed by
GOSSIP (N. Bl€uuthgen, K. Brand, B. Cajavec, M. Swat,
H. Herzel and D. Beule, submitted for publication) using
Gene Ontology annotations (11). This algorithm tests each
term in the Gene Ontology for enrichment in the annotations
of genes from a test group compared to those from a reference
group. Here, the test group contains the genes for which
Cluster-Buster reports a cluster of binding sites. The reference
group is composed of all genes under study. Using the one-
sided Fisher’s exact test, which is based on the hypergeometric
distribution, GOSSIP calculates a P-value for the null hypo-
thesis that the annotations for the test group are sampled ran-
domly from the reference group. Since this test is performed
on all terms, problems arising from multiple testing have to be
taken into account. Therefore, we decided not to use single-test
P-values but to take the false discovery rate (FDR) as an
adequate measure of significance. The FDR(a) quantifies
the expected number of false discoveries <NFD(a)> in

relation to the total number of positives NP(a) at a single
test P-value threshold a:

FDR að Þ ¼ hNFD að Þi
NP að Þ ‚ 1

Using the hypergeometric distribution, the expected number
of false discoveries hNFD(a)i can be calculated for each P-
value threshold a by

hNFD að Þi ¼
X

i

Xpf j‚ Zi‚ T‚ Nð Þ<a

j

h j‚Zi‚T‚Nð Þ‚ 2

where the first sum runs over all terms i from the Gene On-
tology, and in the second sum the probability of j genes being
annotated with term i is summed up as long as the one-sided
Fisher’s exact test pf ( j, Zi, T, N ) does not exceed a. Zi denotes
the number of genes annotated with the term i in the reference
group. T and N denote the number of genes in the test group
and in the reference group, respectively. h( j, Zi, T, N ) represents
the hypergeometric distribution:

h j‚Zi‚T‚Nð Þ ¼ Zi!T! N�Zið Þ! N�Tð Þ!
N!j! Zi�jð Þ! T�jð Þ! N�Zi�T þ jð Þ! : 3

Within this paper, we set the threshold a such that the FDR is
kept below 5%. Further details and the GOSSIP software
program are available at the website http://itb.biologie.hu-
berlin.de/~nils/gossip/.

Data preparation

For 16 032 human UniGene clusters, we extracted sequences
upstream of the transcription start sites reported by Ensembl
(16). We found 15 362 unique upstream regions since several
UniGene clusters pointed to the same genes in Ensembl. We
treated the duplicates as single genes and joined their Gene
Ontology annotations. We tested sequences of lengths 250,
500, 750, 1000, 1250, 1500, 2000 upstream of the TSS
and found that using 1000 bp showed terms with the lowest
P-values (see Supplementary Figure S2), and other lengths
yielded no additional terms. This is in agreement with the
estimate by Dieterich et al. (17) that the majority of promoters
should overlap with these regions.

The Gene Ontology defines a hierarchical controlled
vocabulary to annotate genes. It contains three branches:
biological process, molecular function, cellular location. We
limited our analysis to the branch describing biological pro-
cesses. The annotations from the Gene Ontology were
assigned to the genes using HomGL (12). Each annotation
implies a series of more general annotations upward in the
hierarchy of the Gene Ontology, which we also take into
account.

In this paper, we analyze two sets of transcription factors.
The first set consists of transcription factors involved in skele-
tal muscle-specific gene expression. It is represented by
positional frequency matrices constructed from in vitro meas-
urements (for Mef-2, Myf and SRF) and from genes that
are not muscle specific (for Sp-1 and TEF) (14). In the second
part, we analyze combinations of transcription factors that
regulate the RANTES/CCL5 promoter in monocytes upon

putative promoters

source of information algorithm

positional frequency 
matrices 

Cluster-Buster

GOSSIPGene Ontology
predicted
biological 
processes

output

Figure 1. Data flow in our method: Using the Cluster-Buster algorithm, we
search for clusters of binding sites in putative promoter regions. The list of
genes having a cluster in their promoter are then passed to GOSSIP, which
detects association with biological processes using the Gene Ontology. The
significantly associated processes are reported.
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LPS stimulation (15,18). This set consists of the transcription
factors AP1, CEBP, CREB, ETS, NF-kB (p50 and p65) and
Sp-1. It is represented by the Transfac matrices (19) with
accession numbers: V$AP1_Q6_01, V$CEBP_Q2, V$CREB_
Q4, V$ETS_Q4, V$NFKAPPAB50_01, V$NFKAPPAB65_01
and V$SP1_Q6_01. Additionally, we evaluate the biological
validity of the result for the second set by analyzing a microarray
data set for LPS-stimulated monocytes generated by the Alliance
for Cellular Signaling, available at the signaling gateway micro-
array data center (http://www.signaling-gateway.org/data/micro/
cgi-bin/micro.cgi?expt=operon), with accession numbers:
MAE040216Z53, MAE040217Z53, MAE040218Z53,
MAE040216Z63, MAE040217Z63 and MAE040218Z63.
These are expression profiles of mouse monocytes 4 h after
LPS-treatment, including dye-swap and three replications.
With GOSSIP we obtain biological profiles for each
microarray. In this analysis, the background set consists of
the significantly expressed genes (‘isWellAboveBG’ for both
channels) and the set of regulated genes contains genes whose
P-value was smaller than 0.01 (‘logRatioPValue’ < 0.01).
Both sets are mapped to UniGene clusters with HomGL to
avoid multiple entries per gene in the lists, since this could
bias the analysis. The profiles for all six microarrays show
identical terms associated with the up-regulated genes and
none with the down-regulated genes.

RESULTS

Processes regulated by muscle transcription factors

Wasserman and Fickett (14) have studied transcription factor
families associated with skeletal muscle-specific gene expres-
sion. Having identified transcription factors regulating skeletal
muscle-specific genes, the authors have constructed a set con-
taining five positional frequency matrices based on binding
sites (Mef-2, Myf, SRF) selected in vitro or on promoters that
do not play any role in the muscle-specific expression (Sp-1,
TEF). The promoters of the skeletal muscle-specific genes
were intentionally not used to generate the matrices. Applying
our method to all five matrices yields significantly associated
biological processes: muscle development (FDR = 0.003),
muscle contraction (FDR = 0.008) and B-cell activation
(FDR = 0.017). Since the Sp-1 factor is involved in the regu-
lation of many other functions, we performed a detailed study
with all 26 matrix subsets containing at least two matrices out
of the original five matrices (results are shown in Supplement-
ary Table S1). In 12 cases, no Gene Ontology term was found
significantly overrepresented. The set consisting of Mef-2,
Myf and TEF matrices was the most specific for muscle con-
traction. Also the term striated muscle contraction was
reported with the highest significance here. The results for
these matrices are shown in Figure 2. Interestingly, smooth
muscle contraction was not significant in any of the analyzed
sets. This finding independently confirms that the selected
transcription factors may contribute to skeletal muscle-specific
expression (14). Most subsets containing the Mef-2 matrix
resulted in terms related to B-cell activation. Transcription
factors of the Mef-2 family are differentially expressed
in B-cells and these cells have Mef-2C-containing, Mef-2-
specific DNA binding complexes, suggesting a possible role
for Mef-2C activity in B-cells (20).

From the response of an individual gene upon
LPS induction to a functional profile

The chemokine RANTES/CCL5 plays diverse roles in the
pathology of inflammatory diseases (15). It is a chemoattract-
ant for T-cells and monocytes, rapidly produced in monocytes
after stimulation with LPS. LPS is a cell-wall component of
Gram-negative bacteria. Fessele et al. (15) have investigated
the regulation of RANTES/CCL5 expression upon LPS stimu-
lation in human monocytes. They have found that CREB,
CEBP, p50/p65, Sp-1, ETS and AP1 transcription factors
bind the RANTES/CCL5 promoter in monocytes differently
in untreated and LPS-stimulated cells. Additionally, the
authors have built in silico promoter models, and have
found four genes matching their model (21).

We assume that more LPS-induced genes are regulated by
the same factors in monocytes. If this hypothesis holds, we
could find functions that are regulated upon LPS stimulation in
monocytes by applying our framework to this set of transcrip-
tion factors. The resulting profile of this set of transcription
factors is shown in Figure 3a, statistical details can be found in
Supplementary Table S2. We find several biological processes
to be significant, including response to stress, and response to
biotic stimulus as well as chemotaxis and cell communication.
All of them can play a role in the response of monocytes after
being exposed to bacterial LPS. The terms response to stress
and response to biotic stimulus are more general terms upward
of inflammatory response in the hierarchy of the Gene Onto-
logy. Cell communication includes the secretion of chemo-
kines and e.g. chemokine RANTES is up-regulated upon LPS
stimulation. Also, a regulation of genes involved in chemo-
taxis seems plausible, since the macrophages will move
towards the bacteria and secrete chemokines to attract other
macrophages.

Next, we compare our predictions with microarray data
obtained by the Alliance for Cellular Signaling (AfCS)
from mouse monocytes 4 h after LPS stimulation. Profiling
the list of up-regulated genes with GOSSIP yields a similar
pattern of enriched Gene Ontology terms (see Figure 3b) for all
six microarrays analyzed. Importantly, we find all of our pre-
dicted target functions also in the microarray data except cell
communication and cell adhesion. It is not surprising that we
find additional functions in the microarray data since we
started our analysis from the regulation of only one gene
(RANTES). It is likely that there are also other pathways
and transcription factors involved in the response after LPS
treatment than those which lead to the expression of RANTES.
The expression profiles are expected to include the response
governed by other pathways leading to more terms.

Next, investigations were made into whether the genes pre-
dicted to be regulated by the selected transcription factors are
indeed up-regulated in the microarray experiment. Also, we
investigated whether filtering with the significant Gene Onto-
logy terms improves the prediction of target genes. To address
this, we defined three sets of genes: genes which are present on
the microarray, those which have a predicted cluster of binding
sites in their upstream regions, and those which are addition-
ally involved in one of the predicted biological processes. For
these three sets of genes, we compute the distribution of fold-
changes in the microarray experiment, as shown in Figure 4.
On the entire microarray, 216 of the 11 617 genes (1.8%) have
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Figure 2. Results for the set of transcription factors Mef-2, Myf and TEF, known to regulate the expression of muscle-specific genes (14). The black and gray boxes
correspond to significantly overrepresented biological processes of the Gene Ontology within the predicted target genes [thresholds of FDR< 0.01 and FDR< 0.05,
respectively]. The diamond shows the root node for biological processes. (a) An illustration of the complexity of the analysis: overrepresented terms drawn in the
context of all 655 terms assigned to the genes with predicted clusters of binding sites. (b) A fragment emphasizing all significantly overrepresented terms.

Nucleic Acids Research, 2005, Vol. 33, No. 1 275



a fold change of 2 or higher. Among the 1144 genes from the
microarray that have a predicted cluster of binding sites in their
upstream regions, 35 genes (3%) are up-regulated (significant
enrichment, P < 0.005 using c2-test). After considering these

genes which are additionally annotated with the predicted
Gene Ontology terms, the specificity increases further
(P < 0.02). Out of the 360 genes which match this category,
18 genes (5%) have a fold-change higher than 2. The 784 genes
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Figure 3. Black and gray boxes indicate the significantly associated biological processes [FDR< 0.01 and FDR< 0.05, respectively] with (a) the set of transcription
factors CREB, CEBP, p50/p65, Sp-1, ETS and AP1 as predicted by our method; (b) up-regulated genes upon LPS stimulation in monocytes (microarray data from the
alliance for cellular signaling).
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that do not pass the last filtering step do not differ significantly
from the overall distribution (P � 0.6). These results show that
a portion of the predicted target genes is up-regulated, and that
the intersection with the Gene Ontology significantly improves
this ratio. This confirms our initial assumption that many genes
respond to LPS through regulation by the same set of
transcription factors. Additionally, it shows that the usage
of functional annotations can improve the specificity of the
genome-wide identification of transcription factor targets. It
is particularly interesting, since our prediction has been
performed on human sequences and the experiment has been
done in mouse monocytes, which reflects a high degree of
evolutionary conservation.

Specificity and sensitivity

To assess the specificity of our results, we compared them to
results obtained from random sets of positional frequency
matrices. These random sets were constructed by permuting
the positions of the matrices, thereby preserving their informa-
tion content and GC-content. The analysis of 1200 sets of
permuted muscle-related matrices Mef-2, Myf and TEF
yielded 76 sets (6.3%) with one or more significant terms.
Interestingly, none of the permuted data sets yielded results
related to muscle development or B-cell activation. On aver-
age, we found 0.46 false discoveries with P < 0.0008 (this is
the P-value of the least significant term lymphocyte differen-
tiation). Considering the eight significant terms in the original
data set, this corresponds to an FDR of 5.8%.

For the transcription factors mediating the response of the
LPS-stimulus, we performed a similar analysis: 545 (27%) out
of 2000 sets of permuted matrices were associated with at least
one significant term and a total of 2231 terms were significant.
However, care must be taken in interpreting these results, since
the set contains factors recognizing sites with high-GC-content
(Sp-1, NF-kB p50). Although Cluster-Buster uses a back-
ground model that takes GC-variation into account, such

factors prefer sites in GC-rich upstream regions. This affects
the analysis since these regions themselves are associated with
certain processes. The 10% of genes having the highest GC-
content in their upstream regions are significantly associated
with 35 terms describing processes like development/neuro-
genesis, regulation of transcription, ion transport, phosphor-
ylation and signal transduction (see Supplementary Figure S1).
From the significant terms reported for the permuted matrices,
1725 (77%) were identical to the terms associated with GC-
rich upstream regions, on average each of the terms occurred
in 54 permuted sets. Interestingly, the terms which were not
associated with GC-rich upstream regions were reported in
only 1.8 sets on average. Therefore, for a correct interpreta-
tion, the composition of the positional frequency matrices
must be taken into account, as GC-rich matrices can induce
more false positives. In such cases, an analysis of permuted
matrices can be used to find the expected number of false
discoveries. However, the significant terms for the original
set of LPS-associated matrices have no significant overlap
with those terms that are associated with GC-rich promoters.
Furthermore, they are rarely reported in the permutation ana-
lysis: in four sets (cell communication), in two sets (taxis,
chemotaxis), once (response to biotic stimulus), and in no
set (response to stress, cell adhesion).

The lack of functional data for combinatorial gene regula-
tion in higher eukaryotes makes it difficult to construct a true
positive set, and, consequently, to estimate the sensitivity of
our analysis. However, there are promoters with clusters
of binding sites recognized by the same factor, e.g. clusters of
E-boxes found in the promoters of circadian clock genes (22).
These clusters can be specific enough to unveil their functional
targets. For example, clusters of binding sites for the transcrip-
tion factor E2F can clearly be associated with the S-phase of
the cell-cycle (13). Therefore, profiling of single factors might
provide a rough estimate of the sensitivity. Applying our
method to the 78 matrices for mammalian factors from Jaspar
(23) and human upstream regions, we found 20 significant
functional profiles with 142 terms in total. As we do not
know the true functions, we estimate the number of false
profiles by permutation analysis. Here we found on average
0.9 profiles with 4.3 terms. Given these numbers, we estimate
that about 19 factors out of the 78 factors under study can be
correctly associated with their functional targets. Since it is not
known which fraction of the 78 transcription factors exhibit
clusters of binding sites in their target genes, this number
cannot be translated directly into a specificity.

Many terms of the Gene Ontology, especially the more
specific terms, are annotating a few genes only. For example,
three genes are annotated with the term isotype switching in the
set of 15 362 unique upstream regions. In the example of the
Mef-2/Myf/TEF set of transcription factors Cluster-Buster
detects clusters of binding sites in 499 out of the 15 362
upstream regions. All three genes that describe isotype switch-
ing are among these 499 genes. The P-value of such a coin-
cidence is 0.00012 (Fisher’s exact test), and after multiple
testing the FDR is 0.017. This demonstrates that terms that
annotate only few genes can be significant. As long as
the assumption that the false positive genes predicted by
the Cluster-Buster analysis scatter randomly with respect to
functional association holds, the multiple-testing correction
takes the number of annotations into account.
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Figure 4. Normalized cumulative histograms of mean fold changes in the
microarray data set for all genes (open bars), genes where Cluster-Buster
detected a cluster of binding sites (gray bars) and after additional filtering
with Gene Ontology (closed bars).
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DISCUSSION

The availability of whole-genome sequences and the growing
systematic annotations like the Gene Ontology provide the
means for more function-oriented data mining beyond the
level of single genes. In this paper, we propose an approach,
which allows the inference of biological functions regulated
by a combinatorial interaction of transcription factors in silico.
Contrary to other widespread techniques, our method does not
intend to predict which factors control genes of similar
expression profiles. Instead our search only requires a set of
positional frequency matrices representing transcription fac-
tors to predict their biological function in silico. First, using
Cluster-Buster, we predict a list of potential target genes for a
set of transcription factors. Afterwards, a rigorous statistical
test for association with biological processes implemented in
GOSSIP is applied to all biological processes provided by the
Gene Ontology. Therefore, the search is not biased by any
prior knowledge related to the factors and gives a chance to
detect novel regulatory associations.

The well-studied examples of muscle-related transcription
factors presented in this paper illustrate the method’s utility.
As expected, the clusters of sites for the muscle transcription
factors are enriched significantly with terms that are skeletal
muscle specific. Our method suggests that Mef-2 plays a major
role in the context of B-cell activation, which is in agreement
with the literature. Notably, no tuning of parameters was
necessary within these studies.

Our approach bridges the gap between detailed studies of
single promoters and genome-wide approaches. The combin-
atorial action of transcription factors found to control the gene
RANTES was used to predict the regulated functions upon
LPS stimulation. The predicted functions show a remarkable
agreement with a profile of differentially expressed genes after
LPS stimulation in mouse monocytes.

Additionally, the approach provides a gene list supporting
the evidence of the reported enriched processes. This gene list
can be understood as the cross-section of the genes regulated
by the studied factors and genes annotated with at least one of
the overrepresented terms. Owing to the filtering property of
the cross-section, the final gene list has less false predictions
than the primary list of potentially regulated genes, as we have
validated with microarray data.

From analysis of random data sets consisting of permuted
matrices, we estimate that about 5% of the terms reported to be
associated with the targets of transcription factors are chance
predictions. This analysis has also shown that the method is
less specific in the case when the GC-content of the positional
frequency matrices is high, because there are several terms
associated with GC-rich upstream regions. If this is the case,
then the results have to be interpretated with care, and a per-
mutation analysis can help to estimate the significance. Owing
to the lack of true positive data sets, the estimation of the
sensitivity is problematic. From studying clusters of the
same binding sites for single mammalian transcription factors,
we estimate that our method successfully associates biological
processes with clusters of transcription factor binding sites in
more than 25% of the cases.

Several sophisticated algorithms have been developed to
predict regulatory elements in higher eukaryotes. Although
they use additional information like expression profiles and

phylogenetic footprinting, the number of false predictions
remains high. Our paper is not devoted to predicting the
regulation of a single gene, but aims to integrate different
sources of genome-wide information. It shows that with
advanced prediction programs such as Cluster-Buster and
the expert knowledge represented by the Gene Ontology,
the tools are now in hand to infer regulatory complexities
when a rigorous statistic is applied. This genome-wide ap-
proach to transcription regulation allows the prediction of
functions regulated by the combinatorial action of transcrip-
tion factors. Additionally, it can filter the list of potential target
genes to reduce the number of false discoveries.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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