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Abstract

Recent evidence has shown a rhythmic modulation of perception: prestimulus ongoing electroencephalography
(EEG) phase in the 6 (4—8 Hz) and « (8—-13 Hz) bands has been directly linked with fluctuations in target detection.
In fact, the ongoing EEG phase directly reflects cortical excitability: it acts as a gating mechanism for information
flow at the neuronal level. Consequently, the key phase modulating perception should be the one present in the
brain when the stimulus is actually being processed. Most previous studies, however, reported phase modulation
peaking 100 ms or more before target onset. To explain this discrepancy, we first use simulations showing that
contamination of spontaneous oscillatory signals by target-evoked ERP and signal filtering (e.g., wavelet) can
result in an apparent shift of the peak phase modulation towards earlier latencies, potentially reaching the
prestimulus period. We then present a paradigm based on linear systems analysis which can uncover the true
latency at which ongoing EEG phase influences perception. After measuring the impulse response function, we
use it to reconstruct (rather than record) the brain activity of human observers during white noise sequences. We
can then present targets in those sequences, and reliably estimate EEG phase around these targets without any
influence of the target-evoked response. We find that in these reconstructed signals, the important phase for
perception is that of fronto-occipital ~6 Hz background oscillations at about 75 ms after target onset. These
results confirm the causal influence of phase on perception at the time the stimulus is effectively processed in the
brain.
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When investigating the relationship between ongoing electroencephalography (EEG) oscillations and per-
ception in humans, most studies report a peak influence of the EEG phase before stimulus onset. However,
we should also be able to measure these effects poststimulus, when the target is actually processed by the
brain. First, we use simulations to show that a combined influence of the target-evoked potential and
filtering can explain the lack of poststimulus phase modulation in typical studies. Crucially, we then
introduce a paradigm to uncover the true latency at which phase influences perception. The white noise
paradigm allows us to model background oscillations without target-evoked potentials. For the first time, we
Kshow that a 6-band ongoing oscillation influences perception ~75 ms after target onset. /
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Introduction that our brain relies on a rhythmic sampling of the input.
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5-15 times a second (VanRullen, 2016b; VanRullen and
Koch, 2003). At the neuronal level, this is realized through
a biasing of the neuronal firing by local field potential (LFP)
phase in various frequency bands (Fries et al., 2002;
Jacobs et al., 2007). This results in periodic fluctuations of
the excitability of the cortex (Fries, 2005; Lakatos et al.,
2008): spikes in sensory cortices are more likely to occur
at a given phase of LFP «a oscillations than at the opposite
phase (Haegens et al., 2011; Haegens et al., 2015).

At the global level, this relationship between excitability
and phase has been studied using transcranial magnetic
stimulation (TMS) and electroencephalography (EEG): an
illusory percept (a “phosphene”) was most likely to occur
when the TMS pulse was applied at a certain phase of the
ongoing EEG oscillation than at the opposite phase
(Dugué et al., 2011). Moreover, ongoing EEG oscillations
have also been linked with visual perception: for example,
the ~7 Hz ongoing oscillation phase over fronto-central
channels could account for 16% of the variability in the
detection of near-perceptual threshold peripheral targets
(Busch et al., 2009). Various studies have related ongoing
EEG phase to behavioral and perceptual outcome using
near-perceptual threshold target detection with attentional
manipulation (Busch and VanRullen, 2010) or without it
(Nunn and Osselton, 1974), using contour integration tasks
at perceptual threshold (Hanslmayr et al., 2013), using su-
prathreshold stimuli detection (Callaway and Yeager, 1960;
Mathewson et al., 2009), using eye-movement initiation
(Drewes and VanRullen, 2011) and mislocalization (McLel-
land et al., 2016) or using a temporal illusion (Chakravarthi
and VanRullen, 2012). Crucially, most of these experiments
find the effects of the ongoing 6 and/or a-phase during the
prestimulus period, sometimes peaking even up to 200 ms
before stimulus onset (for a review, see VanRullen, 2016b).

Superficially, this prestimulus effect might seem coun-
ter intuitive: the critical phase for perception should be the
one present in the cortex during stimulus processing. If
oscillatory signals are consistent over time, this phase
influence may of course be visible several hundred of
milliseconds before, but why does it vanish as stimulus
onset approaches? The event-related potential (ERP)
evoked after target presentation could be causing this
seemingly contradictory finding: this relatively high-amp-
litude signal with similar phase values on every trial is
likely to obscure any difference in background oscillatory
phase of perceived and unperceived trials that would be
present after stimulus onset, and thus apparently “push
back” in time our ability to detect any such phase differ-
ence. This is especially true when considering window-
based time-frequency analysis methods (a necessary
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step in oscillatory phase analysis), which will smear the
effect in time (Lakatos et al., 2005; VanRullen, 2011,
2016a; Hanslmayr et al., 2013). Can we overcome these
biases, and uncover the exact latency at which the phase
of ongoing EEG oscillations modulates perception?

First, we use simulations to control the exact timing and
oscillatory frequency at which a phase modulation of
perceptual outcome is inserted into an artificial EEG da-
taset. We then assess the latency at which a significant
phase difference between two conditions can be de-
tected, and verify that this latency can be vastly underes-
timated.

Secondly, we introduce the white noise (WN) paradigm,
based on linear-systems analysis (Marmarelis and Mar-
marelis, 1978) and reverse correlation methods (Ringach
and Shapley, 2004), which are used to characterize the
systematic relationship between visual stimulation and
brain response, i.e., the impulse response function (IRF).
This approach has been applied to EEG to measure
evoked potentials (VESPA; Lalor et al., 2006) or to reveal
“perceptual echoes” (VanRullen and Macdonald, 2012).
Once extracted, a simple convolution with these IRFs can
be used to model the brain’s EEG response to any new
WN sequence presented (Ringach and Shapley, 2004).
Within these new WN sequences, we also embedded
near-perceptual threshold targets, which had a medium
gray luminance level with the same properties as any
other frame in the sequence. Accordingly, they did not
affect the convolution result. Thus, we effectively removed
the target-evoked response from our signal, and only mod-
eled the background oscillations. Therefore, we could mea-
sure the real latency at which this background oscillatory
phase impacts visual perception.

Materials and Methods

Measuring phase differences

Both the simulation and the experimental paradigm
relied on quantifying the phase difference between two
conditions, whether simulated or based on the actual
behavioral outcome of human observers. To this end, we
used the phase opposition sum (POS) measure (VanRul-
len, 2016a), which relies on the intertrial phase clustering
(ITPC, also phase locking value or factor; Tallon-Baudry
et al., 1996; Lachaux et al., 1999) and is computed as
follows:

ITPC,, = ‘ % > et
k=1

The ITPC is, for a given time point t, and frequency of
interest f, the norm of the complex average across n trials
of the vector with unit length and phase ¢. Consequently,
the POS (VanRullen, 2016a) was computed as the sum of
the ITPC for each condition corrected by subtracting the
ITPC for the combined conditions, as follows:

POS = ITPC, + ITPC, — 2ITPC,,

Theoretically, the POS takes values between 0 and 2. A
value of 0 arises when phase distributions for each con-
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dition are fully random (uniform) or when both conditions
have their phases locked to the same angle. A value of 2
represents a perfect phase opposition between the two
conditions, that is, all trials with behavioral outcome A
have the same phase angle, and all trials with outcome B
have the opposite angle (with no ITPC across the entire
set of trials). Intermediate POS values reflect a partial
phase opposition (a more plausible scenario) in which the
phase modulates the probability of outcome A versus B.
These theoretical values rely on the assumption that there
is a perfect uniform sampling in the phases across all
trials. Since this is unlikely to be the case in real experi-
ments, it is better to compare the POS value to a corre-
sponding distribution of surrogates POS values obtained
by shuffling the labels between conditions. This will ac-
count for any bias in the underlying ITPC across all trials.

The POS was computed separately for each dimension
of the dataset (time, frequency, channels, and subjects).
The strength of the effect was evaluated at each of these
dimensions by creating a surrogate distribution of 1000
permuted POS values through shuffling of the labels be-
tween conditions (i.e., creating random partitions). The
mean and variance of the surrogate distribution were
extracted to compute the z score of the observed POS,
which was then transformed into a p value using the
normal cumulative distribution function (for a description
of this method and a comparison with other measures,
see VanRullen, 2016a).

Simulations

In a first part, we used simulations of artificial datasets
to look at how the ERP shape and frequency content,
coupled with the time-frequency decomposition, influ-
enced the latency at which a phase difference between
two conditions could be detected, depending on the fre-
quency of the phase modulation.

Creating artificial datasets

To evaluate the full extent of the effect, we systemati-
cally varied the frequency at which the phase modulation
was inserted from 3.99 to 100 Hz in 24 logarithmically
spaced steps. For each of the 24 frequency of interest,
100 artificial datasets (corresponding to the “subjects” in
traditional EEG experiments) were created using an ap-
proach similar to that described in VanRullen (2016a).
First, the background electrophysiological signal was sim-
ulated by creating 500 WN sequences drawn from a
Gaussian distribution with a u of 0 and a o of 10 arbitrary
units (Fig. 1). These sequences lasted 3 s ((—1.5t0 1.5 s])
and had a sampling rate of 500 Hz.

Once the artificial datasets had been generated, a
phase modulation between two experimental conditions
(i.e., trial groups) was artificially created using the phase
of the frequency of interest at an arbitrarily chosen time
point (40 ms after target onset; Fig. 1, green line). This
phase was extracted by filtering the datasets at the fre-
quency of interest and then applying a Hilbert transform.
It was then used to assign an experimental condition label
to each trial. Each of the two conditions was equally likely
to occur overall (i.e., mean probability p, of outcome A
was equal to the probability p; of outcome B). However,
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the likelihood of a trial outcome was modulated using a
cosine function of the phase angle at the critical time, with
a modulation depth (denoted as mod in the following
equation) fixed at 0.4 (arbitrarily defined parameters). It
was computed as follows:

Paangey = Pa + mod - cos(angle)

In our case, this means that for trials at phase 0, there
was a 70% chance of the trial yielding outcome A, while at
the phase m, the trial had 70% chance to yield outcome B.
Finally, an ERP was added to each trial. Both conditions
had an ERP drawn from the same process, which was
composed of a P1 and an N1 waves with (arbitrarily
defined) parameters. The exact shape of the ERP differed
slightly on each ftrial, as the parameters were drawn from
normal distributions with known mean and o defined for
our purposes as follows (Fig. 1, average representation):
the P1 mean amplitude was fixed at 20 units (@amplitude o
of 5) and its mean peak latency at 65 ms (peak latency o
of 10 ms) with a mean duration of 50 ms (duration o of 10
ms). The N1 mean amplitude was fixed at 30 units (am-
plitude o of 10) with a mean peak latency of 155 ms (peak
latency o of 25 ms) and a mean duration of 130 ms
(duration o of 25 ms). The scale of the arbitrary units was
defined with respect to the standard deviation of the
originally generated WN signal, equal to 10 units. The final
signals with the added ERPs were then used as the
artificial dataset to analyze.

In the main simulations, Gaussian WN, with equal
power at all frequencies, was used as a proxy for brain
activity, as described above. Using pink noise instead of
WN could be deemed more biologically plausible; how-
ever, pink noise (or 1/f) signal is characterized by a power
spectrum decreasing as a function of frequency, meaning
that differences of signal-to-noise ratio between frequen-
cies could then have confounded our ability to detect
phase effects. Nonetheless, we also performed control
simulations using pink noise, to verify that the conclusions
held with more biologically plausible input data. The same
parameters as above were used. These control simula-
tions gave comparable results, which are not presented
here for the sake of brevity.

Extracting the latency of the phase difference

Once the final artificial datasets had been created, the
time-frequency information was extracted using a wavelet
decomposition, varying the numbers of cycles (logarith-
mically) from three cycles at 3Hz to 8 cycles at 100 Hz for
each of the 50 (logarithmically spaced) frequency steps.
The time course of the phase modulation was evaluated
by looking at the time course of significant phase oppo-
sition using the p values extracted (see above, Measuring
phase differences). For the purpose of these simulations,
we assume that the rhythmic modulation frequency is
known, and we aim to derive the latency of the effect. To
this end, we restricted our analysis in time and frequency
to an analysis window spanning 800 ms around the true
latency of the phase modulation (i.e., from —360 to 440
ms) at the actual frequency at which the phase modula-
tion had been introduced in the dataset. For each of the
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Figure 1. lllustration of artificial datasets creation for the simulation. The artificial signal was initialized using WN drawn from a
Gaussian distribution with u = 0 and o = 10 arbitrary units. These random data were then bandpass filtered at the frequency of
interest plus or minus 1 Hz, and a Hilbert transform was applied to extract the phase at 40 ms after time 0O, the time of target
presentation. The phase angle at this time was then used to separate the trials between outcome A and B, with a given probability
following a cosine function. Finally, an outcome independent ERP wave form (with slight random variations between trials) was added

to each trial’s signal to create the final artificial dataset.

100 artificial datasets, the time course of significance of
the POS was evaluated by only keeping p values reaching
or exceeding a Bonferroni threshold computed so as to
correct for multiple comparisons across the 170 time
points of the analysis window. This was taken as evidence
for a significant phase difference between the two condi-
tions at that particular latency. The time courses for each
of the artificial datasets were then aggregated by com-
puting the percentage of the simulated datasets which
showed a significant POS at each time point. From this,
we also computed the mean latency of the largest cluster
for each of the time courses of the 100 datasets as a
measure of central tendency. These latencies were then
aggregated across all artificial datasets by looking at the
confidence intervals (Cls) for the median latency of the
phase modulation across artificial datasets, using the fol-
lowing formula by McGill et al. (1978), where g1, g2, and
g3 are, respectively, the 1st, 2nd (or median), and 3rd
quartile of the distribution and N is the number of artificial
datasets.

1.25(g3 — g1)

95%CI = q2 + 1.7 *
1.35VN
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We also computed the significance of the temporal
distortion effect using a Wilcoxon sign rank test compar-
ing the observed median latency to the true modulation
latency of 40 ms, using an « level of 0.01.

The WN paradigm

In the experimental part, we introduce a paradigm
based on linear-systems analysis methods, to help us
uncover the true latency at which phase influences per-
ception, avoiding the pitfalls induced by target-evoked
responses.

Participants, stimuli, and procedure

Twenty-one subjects (mean age of 28.04 years, SD:
3.97 years, 23-39 years old) took part in the experiment
after giving written informed consent. One subject was
removed due to technical issues during the EEG record-
ing, thus 20 subjects were analyzed (10 women, 15 right
handed, normal or corrected-to-normal vision, no history
of epilepsy). The experiment consisted of two testing
sessions of ~1 h each, composed of eight blocks of 48
WN (random luminance) sequences (WN). Each WN se-
quence lasted 6.25 s and had, on average, a flat power
spectrum between 0 and 80 Hz. They were presented in a
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peripheral disk at 7° of visual angle from fixation point and
subtending 7° of visual angle on a cathode ray monitor
(resolution of 640 by 480 pixels and refresh rate of 160 Hz)
situated 57 cm from the chin rest. In both sessions,
participants had to detect near-perceptual threshold tar-
gets embedded in the stimuli sequences. In each trial,
there were two to four targets composed of a lighter disk
at the center with a darker surrounding annulus. They
were presented within the peripheral flashing disk on a
medium gray background disk for one frame only. The
mean luminance of the target was always a medium gray,
identical to the mean gray level of the WN sequence; only
the contrast within the target was manipulated. A stair-
case procedure was conducted over the first 100 targets
(i.e., ~30 trials) of each session using the Quest function
(Watson and Pelli, 1983) in the PsychToolBox (Brainard,
1997). The contrast between the darker annulus and the
lighter inner circle was adjusted to converge to the lumi-
nance contrast at which people perceived 50% of targets
on average. This contrast was then kept for the remainder
of the session. Session 1 data revealed that the visibility of
the target was influenced by immediately surrounding
luminance values (see below, Classification image). This
influence could have masked the (potential) effect of os-
cillatory phase. Therefore, in session 2, we decided to
remove any luminance fluctuations around targets, setting
14 frames before (i.e., 87.5 ms) and 11 frames after (i.e.,
68.75 ms) the target to the same medium gray value.
Using a similar design and protocol, we ran a control
experiment to assess whether the fluctuation-free periods
could be used by subjects (N = 6) to detect the targets.
The only difference was that for 1/3™ of the suppressed
luminance time windows no targets was presented, cre-
ating “catch trials” of sorts. As with the main experiment,
any button press after a target (from 150 to 800 ms) was
counted as a hit. The same response window was used
for catch trials: any button press within this 650-ms time
window after the moment where a target would have been
was counted as a false detection. The percentage of
catch trials where a subject pressed the button was com-
puted, similarly to the percentage of detected targets.
Separately, we also assessed the false alarm rates of
subjects, i.e., button presses falling outside of response
time windows for either presented targets or catch trials.
To get an estimate of the false alarm rate that is compa-
rable with the other detection rates, we counted the num-
ber of 650 ms long time windows outside of target times
and divided the number of false alarms by this number.

EEG recording and preprocessing

During the first session, the EEG to WN sequences was
recorded using a 64-channels Biosemi system (1024 Hz
sampling rate) with three external ocular channels record-
ing the electrooculogram. Only the behavioral responses
(to new WN sequences) were recorded in the second
session. The preprocessing of the EEG data from session
1 was conducted using the EEGlab toolbox (Delorme and
Makeig, 2004) in Matlab, with the following steps: (1)
rejection and interpolation of noisy channels if necessary,
(2) down-sampling of the EEG signal to 160 Hz to match
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the presentation rate of stimuli and thus facilitate the
cross-correlation of the two signals, (3) notch filtering
(between 47 and 53 Hz) to remove any artifacts due to
power line, (4) average-referencing, (5) high-pass filtering
(1 Hz) to remove any drifts in the signal, (6) creating
epochs from —0.25 to 6.5 s around each WN sequence,
(7) removing the baseline, i.e., the mean activity from
—0.25 to 0 s before trial onset, and (8) manual artifact
rejection where whole epochs were removed (as needed)
to get rid of eye blinks and muscular artifacts. Once the
data had been preprocessed, the IRF (also called VESPA
by Lalor et al., 2006; or perceptual echoes by VanRullen
and Macdonald, 2012) were extracted by cross-corre-
lating the preprocessed EEG data with the WN luminance
sequences, yielding 64 IRFs for each of the 20 subjects
(one IRF for each EEG channel). These functions were
then used to reconstruct the brain activity (“reconstructed
EEG”) to the new WN sequences presented in session 2,
by convolution of the IRF with the WN. The target lumi-
nance (medium gray) was included in the WN sequence
used to reconstruct the EEG. However, this value was no
different from the surrounding values in the sequences,
and thus there was no ERP evoked by the target in the
reconstructed EEG. In session 2, the same random se-
quences (different from those in Session 1) were pre-
sented to all subjects in a randomized order so as to
compare the visibility of the same targets across all sub-
jects. This reconstructed EEG was epoched around each
of the 821 presented targets ((—800 to +794 ms]). Finally,
a wavelet transform was applied to extract the oscillatory
characteristics of the reconstructed EEG at each fre-
quency band (two to eight cycles, 50 log-spaced frequen-
cies from 3 to 100 Hz). Note that we limited our analysis to
frequencies below 80 Hz as our signal was sampled at
160 Hz (Nyquist frequency limit).

Measuring the phase difference between conditions
Further analyses of the phase differences between de-
tected and undetected targets were evaluated only on the
reconstructed EEG signals using the phase opposition
method (see above, Measuring phase differences). Before
extracting the z-scores, we computed the grand average
POS values (whether real or permuted) by first summing
the POS across electrodes and subjects to aggregate
information along these dimensions. To increase the ro-
bustness, this step was repeated for the surrogate POS
by randomly selecting (without replacement) surrogates
for each subjects and summing across subjects again, a
large number of times, thus yielding 100,000 grand aver-
age POS surrogates values. Using these grand averaged
POS values, the z-scores and p values were then ex-
tracted as previously described (see above, Measuring
phase differences). A false discovery rate (FDR) correction
was applied across frequency and time points, using an «
level of 0.05. Once a time-frequency region of interest was
found, we extracted the topography of the effect by going
back to single channel data and summing the phase
opposition values across subjects and the time and fre-
quency points composing the largest significant cluster.
Here, again, to increase the robustness, we randomly

eNeuro.org



eMeuro

selected (without replacement) surrogates for each sub-
ject and summed the POS across subjects again. This
was conducted 10,000 times before extracting the z-scores
as previously described.

Measuring phase-dependent performance

To evaluate the strength of the effect and compare it
with previous reports (Busch et al., 2009), the perfor-
mance variability attributable to phase changes was com-
puted on the fronto-central channel. The normalized hits
ratio was extracted, for each subject and for each of the
11 phase bins as the proportion of hits in each bin,
normalized by the mean performance of the subject.
These were then averaged across subjects. A cosine fit
was applied to the data and the resulting amplitude is
reported as the amount of performance modulation for
each study.

Classification image

We sought to test whether the luminance values of the
WN sequences at any specific time point around the
target time had an impact on perception. To this end, we
used the classification image method (Ahumada, 2002),
which can help identify which stimuli parameters have an
impact on performance. For both sessions, we computed
the mean luminance values across trials for hits and
missed targets for each subject separately. An indepen-
dent samples t test was then applied for each subject to
compare the distribution of luminance values for detected
versus missed targets. A FDR correction was applied
across time and subjects to correct for multiple compar-
isons in each of the sessions.

Evoked response

We also wanted to confirm that the reconstructed EEG
did not in fact show any sign of an evoked response to the
target presented in the WN sequence. We computed the
ERP for the EEG recorded in session 1 (as a control) and
for the reconstructed EEG for session 1 and session 2.
This was done by first removing the baseline activity
([—200 to 0 ms]) to each time course and then averaging
the different signals across trials and subjects. Because
the signal was visual in nature, we looked at the ERP over
the central parieto-occipital channel (POz).

Measuring the correlation between recorded EEG
and reconstructed EEG

To test how well the reconstructed EEG modeled the
recorded EEG, we used the data from session 1, for which
the recorded EEG was available. First, the total number of
trials for each subject (which was variable due to artifact
rejection) was sub-sampled to the trial count available for
the subject with the fewest trials. Then, using a 10-fold
cross-validation strategy, the model (i.e., IRF) was com-
puted on 90% of trials, and consequently used to recon-
struct the EEG for the remaining 10% of trials. This
reconstructed EEG was then correlated (using the Pear-
son correlation) with the EEG actually recorded on the
remaining 10% of (independent) trials. This ensured that
both the recorded and reconstructed EEG were available
for the same sets of trials, while avoiding any circularity in
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the analysis: using the same trials to compute the IRF and
the reconstructed EEG could have led to spuriously high
correlations between reconstructed and recorded EEG.
Moreover, this also reduced the influence of a sampling
bias: using a cross-validation strategy in correlating the
signals allowed us to get a better estimate of the true
underlying correlation between the two signals.

We also tested whether the EEG modeled using the IRF
was more accurate for certain frequency bands by corre-
lating the two signals (with the same cross-validation
approach) filtered in five different frequency bands (Finite
Impulse Response filter, 6: 2—4 Hz; 6: 4—8 Hz; a: 7-14 Hz;
B: 14-28 Hz; y: 30-60 Hz).

Since the correlation coefficients were not normally
distributed (as revealed by a one-sample Kolmogorov-
Smirnov test), a Fisher Z transform was applied to the
data. It was computed as follows:

z=05*mw+’)

1-r

Consequently, the mean transformed coefficients
across all repetitions were extracted for each subject and
channel and a one sample t test against zero was applied.
The p values were corrected for multiple comparisons
using a FDR correction across channels. To extract the
correlation coefficient values for plotting purposes, the
inverse Fisher Z transform was applied. Only the correla-
tion coefficients at the strongest channel are presented
across subjects. Note that using a nonparametric test
(instead of a Fisher Z transform and a t test) gave equiv-
alent results.

As a comparison, we also tested how much of the
variability in the signal could be explained by the ERP to
the target embedded in WN. Here, we used target ERPs
(rather than IRF) as a model for the target-evoked activity.
Finally, for comparison purposes, we also wanted a mea-
sure of how “noisy” EEG data normally is (i.e., in typical
ERP paradigms without ongoing WN sequences). We
tested this using a separate dataset from Busch et al.
(2009), in which isolated targets were presented on a
static background. The target-evoked ERP was again
used as a model of evoked EEG activity. In both condi-
tions (ERPs from targets embedded in WN; ERPs from
isolated targets), the ERPs were extracted on 90% of the
trials and then convolved with a sequence of target onsets
for the remaining 10% of trials, in a 10-fold cross-vali-
dation approach. Consequently, the same correlation
method between recorded and reconstructed EEG
(modeled here by the ERP) was applied as described
above for the IRF-based EEG reconstruction model.

Results

Simulations

Using artificially created datasets with a true phase
modulation introduced at 40 ms after stimulus onset, we
evaluated how early a significant phase opposition would
be detected. We measured the time course of the p values
of the POS (see Materials and Methods), aggregated
across 100 simulated datasets (for more reliability). In
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particular, we tested various frequencies of phase mod-
ulation from 4 to 100 Hz to see if this factor influenced the
latency at which a significant effect could be measured.

At all frequencies of phase modulation, we did find
evidence for a phase difference between conditions (as
expected given that this phase modulation had been ex-
plicitly introduced in each dataset). But at frequencies of
the phase modulation below 30 Hz, the observed phase
modulation appeared to peak well before the true latency
of the phase modulation. At lower frequencies (roughly
below 20 Hz; Fig. 2A), this effect was even visible in the
prestimulus time window. This temporal displacement
seemed to be frequency dependent: the lower the fre-
quency, the earlier the phase modulation was detected
(Fig. 2A). In fact, the median latency of observed phase
opposition effects was significantly different (Wilcoxon
sign rank test) from the true phase modulation (at 40 ms)
at all frequencies between 3.99 and 39.44 Hz. At 3.99 Hz,
the median measured phase modulation latency peaked
at —143 ms in the prestimulus window (95% CI: [-151 to
—135 ms]). At 39.44 Hz, the median latency of the effect
was at +37.5 ms, i.e., 3 ms before the true effect (95% CI:
[35-39 ms)). At frequencies higher than 40 Hz, the median
latency of the observed phase modulations effects was
not significantly different from the true latency.

Interestingly, these temporal displacements seemed to
be closely linked to the time-frequency content of the
ERP: the latencies at which the phase difference could be
measured were pushed back in time by an amount com-
mensurate with the temporal spread of ERP spectral
power at the corresponding frequency (Fig. 2B). As a
matter of fact, when the ERP was removed from the
simulated data, and all the analyses were performed
again, the median latency of the phase modulation was
not shifted (Fig. 2C). The only effect seen in this case was
a smearing around the true latency of the phase modula-
tion due to the window-based time-frequency decompo-
sition. In fact, this smearing of information can account for
the specific shape of the temporal displacement created
by the ERP: there is a strong correlation (Pearson corre-
lation, r = 0.81, p < 0.05, 95% ci for r = 0.799-0.827)
between the error in the measured latency of the phase
modulation effects (Fig. 2A) and the length of the window
function at that frequency. Here, the smearing had a
chimney-like shape typical of wavelet analysis: the smear
of information varied from 750 ms at lower frequencies (at
4 Hz: window function of three cycles of 250 ms each) to
80 ms at the highest frequency (100 Hz) around the region
of interest. The absence of latency distortion in the ab-
sence of ERP confirms the notion that it is the stimulus-
evoked activity (and its temporal smear caused by any
window-based time-frequency decomposition) that is
likely responsible for the prevalence of EEG phase mod-
ulations reported to peak in the prestimulus time window
in the relevant literature (for a review, see VanRullen,
2016b).

We showed that a phase difference between the two
conditions in our artificially created datasets could be
measured well before the latency at which the actual
phase modulation was introduced. This temporal dis-
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placement could be quite dramatic at lower frequencies,
with peak effects being apparently pushed by almost 200
ms. It was evident that the time-frequency content of the
ERP was responsible for this apparent shift for at least
two reasons: first, the measured latency of the phase
modulation directly followed the left edge of the time-
frequency content of the ERP (Fig. 2B); second, the tem-
poral displacement disappeared when the analysis was
replicated without an ERP (Fig. 2C).

Our simulations highlight a large uncertainty regarding
the latency of EEG phase modulation. Importantly, this
uncertainty is expected whenever ERPs are present and
signal filtering is used, and would appear to be unavoid-
able for any experimental measure of phase-dependent
perception. Is there a way, then, of uncovering the true
latency at which ongoing phase affects stimulus detec-
tion?

The WN paradigm

Here, we sought to experimentally investigate the time
course of phase effects using the WN paradigm, i.e.,
using WN sequences to constrain ongoing brain oscilla-
tions in a predictable manner. The IRF can serve to model
the relationship between fluctuations of luminance values
in the sequence and the brain response at different delays
(Fig. 3; Ringach and Shapley, 2004; Lalor et al., 2006;
VanRullen and Macdonald, 2012). It is extracted by cross-
correlating WN sequences with the concurrently recorded
EEG. These IRFs can then be used to reconstruct the
brain activity to any new WN sequences presented. This
reconstruction was done by convolving the IRFs with the
new WN sequences presented in the second session (Fig.
3). We call this signal the reconstructed EEG: a model of
the brain activity in response to the WN sequences.

Before investigating the time course of phase effects,
we verified that our new paradigm met specific require-
ments. First, we sought to quantify the correlation be-
tween the modeled brain activity (the reconstructed EEG)
and the real data (recorded EEG).

Correlating the reconstructed and recorded EEG

We first quantified the similarity between the recorded
EEG (in session 1) and the EEG reconstructed using the
IRF as a model of the background activity in the EEG. This
was achieved by correlating the two signals using a 10-
fold cross-validation approach: the IRF was computed on
90% of trials, and then used to model the EEG response
for the remaining 10% of trials, which we then correlated
with the recorded EEG.

A one-sample t test revealed that the distribution of the
mean (Z transformed) correlation coefficients using the
raw signal was significantly different from 0 on all chan-
nels, with the mean correlation coefficient across subjects
reaching a maximum on electrode Oz with a r of 0.091
(tug = 7.78,p = 2.51%1077,95% Cl for r = 0.066-0.115).
We also investigated whether filtered signals would yield a
better correlation depending on the frequency band. We
found that the correlation strength was strongest for the
a-band on channel Oz (mean r = 0.163, tyq) = 8.21,p =
1.14%1077, 95% ClI for r: 0.121-0.204), closely followed
by the 6-band on channel POz (mean r = 0.125, t,q =
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Figure 2. Simulation results. A, Median latency (blue line) at which phase modulation effects can be measured depending on the
frequency of the phase modulation introduced at 40 ms (true latency represented by the green dashed line) when the ERP is included
in the artificial datasets. The color bar indexes the percentage of significant datasets at each time point after Bonferroni correction.
The purple dashed line represents the outer edge of the window function (Morlet wavelets). B, Representation of the evoked response
(lower panel) included in the artificial data in A, and its time-frequency content (upper panel). The color bar represents the oscillatory
amplitude (arbitrary unit) at each frequency and time point. C. Same analysis as in A but without ERP included in the artificial datasets.
Note the absence of temporal latency distortion in this case. Note also that the temporal smearing created by the window function
is slightly shorter than the window duration (i.e., it does not reach the purple line) as Morlet wavelets have Gaussian tapers on either
end.
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Figure 3. White-noise (WN) paradigm. The IRF to WN sequences can be extracted by cross-correlating the stimuli sequence with the
recorded EEG: here, an example IRF is shown from one subject on electrode POz. This is what we did in the first session of our
experiment. This IRF can, in turn, be used to reconstruct the brain activity (reconstructed EEG) to any new WN sequence by
convolution. This was done in the second session of the experiment. The stimulus fluctuations around the target were removed in the
second session to avoid any target masking by the luminance (Fig. 5).

13.69, p = 2.69+107"", 95% CI for r: 0.105-0.144). The
other frequency bands had lower correlation coefficients,
with, respectively, a mean r of 0.058 (channel POz) for the
é-band (tyg) = 7.28, p = 6.60+10~7, 95% ClI for r: 0.041-
0.075), a mean r of 0.071 (on channel Oz) for the B-band
(tqoy = 7.80, p = 2.42%1077, 95% CI for r: 0.052-0.090)
and a mean r of 0.027 (on channel POz) for the y-band
(tne) = 6.16, p = 6.37%107°, 95% Cl for r: 0.018-0.037).

To better evaluate the quality of our EEG reconstruc-
tions, we decided to run two control analyses, as a basis
for comparison. First, we wanted to know how much of
the variability in the signal could be explained using the
ERP instead of the IRF as a model of the EEG activity to
targets presented in WN (for details, see Materials and
Methods, Measuring the correlation between recorded
EEG and reconstructed EEG). Using the ERP as a model
for target evoked activity led to a correlation strength on
par with that obtained using the IRF as a model of back-
ground activity. The correlation coefficient reached its
maximum across subjects over the left central parietal
channel (CP1) with an r of 0.099 (t;q = 1092, p =
1.25%10°°, 95% CI. for r = 0.080-0.118, see “targets in
WN?”; Fig. 4). Secondly, we also evaluated the amount of
signal variability that can be explained by the ERP to
isolated targets in a more “typical” visual-evoked poten-
tial paradigm (i.e., without the concurrent WN stimulation),
using the data from Busch et al. (2009). This was done as
a way to estimate the “noise” in a typical EEG setting, for
comparison purposes. A one-sample t test revealed that
the distribution of the mean (Z transformed) correlation
across subject reached a maximum over channel (Pz) with
an r of 0.115 (43 = 9.57, p = 2.97x1077, 95% ClI for r:
0.089-0.141; Fig. 4, isolated targets). In conclusion, using
the IRF as a model for reconstructing the EEG is a useful,
although far from perfect (i.e., r < 0.2), characterization of
the recorded EEG; although the obtained EEG recon-
struction was clearly noisy, the reconstruction error was
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not much higher than that observed with ERP-based
models of target-evoked activity.

Behavioral results

In both sessions, the participants had to detect targets
embedded in the WN luminance sequences. The contrast
of the target with regard to its medium gray background
was adjusted to achieve 50% performance at the begin-
ning of the experiment. The mean hit rate across the 20
participants for session 1 was 50.38% (SD: 9.17%) and
45.76% (SD: 10.88%) for session 2. For both sessions,
the false alarm rate was relatively low with a mean false
alarm rate of 1.65% (SD: 1.35%) and 1.65% (SD: 1.49%)
for sessions 1 and 2, respectively. A control experiment
revealed that the suppressed luminance fluctuations
could not be used by subjects to detect the targets. The
mean response rate to catch trials across subijects (i.e.,
suppressed luminance without targets presented) of
8.94% was not significantly different from the mean false
alarm rate of 6.30% (Student’s t test, p = 0.646). More-
over, both were much lower than the mean detection rate
across subjects of 52.80% (Student’s t test, p < 0.002).

A classification image analysis of the data from session
1 showed that the luminance values immediately sur-
rounding the target had a large impact on target detec-
tion. Systematically, higher luminance values just before
and after the target led to decreased visibility while lower
luminance values led to increased visibility (Fig. 5B). In
session 1, all 20 subjects showed a significant difference
in the mean luminance values between detected and
missed target trials (independent sample t test for each
subject, with FDR correction, all 20 peak p values below p
< 0.0008), and this difference affected at least 3 separate
time points for all subjects (Fig. 5B). For this reason, we
decided to remove luminance fluctuations around the
target. In the second session, 87.5 ms (i.e., 14 frames)
before the target and 68.75 ms (i.e., 11 frames) after the
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Figure 4. Correlation between reconstructed and recorded EEG. Two models of brain EEG activity were tested: one based on the ERP
to targets (left) and the other based on the IRF to WN sequences (right). In both cases, we systematically correlated the prediction
of the model with the single trial recorded EEG. For the ERP models, the “isolated targets” coefficients are based on the dataset
presented in Busch et al. (2009), while the “targets in WN” are from our own dataset, with the ERP extracted relative to the targets
embedded in WN (Fig. 5C). For the IRF models, we used the IRF to model the brain response to the WN sequences, and then
correlated reconstructed and recorded EEG data using the raw signals, as well as signals filtered in different frequency bands (6: 2-4
Hz; 0: 4-8 Hz; a: 7-14 Hz; B: 14-28 Hz; y: 30-60 Hz). The gray dots represent the mean coefficient for each subject (1 dot per subject)
across cross-validation runs at the maximum electrode (red dot on the topographies); the error bars represent the 95% CI of the mean
(black dot) coefficient across subjects. The topographies represent the mean correlation coefficients across subjects and cross-
validation runs. Shaded areas represent channels not significant after FDR correction. Note the difference of color scales for the g and

v correlation coefficients relative to the other topographies.

target were replaced with medium gray values (Fig. 5A),
the same medium gray used as the target’s background.
In session 2, this manipulation effectively cancelled the
apparent masking or facilitation effects observed in ses-
sion 1 (Fig. 5B): 18 of the 20 subjects showed no signifi-
cant luminance difference between hits and misses at any
time point; the remaining two subjects showed a signifi-
cant difference at only a single time point. Note that we
also verified that all results described in the following
section (Fig. 6) remained valid when these two subjects
were discarded from the analysis.

The major advantage of using reconstructed EEG for
our purposes is that there is no evoked response to the

May/June 2017, 4(3) e0078-17.2017

targets embedded in the stimulation sequences. This is
because the luminance of the target frame (medium gray),
which is taken into account when the convolution is done,
is identical to the luminance of the surrounding frames. In
other words, the presence of the target is invisible to the
EEG reconstruction process (convolution). In fact, we can
see that there is no evoked ERP to the target in the
reconstructed EEG for session 2 (Fig. 5C).

Latency of measured phase modulation effects in the
absence of ERP

Because the reconstructed EEG is virtually blind to the
presence of target-evoked activity, we can estimate the
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Figure 5. Classification image and evoked response. A, Example stimuli sequences for session 1, when the EEG was recorded, and
session 2, when only the behavioral response was recorded. The sequences are centered on the embedded target presentation (at
t = 0 ms). B, Classification image of the luminance values around the target (at t = 0 ms) for detected (orange) and missed (blue)
targets. Darker colors represent the mean across subjects and trials. The lighter shades represent the standard error of the mean
across subjects. The dotted line represents target presentation. Note that the same sequences were shown to all subjects in session
2. C, ERP evoked by the detected (orange) and missed (blue) targets embedded within the WN sequences. These are computed
separately for the recorded EEG for session 1 (top) and the reconstructed EEG for session 1 (middle) and 2 (bottom). Note the absence
of visible target-evoked ERP in reconstructed signals for session 2 (bottom). While there seems to be a very strong phase opposition
between hits and misses in the reconstructed EEG to session 1, this is likely to be an artifact of the strong relationship between
luminance value and behavioral outcome illustrated in B, rather than a direct relationship between phase and perception. Darker
colors represent the mean across trials and the lighter shades represent the standard error of the mean across subjects. The dotted
line represents target presentation.

background or “ongoing” signals around the time of tar- A scalp topography revealed that phase opposition was
get presentation. Thus, we can causally investigate the = maximal over frontal and occipital channels (Fig. 6B).
dynamics of the ongoing oscillations’ influence on per- We then evaluated the amount of performance mod-
ception, without having to restrict our analysis to the ulation that could be explained by the ongoing oscilla-
prestimulus window due to evoked response contamina-  tory phase at the peak of significance (i.e., 6 Hz and 75
tion. ms), by looking at the normalized hit rate averaged

We applied a standard procedure to evaluate the oscil-  across subjects for electrode Fz (see Materials and
latory “phase opposition” among groups of trials in which  Methods). We found that the phase accounted for
the target was detected versus missed (VanRullen, 11.62% of the performance modulation (Fig. 6C, left
2016a); but in this case, the input data were the recon- hand side). As a comparison, the results from Busch
structed EEG (obtained by convolution with the IRF) rather et al. (2009) have also been replotted here. In that
than an actually recorded EEG signal. The phase of on-  experiment, after realigning phase bins across subjects
going oscillations in the #-band (~6 Hz) seemed to be to align maximal performance at zero phase (a proce-
significantly different for detected versus missed targets, dure which was unnecessary in the present experi-
compatible with findings from previous studies (Busch  ment), the ongoing EEG phase at 7 Hz, —120 ms before
et al., 2009). However, here the largest effect was present  stimulus onset explained 15.62% of the performance
at ~75 ms after target onset (p = 1.2242+1075; Fig. 6A).  fluctuations (Fig. 6C, right hand side).
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reconstructed) EEG signals are replotted on the right hand side (7 Hz, —120 ms; taken from Busch et al., 2009). Both phase
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To summarize, in this experiment, we presented a
method to study the dynamics of ongoing oscillations’
influence on perception, through the use of WN se-
quences. We found that the phase of 6-band ongoing
oscillations is causally linked to the detection of near-
perceptual threshold targets. This rhythmic influence of 6
oscillations extended in time up to 200 ms after target
onset, but was the largest at ~75 ms after stimulus and
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could explain up to ~12% of the performance modula-
tions.

Discussion

In this paper, we sought to reconcile the apparent gap
between prestimulus EEG phase effects reported in the
literature and the idea of phase as actively shaping per-
ception.
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In a first section, we used simulations to show that a
phase modulation, artificially introduced 40 ms after stim-
ulus onset, could be reliably detected in the prestimulus
period. This depended on the ERP time-frequency con-
tent. In fact, we found that, at lower frequencies, the peak
phase difference between conditions happened up to 200
ms before the true phase modulation.

The measured latencies for a phase modulation intro-
duced at 7.08 Hz are consistent with the results of Busch
et al. (2009), who found an effect of the ~7-Hz EEG phase
on the detection of near-threshold peripheral stimuli
about —120 ms before stimulus onset. Of note, the
7.08-Hz simulation resulted in a median latency of —79
ms (95% Cl: —88.5 to —69.5 ms) with 48/100 simulated
datasets having a significant POS at —120 ms. Turning
our result around, the prestimulus latency observed by
Busch et al. (2009; —120 ms) could in fact be compatible
with the notion that the critical phase for stimulus detec-
tion was the phase that occurred during (rather than
before) stimulus processing.

It is important to highlight that the latencies reported
here via simulations should not be used as a definite guide
to determine the latency of the true phase modulation in a
new EEG experiment. This cannot be done, because var-
ious parameters in the new EEG experiment would differ
from those used in our simulations, such as the exact ERP
shape on each ftrial, the parameters of the filters used, or
the true latency at which the phase modulation occurs in
the brain. All these could have a large impact on the
measured latency of the phase modulation. In other
words, this simulation was only intended as a proof of
concept and cannot serve as an exhaustive or quantita-
tive evaluation.

The implications of our simulations are twofold. First,
any study of phase modulation of perception involving
sizeable stimulus-evoked activity (that is most, if not all,
studies) should be susceptible to temporal distortions of
the oscillatory phase effects. Second, the numerous pre-
vious reports of prestimulus phasic influences on percep-
tion (such as Busch et al., 2009; Mathewson et al., 2009)
may still be compatible with a true latency of phase
modulation at or even after the stimulus onset.

Although the evoked activity leads to a temporal
distortion of oscillatory activity, the true latency of
phase modulations cannot be retrieved, in our case, by
simply subtracting the stimulus-evoked activity (i.e., the
ERP) from the EEG signal —although this approach has
been successfully used in other studies (Tallon-Baudry
and Bertrand, 1999) to untangle the relative contribution
of “evoked” (i.e., phase locked) and “induced” oscillations
(i.e., nonphase locked). In our case, the postulated phase
modulation effects are actually phase-locked to the stim-
ulus onset (i.e., we hypothesize that all hits tend to show
a similar oscillatory phase relative to stimulus onset, and
likewise for the misses). Subtracting condition-specific
ERPs from each trial would effectively flatten any system-
atic phase differences between the two groups. On the
other hand, simply subtracting the common ERP for hits
and misses from single-trial data are also not a viable
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option, because it is likely to introduce artefactual phase
opposition when the ERPs between conditions differ.

In a second section, we presented an experimental
method based on linear-systems analysis methods (Ringach
and Shapley, 2004; Lalor et al., 2006; VanRullen and
Macdonald, 2012): the WN paradigm. This paradigm ef-
fectively allows us to bypass the effects of the target-
evoked ERP. Thus, we could estimate, for the first time,
the true latency at which ongoing EEG oscillations influence
perception. Using the EEG IRF (VanRullen and Macdonald,
2012) to WN Iluminance sequences, we reconstructed
(rather than recorded) the brain activity of subjects to new
sequences, by convolving the IRF with the stimuli se-
quences. The reconstructed EEG allowed us to estimate the
ongoing (background) oscillations before and after each pre-
sented target without the evoked response which could
have biased our ability to measure the phase modulation (as
shown in our simulations).

We found that the reconstructed EEG is a (relatively)
good model of the recorded EEG: the two signals were
significantly correlated, with the highest correlation in the
a- and 6-bands. The coefficients were relatively small,
meaning that at most r* = 0.163% = 2.7% (at the maxi-
mum channel in the a-band) of the variance of the EEG
sighal was driven by the luminance sequence in a way
that we could predict with the IRFs.

On the one hand, it might seem that this is a very small
amount of variance explained. For example, using a similar
approach, Kayser et al. (2015) predicted the stimulus-driven
response of neurons to auditory stimulation (Kayser et al.,
2015). They constructed various models of spike production
based on linear spatiotemporal-response filters but also
added various nonlinear factors on the prediction (Kayser
et al., 2015). The best model, which included phase depen-
dent variations in the sensory gain and the background firing
of cells, could explain up to 30% of the variance () in the
original signal. This increase of variance explained (relative to
the present findings) can be attributed to the method used:
LFP and multi-unit activity recordings are less subject to
noise than scalp measurements like EEG. In fact, Lalor
(2009), who also evaluated correlation strength between
reconstructed and recorded EEG using the VESPA as a
model for brain activity, found correlation values similar to
ours: he reported a mean correlation coefficient of 0.084
over channel Oz (Lalor, 2009). Moreover, using a nonlinear
(quadratic) model for the VEP only marginally improved the
amount of signal explained by the model (mean r across
subjects of 0.097; Lalor, 2009).

On the other hand, it is important to remember, that
EEG is a noisy method of recording, especially when
looking at single-trial data (Picton et al., 2000). The small
amount of signal variability explained in the present and
Lalor’s experiments (Lalor, 2009) might thus be due to the
inherently noisy nature of EEG recordings. The rest of the
EEG signal variance could reflect other cognitive func-
tions (such as endogenous attention or arousal levels) or
noise in the system, in the EEG recording or in the EEG
reconstruction procedure. Of more interest is the fact that
the IRF-based models reported here are on par with
ERP-based models, explaining just as much variability in
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the signal, if not more. ERPs are however routinely used in
experiments and considered a meaningful measure of
brain activity.

Finally, despite the apparently small percentage of vari-
ance of the original EEG signal explained in our study, it
could well be that this small portion of the signal is the
only oscillatory activity whose phase actually modulates
visual perception. In other words, we may only be able to
predict a small portion of the recorded EEG signal, but our
prediction was sufficiently accurate to capture most of the
existing relation between EEG oscillatory phase and per-
ception (Fig. 6C, ~12% modulation in our case, com-
pared with 16% modulation in the study by Busch et al.,
2009). Using the reconstructed EEG, we found that the
phase of 6 (~6 Hz) oscillations was related to the detec-
tion of near-perceptual threshold targets, as suggested
before by Busch et al. (2009). But crucially, the phase
between detected and missed targets was significantly
different from 50 to 150 ms after stimulus presentation,
with a peak at 75 ms over fronto-occipital channels. This
new approach thus allowed us to uncover the true latency
at which ongoing EEG oscillatory phase influences visual
target detection. This could not be done before, as the
presence of the ERP usually biases the detection of phase
effects toward prestimulus time windows, as demon-
strated in the first section. This, however, is not a problem
within the present approach because only the ongoing
oscillations are modeled, not the ERP.

This paradigm allowed us to explore the true latency of
the effect of oscillatory phase, unbiased by evoked re-
sponses, but it also opens up a wide range of avenues of
investigation. For example, it would be possible to inves-
tigate the effect of stimulus-driven ongoing oscillation
amplitude on perception. In particular, this could help us
untangle the contributions from stimuli driven versus top-
down driven oscillations in different tasks. Indeed in our
paradigm, only the ongoing oscillations directly driven by
the stimuli are modeled, and thus we could evaluate their
influence on performance, and compare this to the per-
formance modulation of actually recorded EEG activity, in
which top-down effects are also present.

Interestingly, this paradigm can also provide a bridge
between EEG findings and other findings linking spiking
activity to ongoing oscillations at the level of local neuro-
nal populations. If the oscillations reflect the excitatory
state of the population, the phase that should matter is the
one expressed in the cortex at the exact moment when
the stimulus information is processed. In fact, our results
support this hypothesis. Further, our study lends support
to the hypothesis that perception is rhythmic, and that
ongoing oscillatory phase marks the underlying sampling
mechanism of the environment. Here, the phase of the
reconstructed EEG influences perception in a causal
manner: it shapes our visual world as soon as the target
enters the brain.
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