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Meta-analysis of cell- specific transcriptomic
data using fuzzy c-means clustering
discovers versatile viral responsive genes
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Abstract

Background: Despite advances in the gene-set enrichment analysis methods; inadequate definitions of gene-sets
cause a major limitation in the discovery of novel biological processes from the transcriptomic datasets. Typically,
gene-sets are obtained from publicly available pathway databases, which contain generalized definitions frequently
derived by manual curation. Recently unsupervised clustering algorithms have been proposed to identify gene-sets
from transcriptomics datasets deposited in public domain. These data-driven definitions of the gene-sets can be
context-specific revealing novel biological mechanisms. However, the previously proposed algorithms for identification
of data-driven gene-sets are based on hard clustering which do not allow overlap across clusters, a characteristic that
is predominantly observed across biological pathways.

Results: We developed a pipeline using fuzzy-C-means (FCM) soft clustering approach to identify gene-sets which
recapitulates topological characteristics of biological pathways. Specifically, we apply our pipeline to derive gene-
sets from transcriptomic data measuring response of monocyte derived dendritic cells and A549 epithelial cells to
influenza infections. Our approach apply Ward’s method for the selection of initial conditions, optimize parameters
of FCM algorithm for human cell-specific transcriptomic data and identify robust gene-sets along with versatile viral
responsive genes.

Conclusion: We validate our gene-sets and demonstrate that by identifying genes associated with multiple gene-
sets, FCM clustering algorithm significantly improves interpretation of transcriptomic data facilitating investigation
of novel biological processes by leveraging on transcriptomic data available in the public domain. We develop an
interactive ‘Fuzzy Inference of Gene-sets (FIGS)’ package (GitHub: https://github.com/Thakar-Lab/FIGS) to facilitate
use of of pipeline. Future extension of FIGS across different immune cell-types will improve mechanistic
investigation followed by high-throughput omics studies.

Keywords: Epithelial cells, Dendritic cells, Gene-sets, Influenza infections, Gene-gene mutual information,
Overlapping gene-sets

Background
Microarrays and RNA-seq have made simultaneous
expression profiling of many thousands of genes across
several experimental/clinical conditions widely access-
ible. However, interpreting the profiles from such large
numbers of genes remains a key challenge. An important

conceptual advance in this area was a shift from a focus
on differential expression of single genes to testing sets
of biologically related genes [1–5]. Gene-sets are defined
a priori as sharing some biologically relevant properties
(e.g. members of the same pathway, having a common
biological function, presence of a binding motif, etc.). In
addition to the obvious advantage in interpretability, a
key benefit of analyzing gene-sets compared with indi-
vidual genes is that small changes in gene expression are
unlikely to be captured by conventional single-gene
approaches, especially after correction for multiple
testing [1].

* Correspondence: juilee_thakar@urmc.rochester.edu
1Department of Microbiology and Immunology, University of Rochester,
Rochester, NY 14642, USA
2Department of Biostatistics and Computational Biology, University of
Rochester, Rochester, NY 14642, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Khan et al. BMC Bioinformatics  (2017) 18:295 
DOI 10.1186/s12859-017-1669-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1669-x&domain=pdf
http://orcid.org/0000-0003-4479-4183
https://github.com/Thakar-Lab/FIGS
mailto:juilee_thakar@urmc.rochester.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Despite advances in the methods for gene-set en-
richment analysis [2, 6–8]; inadequate definitions of
gene-sets cause a major limitation in the discovery of
novel biological processes. Typically, gene-sets are
obtained from pathway databases available in the pub-
lic domain such as Kyoto Encyclopedia of Genes and
Genomes (KEGG). However, recent advances have led
to development of data-driven approaches to identify
gene-sets [9–13]. These are powerful approaches that
expand search for biological mechanisms based on
datasets in public domain leading path towards
discovery.
The data-driven identification of gene-sets is per-

formed by measuring pair-wise co-expressions or asso-
ciation between genes which is followed by different,
typically unsupervised hard (such as K-means and
hierarchical) clustering approaches [14–17]. However,
there are two limitations- first, biological pathways
show a large overlap pertaining to the modular struc-
ture of signal transduction processes which is not
reproduced by hard clustering algorithms and second,
functional interpretation of novel gene-sets is difficult
if they are not enriched in any known pathways. Here
we propose a computational pipeline (Fig. 1) based on
Fuzzy C-Means (FCM) clustering method [18, 19]
which allows overlap across gene-sets, thus reproducing
the observed topology of biological pathways, and
associate novel gene-sets to other gene-sets with en-
richment of known pathways. Particularly, we apply the
FCM pipeline to our previously curated context-specific
data [20]. To facilitate use of our pipeline we developed
a downloadable ‘Fuzzy Inference of Gene-sets (FIGS)’
package available at GitHub (https://github.com/Thakar-
Lab/FIGS). Here, we demonstrate its application using
transcriptomic data obtained from Gene Expression
Omnibus (GEO) measuring response to infections of
monocyte derived dendritic cells (DC) and A549
epithelial cells (EC) with influenza virus [20]. The gene-

sets and overlapping genes identified in this study are
validated by assessing enrichments of known pathway
genes. Thus, robust data-driven gene-sets identified
by FIGS retain the characteristics of known pathways
and expand the search of new mechanisms.

Methods
Datasets
Transcriptomic data was obtained from GEO and was
integrated in cell-specific manner. Integration proced-
ure and calculations of associations between genes
has been described in detail previously [20]. Briefly, tran-
scriptomic data measuring changes in gene-expression in
monocyte derived dendritic cells (DC) and A549 epithelial
cells (EC) upon influenza infections were used. There
were two datasets for DCs (GSE41067 and GSE55278)
and 9 datasets for ECs (GSE19580, GSE31469, GSE31470,
GSE31471, GSE31472, GSE31473, GSE31474, GSE31518
and GSE47937). All the datasets were log2 trans-
formed and quantile normalized individually in a plat-
form specific manner as described previously [20]. To
facilitate comparison across independent datasets,
14,894 genes commonly present across all the studies
were used in this analysis. Fold changes in influenza
infected samples were calculated relative to the non-
infected samples and genes with absolute fold change > 1
in atleast one sample were kept. After this filtration,
3846 and 5789 genes were present in EC and DC
dataset respectively. Mutual information (MI) was
calculated to describe the associations between 3846
and 5789 genes within EC and DC respectively [20–22].
The computational pipeline proposed below was devel-
oped on DC data and was applied to EC data. More-
over, for comparison and validation of our method we
used filtered set of immunologically relevant pathways
from Kyoto Encyclopedia of Genes and Genomes
(KEGG) [8, 23].

Fig. 1 Schematic representation of FIGS pipeline. The context-specific datasets obtained from public repositories were integrated as described in
[20]. FCM is performed on gene-gene mutual information matrix. Gene-sets obtained from optimized FCM clustering were compared with KEGG
pathways for validation and multi-functional genes connecting different gene-sets were identified
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Soft and hard unsupervised cluster analysis
To assess the usability of the FCM clustering to identify
gene-sets, it was compared with previously used hard
clustering approaches [20]. Particularly, k-means cluster-
ing [24, 25] was performed with the following objective
function:

J ¼
XK

k¼1

X

iεCk

xi−μk
�� ��2 ð1Þ

Where, µk is the centroid of the kth cluster and xi is
the ith observation.
Unlike hard clustering techniques, FCM method [18, 19]

allows a data point to belong to multiple clusters. FCM is a
soft version of k-means, where each data point has a fuzzy
degree of belonging to each cluster. The fuzzy degree of
belongingness ranges from 0 to 1 where 0 shows no associ-
ation and 1 shows complete association of a data point to
the corresponding cluster. The FCM was performed with
the following objective function:
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Xn
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Thus, FCM algorithm assigned genes to one or more
clusters with different degrees of memberships.

Optimization of fuzzy c-means clustering parameters
Determination of the initial number of clusters is a ques-
tion of ongoing debate, especially when overlap (fuzzy)
across clusters is expected [26]. We determine the initial
number of clusters (K) by taking into account average
number of genes per cluster based on known pathways
and the underlying structure of data from principal
component analysis (PCA) [27]. Specifically, for DC and
EC first 50 principal components explained >90% of the
total variance. Hence, we used equivalent (50) number of
clusters for the following analysis. Note that, the algorithm
could converge to a different number of clusters, than
what had been defined initially. These clusters are referred
to as gene-sets in the results section due to their usability
in gene-set enrichment analysis.
FCM requires three additional pre-defined parameters:

fuzziness (the amount of overlap between the clusters),
initial cluster centroids and cluster association criteria
which is specific to the data distribution [28]. The fuzzi-
ness and cluster association are inversely related since
fuzziness defines the belongingness of the genes to spe-
cific clusters. Thus, the selection of fuzziness and the

clusters’ association determines the size and amount of
overlap between the clusters. Here, the objective was to
identify the functionally related genes which typically
range from 100 to 500 depending on the biological
process [29]. The length of 45 selected immunologically
relevant KEGG pathways ranged from 23 to 362 with an
average of 100 genes. Fuzziness (m) ranging from 1.1 to
1.5 was evaluated. Fuzziness m = 1.1 preserved strong
primary association of a gene to one cluster and inter-
mediate association to another (Fig. 2a). With m > 1.1,
the average membership value per cluster decreased thus
increasing the uncertainty in gene-sets (Fig. 2a). Also,
the size of the clusters increased with m (Fig. 2b),
making functional interpretations difficult. Thus, in the
following analysis fuzziness (m) was set to 1.1.
The threshold for associating genes to the clusters

was determined by evaluating distribution of member-
ship values of genes across 50 clusters. Specifically, the
ith gene gi belonged to the clusters for which it had
membership values greater than (μi + σi), where μi and
σi are mean and standard deviation of membership
values of gi respectively.

Ward’s minimum variance assigns robust initial cluster
centroids
Typically, random initial assignment of the cluster
centroids is used in FCM algorithms [28, 30]. However,
previous studies and our analysis shows that random
initialization leads to inconsistent and unreliable cluster-
ing results [31, 32]. In our analysis, only 16% of the
clusters were consistent across all 50 iterations of the
FCM upon random initialization of the centroids (Fig. 2c).
The variation in clustering solutions across 50 iterations
showed that FCM is sensitive to initial assignment of the
cluster centers and that solution frequently converged at
local minima instead of finding the global optimal solu-
tion. To overcome this problem, Ward’s minimum vari-
ance method was used to estimate the initial centers for
FCM which produced stable and consistent clusters [33].
Ward’s method (based on analysis of variance) minimized
the total within-cluster variance and maximized between-
clusters variance. Cluster membership was evaluated by
calculating the total sum of squared deviations from the
mean of a cluster. At the initial step, all clusters were sin-
gletons (each cluster containing a single gene), which were
merged in each next step so that the merging contributed
least to the variance criterion. This distance measure
called the Ward distance was defined by:

dab ¼ na : nb
na þ nb

: xa − xbk k2 ð4Þ

Where a and b denote two specific clusters, na and nb
denote the number of data points in the two clusters. xa
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and xb denote the cluster centroids and ‖‖ is the Euclidean
norm.
Ward’s method produced hierarchical cluster tree

that was cut to produce 50 hard clusters where each
gene was fully associated to a unique cluster. The cen-
troids of these 50 clusters were calculated and used
for FCM initialization. It was found that the objective
function of Ward-optimized FCM solution not only
converged faster than that of randomly assigned initial
centroids (Fig. 2d) but also provided a stable cluster-
ing solution.

Cluster validation and enrichment with KEGG pathways
The clusters of genes identified by FIGS were tested for
their cohesiveness and biological significance. To test
the cohesiveness of the clusters a weighted clustering
coefficient (CC) was measured. CC provided a measure
of the degree of relatedness between the genes in a

cluster. The tendency of genes in the cluster to tightly
knit groups was estimated by a ratio of means of CCs
calculated using only genes in the cluster over all the
genes [34, 35]. CC was calculated using functions from
gaimc library in MATLAB. The ratios were compared
for k-means, Ward’s hierarchical method, and FCM
solutions.
We expect that the clusters of genes identified in this

study are to be functionally related. In other words,
genes belonging to the same pathways were expected to
group together. To test this hypothesis, we evaluated
whether genes belonging to a same known immuno-
logically relevant pathway cluster together [36]. A set of
44 immunologically relevant pathways obtained from
KEGG database along with interferon stimulated genes
set (ISGs) defined by Schoggins [37, 38] were compared
with the clusters identified by FCM pipeline using
hypergeometric test [39, 40].

a

c d

b

Fig. 2 Optimization of FCM parameters. a Average membership value (y-axis) per cluster with increasing fuzziness (x-axis), b Average number of
genes per cluster (y-axis) for increasing fuzziness (x-axis) and four cluster association criteria, c 50 trials conducted with random initial assignment of
the centroids found only 16% reproducible clusters, d Objective function values for FCM clustering with initial centroid assignment
performed randomly and by Ward’s method (red line) under fuzziness 1.1, 1.2 and 1.3 respectively. Ward based initialization converged
more rapidly and produced stable and robust clustering solution
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Results
Identification of the gene-sets by FCM
Signalling pathways from public repositories are general-
ized static instances of cascades that are frequently de-
rived by curation. Increasing use of high-throughput
assays in the biomedical field allows identification of
context-specific set of functionally related genes, which
can be loosely defined to include genes regulated by a
same set of transcription factors or sets of genes in-
volved in same pathways. Recently, use of clustering al-
gorithms has been proposed to identify the “functionally
related genes” or gene-modules from publicly available
transcriptomics datasets [11, 12, 41]. However, fre-
quently used algorithms such as K-means and hierarch-
ical clustering, for this purpose do not allow overlap
between the clusters (referred as gene-sets in rest of the

manuscript), although such overlap between biological
pathways is inevitable given modular topology of bio-
logical response [42]. Specifically, 44 immunologically
relevant pathways from KEGG databases suggest a mini-
mum of 0% and maximum of 63% overlap between the
two pathways (Fig. 3a). For example, Cytokine-Cytokine
receptor interaction and JAK-STAT signaling pathways
have 96 genes in common. Interestingly, some genes like
AKT1, MAPK1, PIK3CA, and TNF were found involved
in more than 10 different pathways (Fig. 3b). Other anti-
viral genes like IFNA1, IFNB1, NFKBIA, and IL6 were
found involved in at least 5 different pathways.
Here we propose to use FCM not only to identify viral

responsive gene-sets to the influenza infection but also
to identify the genes overlapping across different gene-
sets. FCM is a soft version of K-means clustering that

a b

c d

Fig. 3 Overlap observed among KEGG pathways and FCM gene-sets. The overlap among KEGG pathways represented by a heat-map b circular
graph and the overlap among DC FCM gene-sets represented by c heat-map d circular graph. The color scale ranging from blue to yellow in the
heat-map (a, c) and the increasing width of arc (b, d) correspond low to high number of overlapping genes across pairs of clusters
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allows overlap between the gene-sets reproducing the
topology of the known pathways. Here we optimized the
parameters on DC dataset and validated those on EC
dataset (refer to methods). FCM pipeline described in
methods led to an average size of gene-sets 167 (stand-
ard deviation of 45), with smallest gene-set having 63
and largest gene-set having 230 genes. With this config-
uration one third of the genes exhibited overlapping be-
havior where 1943 out of 5789 genes belonged to more
than one gene-sets (Fig. 3c and d).

Validation of FCM Gene-Sets
To assess if gene-sets identified by FCM pipeline in-
deed grouped the functionally related genes, we com-
pared the FCM-gene-sets with the pathways defined in
KEGG and by Schoggins [37, 38]. Schoggins-gene-set
defines Interferon Stimulated Genes (ISGs) and has
been reported to be significantly enriched upon influ-
enza infections by previous studies [8, 23]. 43 out of 50

FCM-gene-sets were found enriched in at least one of
the pathways (p value <0.01) (Fig. 4a and b). FCM-
gene-sets DC21, DC26, DC36 and DC45 were found
significantly enriched with ISGs (p values 3.3 e− 10,
1.19 e− 11, 5.36 e− 29 and 1.72 e− 60 respectively). Cluster
45 was also found enriched with RIG-I-Like and Toll-
Like receptor signaling pathways (p values 3.04 e− 6 and
1.32 e− 5) which are critical pathogen recognition recep-
tor mediated pathways known to be induced upon viral
infections [23]. Similarly, gene-set DC42 was enriched
with other well-known anti-viral pathways (JAK-STAT,
Chemokine and Cytokine-Cytokine signaling pathways
(p values 4.69 e− 6, 1.5 e− 6 and 3.22 e− 16 respectively)).
The enrichment results indeed corroborates with the
previously published results validating FCM-gene-sets
[20, 23]. Interestingly, there were 7 (gene-sets DC1,
DC3, DC4, DC9, DC19, DC34 and DC35) novel sets,
which were not significantly enriched in any of the
pathways. Most of these gene-sets had genes

a

c d

b

Fig. 4 Validation of DC FCM gene-sets. a The enrichment of KEGG pathways and ISGs in DC FCM gene-sets, five colors ranging from blue to yellow
represent –log10 (p-value) ≤1.30, >1.30 and ≤3, >3 and ≤4, >4 and ≤5, and >5 calculated by hypergeometric test, b Circular graph represents overlap
between the DC FCM gene-sets, c number of genes in DC FCM gene-sets and d membership values of the genes DC36 and DC45, and overlapping
genes (circled in red) between DC36 and DC45
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overlapping with other gene-sets enriched in known
pathways, suggesting multi-functionality of the overlap-
ping genes (Additional file 1: Figure S1). Thus, FCM
pipeline not only validated previously known function-
ally related genes but also identified new sets of genes.

Genes associated with multiple gene-sets are identified
by FCM-pipeline
FCM pipeline was developed to find genes that are asso-
ciated with multiple gene-sets. There were 1943 over-
lapping genes associated with minimum 2 and
maximum 5 gene-sets. Interestingly 113 genes involved
in multiple KEGG pathways were also found by our
pipeline (Table 1). While involvement of genes across
multiple KEGG pathways is not evidence for the multi-
functionality of the genes it is the only available data for

systematic comparison. Indeed, gene like PIK3R1 in-
volved in 14 pathways (Table 1) could be due to bias in
the studies associated with that gene. Genes overlapping
between the gene-sets DC45 (82 genes) and DC36 (107
genes) were particularly of interest since both the gene-
sets were enriched in anti-viral pathways [23]. 9 genes
(GBP1, SP140, PHF15, DHX58, NCF1, PLSCR1, CD80,
PI4K2B and NR4A2) were in common between DC45
and DC36 gene-sets, and their membership values
ranged from 0.2 to 0.8 (Fig. 4d). Genes closer to gene-
set DC45 or gene-set DC36, showed stronger
association in the corresponding gene-sets, e.g. DHX58
belonged to gene-set DC36 with membership value of
0.675 and gene-set DC45 with membership value of
0.325 suggesting that DHX58 have a more dominant
(67.5%) association with gene-set DC36 and less

Table 1 Comparison of multifunctional genes from FCM gene-sets and KEGG pathways. Multifunctional genes that were involved in
at least 3 FCM DC gene-sets were also overlapping between KEGG pathways

Multifunctional
genes

No. of
pathways

No. of FCM
DC clusters

Enriched pathway names FCM cluster

NFATC4 5 5 MAPK_SIGNALING, VEGF_SIGNALING, NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY,
T_CELL_RECEPTOR_SIGNALING, B_CELL_RECEPTOR_SIGNALING

34,35,37,43,45

CCL23 2 4 CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION, CHEMOKINE_SIGNALING_PATHWAY 17,18,39,40

GAB2 2 4 FC_EPSILON_RI_SIGNALING, FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 13,16,19,31

IL21R 2 4 CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION, JAK_STAT_SIGNALING 7,8,20,24

VASP 2 4 FOCAL_ADHESION, FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 1,4,10,50

ANAPC1 2 3 CELL_CYCLE, UBIQUITIN_MEDIATED_PROTEOLYSIS 7,8,29

ASAP1 2 3 ENDOCYTOSIS, FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 30,31,39

CCND2 3 3 CELL_CYCLE, FOCAL_ADHESION, JAK_STAT_SIGNALING 7,14,29

CD80 4 3 CELL_ADHESION_MOLECULES_CAMS, TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY,
INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION, ISGs

36,45,46

CDC16 2 3 CELL_CYCLE, UBIQUITIN_MEDIATED_PROTEOLYSIS 8,14,29

CDK4 2 3 CELL_CYCLE, T_CELL_RECEPTOR_SIGNALING 23,33,44

DNM2 2 3 ENDOCYTOSIS, FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 3,12,31

EP300 3 3 JAK_STAT_SIGNALING, CELL_CYCLE, TGF_BETA_SIGNALING, 3,4,50

HSPB1 2 3 MAPK_SIGNALING, VEGF_SIGNALING 5,25,50

IL1R2 3 3 MAPK_SIGNALING, CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION,
HEMATOPOIETIC_CELL_LINEAGE

6,21,22

ITGAV 2 3 FOCAL_ADHESION, CELL_ADHESION_MOLECULES_CAMS 2,25,50

MAP3K1 3 3 MAPK_SIGNALING_PATHWAY, UBIQUITIN_MEDIATED_PROTEOLYSIS,
RIG_I_LIKE_RECEPTOR_SIGNALING

1,27,50

POLR1C 2 3 RNA_POLYMERASE, CYTOSOLIC_DNA_SENSING 3,31,33

PPP3CB 6 3 MAPK_SIGNALING, APOPTOSIS, VEGF_SIGNALING,
NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY, T_CELL_RECEPTOR_SIGNALING,
B_CELL_RECEPTOR_SIGNALING

16,28,29

RPS6KB1 4 3 ERBB_SIGNALING, MTOR_SIGNALING, TGF_BETA_SIGNALING,
FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS

16,23,28

TNFRSF1A 3 3 MAPK_SIGNALING, CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION, APOPTOSIS 5,25,50

WAS 2 3 CHEMOKINE_SIGNALING, FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 23,28,44

PIK3R1 14 3 T CELL RECEPTOR SIGNALING, B CELL RECEPTOR SIGNALING, TOLL LIKE RECEPTOR
SIGNALING and 11 others

7,8,24
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dominant but considerably significant (32.5%) associ-
ation with gene-set DC45 (Fig. 4d).
One overlapping gene of a particular interest was

CD80, a protein found on monocytes that provides a
costimulatory signal necessary for T cell activation and
survival. It is a ligand for two different proteins on the T
cell surface: CD28 (for auto-regulation and intercellular
association) and CTLA-4 [43, 44]. CD80 was associated
with gene-sets DC45, DC36 and DC46 suggesting that
CD80 has a multifunctional role in induction of several
gene-sets. Genes like CD80 are involved in stimulating
multiple down-stream events and therefore do not have
a strong membership to one particular gene-set. These
genes are critical in developing intervention strategies
and understanding mechanisms of cross-talk, however,
are typically ignored by hard clustering algorithms.

Gene-sets enriched in ISGs have distinct temporal patterns
The data-driven clustering in context-specific manner can
reveal sets of genes which are functionally diverse even
though they are typically grouped together [37, 38]. Spe-
cifically, previously known ISGs were grouped into 4
gene-sets (DC21, DC26, DC36 and DC45). Gene-sets
DC21 and DC26 were down-regulated with time whereas
gene-sets DC36 and DC45 were up-regulated with time
(Fig. 5a). The mean temporal expression pattern of gene-
set DC26 was different than that of gene-set DC21
(Fig. 5a). Similarly, at any given time, the mean expression
of gene-set DC45 was more than twice compared to that
of gene-set DC36. Also, gene-sets DC45 and DC26 were
more steeply up and down regulated as compared to the
gene-set DC36 and DC21 respectively. Previously, time
delays have been used to infer regulatory relationships
[45] suggesting that gene-set DC45 might regulate gene-
set DC36 and gene-set DC26 might regulate gene-set
DC21. Similarly, other clusters (Fig. 5b and c) that were
enriched with same pathway showed differences in the
magnitude of gene expression, rate of activation and sign
of mean expression.

FCM clustering is flexible and comparable to other widely
used clustering methods
The comparison of FCM with commonly used algo-
rithms such as k-means and hierarchical clustering using
Ward’s method yielded comparable results. Both FCM
and K-means clustering were performed by optimizing ini-
tial cluster centers by Ward’s method. Genes from FCM
solution were associated with a unique cluster (one with
which a gene has a maximum membership value) thus
producing hard clusters that can be compared to the solu-
tion of k-means and hierarchical clustering algorithms.
Cluster sizes, mean node degrees, mean local CCs and
mean global CCs were compared for the assessment of
cluster quality. K-means, hierarchical clustering and FCM
produced 45, 44 and 44 clusters respectively that had
higher local CC than the global CC indicating the
identification of a comparable number of cohesive
clusters. K-means and hierarchical clusters had a mini-
mum of 13% and 30%, and a maximum of 100 and 96%
respective overlap with FCM clusters (Fig. 6a). This sug-
gests that K-means, Ward’s hierarchical method and FCM
were able to pick fundamental characteristics of gene ex-
pression data. Additionally, enrichment of KEGG pathways
and ISGs in the clusters from all three methods suggested
that ISGs and genes involved in Cytokine-Cytokine recep-
tor signaling pathways robustly cluster together (Fig. 6b).
In conclusion, FCM is not only comparable with other
clustering methods but also facilitate identification of genes
with the possible multi-functional role.

Application of FCM to other cell-types
ECs and DCs are early responders to the viral infections,
which signal through pathogen recognition receptor
induced pathways. Comparison of genome-wide gene-
expression profiles across two cell-types reveals a small
overlapping sub-network and a large cell-specific re-
sponse to influenza infections [20]. Application of FCM
pipeline to EC dataset revealed 34% (1298) of overlap-
ping genes and significant enrichment of several KEGG

a b c

Fig. 5 The temporal expression of the gene-sets enriched with KEGG pathways. Mean temporal expression of gene-sets significantly enriched
(p < 0.01) with a ISGs (DC21, DC26, DC36 and DC45), b Toll-like receptor signaling pathway (DC18, DC37 and DC46) and c MAPK signaling pathway
(DC6, DC10 and DC27)
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pathways and ISGs in 39 out of 50 EC gene-sets (Fig. 7a
and b). 167 overlapping genes were common in EC and
DC (Fig. 7d), and 9 overlapping genes (PYCARD,
ATP6V1H, ENO1, HSPA1A, PTPN11, CCNH, CSF1,
CXCL2 and HK2) were common in DCs, ECs and also
in KEGG pathways (Fig. 7d). In conclusion, FCM can be
robustly applied to different cell-specific transcriptomic
data to identify overlapping genes.

Development of FIGS: a Fuzzy Inference of Gene-sets
package
The power of GSEA-like test will be improved by using
robust context-specific gene-sets. To facilitate the use of
computational model presented in this study we developed
a Matlab-based installable package called ‘Fuzzy Inference
of the Gene-sets (FIGS)’ (available at https://github.com/

Thakar-Lab/FIGS). This package can be used to obtain
gene-sets from matrix defining the pair-wise distance
between the genes. FIGS also provide an option to up-
load pathways for enrichment analysis of gene-sets.
FIGS package requires three parameters: number of
clusters, fuzziness allowed between the clusters, and
cluster association criteria to produce fuzzy gene-sets.
Once the number of clusters and the amount of overlap
between the clusters (fuzziness) is defined, the user has
four different choices for associating genes to the
clusters: 1) genes are assigned to a unique cluster based
on their highest degree of membership, 2) distribution
based association method described and used in this
manuscript, 3) cluster with membership value higher
than mean of the maximum membership values, and 4)
user defined threshold (between 0-1). The results are

a

b

Fig. 6 Comparison of FCM with hard clustering methods. a Number of genes overlapping between FCM gene-sets and k-means with Ward’s
initialization (bottom), and Ward’s hierarchical clustering (top) and b the enrichment of ISGs and KEGG pathways by Fisher's exact test in clusters
identified by K-mean, hierarchichal and FCM methods
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stored in tabular form and are also displayed as interactive
circular graphs. Other functionalities are described in the
user’s manual. For those interested in exploring or using
the gene-sets produced from the meta-analysis of tran-
scriptomics response of dendritic cells and epithelial cells
to influenza infection can access FIGS-Influenza pack-
age at https://github.com/Thakar-Lab/FIGS-Influenza.
In FIGS-Influenza users can upload their differentially
expressed genes or genes of interest for enrichment
across fuzzy clusters.

Discussion
Unsupervised clustering of genome-wide gene expres-
sion data is a frequently used tool to identify genes with
similar patterns across treatments and/or time-points.
We and others have frequently used hierarchical cluster-
ing algorithm to identify such groups of genes [20, 41].
Chaussabel et. al. introduced a concept of modules

which are derived using K-means clustering and can be
used as a set of a priori defined genes in pathway ana-
lysis [9, 10]. However, these hard clustering algorithms
do not fully reproduce the observed topology of the
biological pathways. Specifically, all public repositories
of the biological pathways share genes across multiple
pathways indicating diversity in the functional roles of
these genes. Here we present a soft clustering tech-
nique to identify gene-sets with overlapping genes that
reproduce the characteristics of the pathways in the
public repositories and define robust gene-sets by
meta-analysis.
We present a pipeline using FCM which has been

optimized for cell-specific transcriptomic studies. The
integration of multiple context-specific datasets provides
more robust and universal gene-sets as compared to the
FCM performed on individual data set. FCM parameters
optimized in this study are based on the distribution of

a b

c d

Fig. 7 Application of FCM pipeline on EC dataset. a The enrichment of KEGG pathways and ISGs in EC FCM gene-sets, five colors ranging from
blue to yellow represent –log10 (p-value) ≤1.30, >1.30 and ≤3, >3 and ≤4, >4 and ≤5, and >5 calculated by hypergeometric test, b Circular graph
represents overlap between the EC FCM gene-sets, c number of genes in 50 EC FCM gene-sets, and d Venn diagram representing number of
genes overlapping between at least two FCM gene-sets in DC, EC, and KEGG/ISGs pathways
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cluster association values. The upper bound of fuzziness
values (m) and the distribution based cluster association
have been suggested previously but never used for gene-
gene association networks [28]. Additionally, our fuzziness
selection criteria, selection of robust initial centroids by
Ward’s method and validation of the clustered gene-sets
is extremely relevant to human immunology studies.
Interestingly, FCM pipeline developed here produced
gene-sets that were concise and robust compared to
previously defined criteria for inference of gene-sets for
pathway analysis [46].
FCM pipeline proposed here will improve the data-

driven inference of gene-sets by two ways. First, by
identifying overlapping genes that span across multiple
gene-sets. These multi-functional genes have diverse
roles in signal transduction (e.g. CCL23) and cross-talk
between different pathways (e.g. MAP3K1 and GAB2)
(Table 1). Thus, in addition to assessing activities of
gene-sets by gene-set enrichment method, separate
evaluation of multi-functional genes connected to the
enriched gene-sets will improve follow-up experiments
required to provide mechanistic insights. Second, con-
necting different gene-sets through the multi-functional
genes will improve interpretation of gene-sets that are
not enriched in known biological processes. Thus, FCM
pipeline will significantly increase the number of novel
pathways studied followed by high-throughput omics ex-
periments. In conclusion, the results show that the FCM
pipeline recapitulates topological characteristics of the
biological pathways and will improve data-interpretation
required for follow-up experiments.
We adapted Fuzzy-C-Means clustering algorithm, which

is similar to previously used K-means clustering algorithm
[9, 10], but in addition allows identification of the genes
with functional roles across more than one cluster. One
reason for the limited use of FCM in transcriptomic stud-
ies is the difficulty in optimizing the FCM parameters and
initial centroids. Unlike previously suggested method of
assigning centroids using prior biological knowledge [47]
we use Ward’s method. The Ward’s method used in our
study infers robust clusters. Moreover, our previous ana-
lysis shows that genes defined by the prior biological
knowledge do not always form cohesive clusters leading to
erroneous clustering solutions. Additionally, parameters
optimized by the previous applications of FCM for yeast
transcriptomic data cannot be applied to the transcrip-
tomic data generated from humans [28, 48–51].
Use of gene-sets derived from context-specific tran-

scriptomic data in the public domain will enhance the
ability to develop hypotheses from high-throughput
experiments. Cell-type is one of the critical contexts for all
immunological studies and here we propose the FCM pipe-
line that can be applied to different cell-types. However, our
previous study reveals that gene-gene associations inferred

from cell-specific independent experiments are more ro-
bust than a mixture such as peripheral blood monocytes
(PBMCs) [20]. Thus, even though FCM parameters opti-
mized here could be applied to two different cell-types; it is
likely that the parameters of FCM will need to be character-
ized separately for PBMC datasets.
In future the proposed pipeline will be applied to tran-

scriptomic data measuring cell-type specific responses to
the stimuli, purified proteins or viruses, and FIGS package
will be expanded to include these results.

Conclusions
In this study we develop a pipeline using Fuzzy-C-Means
clustering algorithm to identify multi-functional genes
from meta-analysis of context-specific transcriptomic
datasets. Additionally, the approach proposed here reveals
novel gene-sets and facilitates their interpretation. More-
over, delivery of our pipeline by interactive FIGS package
(https://github.com/Thakar-Lab/FIGS) will increase the
accessibility and usability of the data-driven context-
specific gene-sets in future studies.

Additional file

Additional file 1: Figure S1. FCM pipeline facilitates functional
interpretation of novel DC gene-sets. FCM DC gene-sets without
enrichment of the immunological pathways (DC1, DC3, DC4, DC9,
DC19, DC34 and DC35) were associated with gene-sets enriched in
known-pathways facilitating interpretation of novel gene-sets.
(PPTX 184 kb)
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