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Abstract

Development of “immune-based targeted therapy” in oncology has limited
experience with signal pathway modulation. However, as we have become
better versed in understanding immune function related to anticancer response,
“hints” of specific targets associated with sensitivity and resistance have been
identified with targeted immune therapy. This brief review summarizes the
relationship of several targeted immune therapeutics and activity associated
clinical responsiveness.

Open Peer Review

Referee Status: +" +'

Invited Referees

1 2
version 1 v v
published
18 May 2017

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000
Faculty. In order to make these reviews as
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are

not formally published.

1 David Fisher, Harvard Medical School
USA

o Lei Zheng, Johns Hopkins University
School of Medicine USA

Discuss this article

Comments (0)

Page 1 of 8


http://f1000research.com/channels/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/6-710/v1
http://orcid.org/0000-0002-2234-2381
https://f1000research.com/articles/6-710/v1
http://dx.doi.org/10.12688/f1000research.10795.1
http://dx.doi.org/10.12688/f1000research.10795.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.10795.1&domain=pdf&date_stamp=2017-05-18

FIOOOResearch F1000Research 2017, 6(F1000 Faculty Rev):710 Last updated: 18 MAY 2017

Corresponding author: John Nemunaitis (jnemunaitis@marycrowley.org)

How to cite this article: Manning L and Nemunaitis J. Harnessing the immune response to target tumors [version 1; referees: 2 approved]
F1000Research 2017, 6(F1000 Faculty Rev):710 (doi: 10.12688/f1000research.10795.1)

Copyright: © 2017 Manning L and Nemunaitis J. This is an open access article distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: The author(s) declared that no grants were involved in supporting this work.
Competing interests: JN is a shareholder in Gradalis, Inc.

First published: 18 May 2017, 6(F1000 Faculty Rev):710 (doi: 10.12688/f1000research.10795.1)

Page 2 of 8


http://dx.doi.org/10.12688/f1000research.10795.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.10795.1

Introduction

Although the immune system distinguishes self versus non-self
antigens with the intent to eliminate cells expressing non-self
antigens, cancer cells have developed mechanisms to escape or
suppress the “non-self attack”, thereby enabling tumor prolifera-
tion and progression. Increasing numbers of innovative immuno-
therapies are being developed that address immune modulation
of non-self targets to reverse cancer defenses.

Checkpoint inhibitors

Several targets have been associated with evidence of clinical ben-
efit, resulting in a broad spectrum of investigational and approved
immunotherapies. These include cellular therapies (adoptive T-cell
and dendritic cell therapy, cytokine-induced killer cells, tumor vac-
cines, and autologous tumor cell therapy) and checkpoint inhibitors
(PD-1/L-1 and CTLA-4 inhibitors). Several checkpoint inhibitors
have shown superior clinical benefit over standard of care'”;
however, a high percentage of patients do not show durable
response rates in monotherapies or combination therapies with
checkpoint blockade. Factors like tumor-infiltrating lymphocyte
(TIL) infiltration and PD-L1 expression levels are associated with
response’. In addition, tumor mutation burden (TMB) appears
to be a prognostic marker for immune response’. During cancer
cell proliferation, somatic mutations increase the expression of a
variety of tumor-associated antigens and neoantigens. Studies show
that high TMB correlates with the amount of immunogenic neoan-
tigens (P <0.0001), presented by major histocompatibility complex
(MHC) molecules to immune effector cells, inducing higher dura-
ble immune responses (overall response rate of 63% versus 0%;
P = 0.03) and progression-free survival prolongation (14.5 versus
3.7 months; P = 0.01) than in tumor types with lower mutation
burden’. Regardless of histology type, tumors with a mean muta-
tional load of more than 10 somatic mutations per megabase of cod-
ing DNA appear more likely to be immunogenic to effector T cells
eliciting antitumor immunity’*. Other cancer types, such as color-
ectal cancer, and interestingly subgroups with a high number of
somatic mutations and potential mutation-associated neoepitopes
appear to correlate with higher responses to checkpoint inhibitors in
mismatch repair-deficient tumors’. Recent studies show that the
overall response rate to PD-1/L-1 therapies in high TMB tumor
types has been durable for years with delayed relapse or disease
progression'’. On the other hand, signal pathways, such as those
associated with interferon receptor expression related to loss of
JAK 1 or JAK 2 function, result in unresponsiveness to interferon
gamma, a common antiproliferative cytokine associated with onco-
Iytic activity. This effect has been well demonstrated in a subset of
PD-1/L1-refractory patients. Zaretsky e al."’ identified inactivat-
ing mutations in JAK 1 and 2 that silence the CD8 T cell-induced
interferon gamma signaling cascade, an adaptive antitumor
response. Another mechanism such as beta 2-microglobulin inac-
tivation results in loss of MHCI1 expression. Moreover, muta-
tions of death receptors—like Fas or tumor necrosis factor-related
apoptosis-inducing ligand—are associated with insensitivities
against granzymes or perforin or both, which also play major
roles in immune escape and resistance.

Bu et al.'" discussed PD-1 resistances and highlighted a pattern of
upregulated genes first observed in patients with PD-1-resistant
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melanoma'”, termed innate PD-1 resistance effect. The analy-
sis of somatic mutanomes and transcriptomes of pretreatment
melanoma biopsies included the comparison of differentiated gene
expression in PD-1 responders versus non-responders. Higher
expressed genes in checkpoint non-responding tumors included
mesenchymal transition genes (AXL, ROR2, WNT5A, LOXL2,
TWIST2, TAGLN, and FAP), immunosuppressive genes (IL10,
VEGFA, and VEGFC), and monocyte and macrophage chemo-
tactic genes (CCL2, CCL7, CCLS, and CCLI3)", while immune
responsive tumors also contained transforming growth factor beta
(TGFP) signaling defects.

To address and overcome resistant mechanisms, ongoing studies
are extensively investigating combination approaches (that is,
with checkpoint inhibitors). For example, experiments of targeted
inhibition of mitogen-activated protein kinase show synergy with
PD-1/L1 pathway inhibition and increases in CD8 T-cell number
within the tumor environment in association with increased tumor
response’”.

Adoptive T-cell therapies

Adoptive dendritic cell or T-cell therapies show clinically mean-
ingful value in hematologic malignancies, and a small number of
case reports support efficacy in solid tumors with demonstration of
durable clinical responses'*'°. For example, 20 to 25% of patients
with metastatic melanoma showed durable responses to expanded
TIL therapies'*'"". This is most likely related to neoantigen sig-
nal identification. A remarkable case of response of adoptive
T-cell therapy to a common neoantigen target was recently dem-
onstrated to KRAS GI12D mutation'® and other, lesser-known
mutations'*'". However, currently, the majority of cancer vac-
cines and adoptive T-cell approaches fall short of significant effi-
cacy targeting pre-selected MHC-dependent (genetically modified
T cells) or independent—chimeric antigen receptor-T (CAR-T)—
antigens showing limited activity in solid tumors, possibly related
to the lack of knowledge of relevant neoantigens (Table 1). While
CD19-targeting CAR-T cell therapies have demonstrated curative
events in B-cell malignancies'*", efficacy in solid tumors appears
to be limited by heterogeneity, lack of relevant tumor-specific or -
associated antigens and low immunogenicity”’, in balance with other
immunosuppressive pathways not addressed within the tumor
microenvironment.

Adoptive T-cell therapy “exhaustion” may also be influenced by
upregulation of pathways such as PD-L1 expression on tumor cells.
Strategies to convert the negative signal of PD-L1 to co-stimulatory
receptors by PD1:28 chimer alteration showed encouraging results
in activation of CDS8 effector T cells’'. Tran et al. identified CDS8
T-cell responses against mutant KRAS G12D and HLA-C*08:02
in a patient with colorectal cancer, receiving a single-dose
infusion of 1.48 x 10" TILs (approximately 75% CD8 T cells) with
durable regression of lung metastases with disease progression
9 months after treatment'®.

Tumor signaling/microenvironment modulation

Overcoming tumor-induced immunosuppression can also
involve tumor signal modulation and microenvironment influence.
Altered expressions of survival genes (Bcl-xL), increasing the
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Table 1. Cellular immunotherapies.

Target

Tumor type(s)

Chimeric antigen receptor-T cell therapies/targets

CD19

Mesothelin
L1-CAM
GD2
Lewis Y
EGFRuvIII
HER2

CD20
CEA

MUC-16/IL-12
WT1

CAIX

FAP

PSMA

Kappa light chain (kIC)

CD30
HLA-A1/MAGE1
HLA-A2/NY-ESO-1
MUC1

VEGFR-2
Adoptive cell therapies

Autologous tumor-infiltrating
lymphocyte therapy and IL-2

Dendritic cell vaccine and cytokine-
induced killer cell therapy

Adoptive T-cell transfer

Dendritic cell-derived exosomes
(Dex)

Adoptive CD8* T cells
Autologous tumor cell therapy
Vigil EATC

B-cell malignancies

Mesothelioma, lung cancer, breast cancer
Metastatic neuroblastoma

Neuroblastoma

Myeloid malignancies

Brain tumor

Colon cancer, HER2-positive lung cancer, malignant
glioma, Her2-positive sarcoma

Follicular and mantel cell lymphoma

Stomach cancer, metastatic adenocarcinoma, breast
cancer

Ovarian cancer

Acute myeloid leukemia, NSCLC, breast, pancreatic,
ovarian, colorectal cancer, mesothelioma

Renal cell carcinoma
Malignant pleural mesothelioma
Prostate cancer

B-cell lymphoma, chronic lymphocytic leukemia,
multiple myeloma

Hodgkin’s lymphoma, non-Hodgkin’s lymphomas
Melanoma
Sarcoma, melanoma

Ovarian, breast, pancreas, colorectal, malignant
glioma, NSCLC, hepatocellular

Solid tumors

Metastatic melanoma

Hepatobiliary, pancreatic cancer

Metastatic melanoma

NSCLC, melanoma, colorectal cancer

KRAS, G12D, colorectal

Ovarian cancer, Ewing’s sarcoma, NSCLC,
melanoma, triple-negative breast cancer, solid tumors

IL, interleukin; NSCLC, non-small cell lung cancer.

Reference/Clinical trial(s)

18,19; NCT02975687;
NCT02842138; NCT02813837

36,37; NCT02930993; NCT02706782
38; NCT02311621

25,39; NCT02107963; NCT02919046
24,40; NCTO1716364

NCT01454596

26,41; NCT00889954;
NCT00902044; NCT01109095

42,43; NCT00621452
44; NCT00673829; NCT00673322

45; NCT02498912
27,28; NCT02408016

46,47

48

NCT00664196; NCT01140373
NCT00881920

NCT01316146
49,50
51

52; NCT02587689; NCT02617134;
NCT02839954

53,54; NCT01218867

14

55

15
56-59

16

32-35
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expression of dominant negative TGF[ receptors to overcome
inhibitory effects’, regulatory T suppression, indoleamine 2,3-
dioxygenase downregulation, and other signaling microenviron-
ment therapeutics, such as WNT/B-catenin signaling pathway”’, are
being tested to address benefit opportunity.

CAR-T: selective antigen targets

Targeting driver mutations or their de novo neoepitopes are very
attractive and appear to be very promising in effective anticancer
therapies. There are several cancer-associated or -specific antigen-
loaded CAR-T cell therapies, selected by different algorithms,
in clinical trials to investigate further efficacy in solid tumors
(Table 1). In vivo activity of gene-modified T cells was demon-
strated in the delayed growth and prolonged survival of Lewis Y
antigen CAR-T cell therapy in lymphoma with the report of two
cases with stable disease’. Louis et al. reported other responses,
including three complete responses in patients with neuroblastoma
treated with specific CAR-T cells targeting GD2 ganglioside™.
HER2-positive colon, lung cancer, and sarcomas are also under
investigational therapy with HER2 CAR-T therapy, showing prom-
ising results with stable diseases for 12 weeks up to 14 months
but no partial or complete responses in HER2-positive sarcomas?.
Other targets—that is, carcinoembryonic antigen (CEA) in colon
cancer and WT1 in mesothelioma and ovarian cancer’**—are being
studied as well. Among the most challenging aspects of adoptive cell
therapies and CAR-T engineering are the identification and use of
antigens for focused immune effector cell activation to cancer tar-
gets only. Despite the large number of investigated tumor antigens
with limited encouraging results, high rates of undesirable off-tumor
effects, such as cytokine-release syndrome (CRS) or other immune-
related adverse events, are widely seen in CAR-T cell therapies.
Thus, new approaches with implications for suicide genes like
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inducible caspase9 or herpes simplex thymidine kinase are under
investigation to enhance the safety of T-cell therapies®’ along
with novel regimens to directly address CRS (that is, interleukin-6
inhibitor)*'.

Interestingly, one investigational personalized cellular immu-
notherapy product with a mechanism directly associated with
autologous DNA engineered tumor cells called Vigil**~* shows
evidence of enhanced tumor-specific antigen targeting via effector
T-cell activation in correlation with clinical benefit in solid tumors.
Autologous tumor cells include the full patient- and tumor-specific
antigen repertoire. This is a unique aspect of the Vigil therapy.

Conclusions

The future is bright for combination immunotherapy, particularly
as exact targets are identified with the tumor microenvironment,
thereby enabling access to tumor “non-self”” neoantigens.
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