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Abstract
Recent years have witnessed critical contributions to our understanding of the
determinants and long-term implications of lung function development. In this
article, we review studies that have contributed to advances in understanding
lung function development and its critical importance for lung health into adult
life. In particular, we have focused on early life determinants that include
genetic factors, perinatal events, environmental exposures, lifestyle, infancy
lower respiratory tract infections, and persistent asthma phenotypes.
Longitudinal studies have conclusively demonstrated that lung function deficits
that are established by school age may track into adult life and increase the risk
of adult lung obstructive diseases, such as chronic obstructive pulmonary
disease. Furthermore, these contributions have provided initial evidence in
support of a direct influence by early life events on an accelerated decline of
lung function and an increased susceptibility to its environmental determinants
well into adult life. As such, we argue that future health-care programs based
on precision medicine approaches that integrate deep phenotyping with
tailored medication and advice to patients should also foster optimal lung
function growth to be fully effective.
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Introduction
Lung development starts in utero and may continue through-
out childhood1,2. Evidence is now emerging that several chronic 
adult diseases—including chronic obstructive pulmonary disease 
(COPD), which is estimated by the World Health Organiza-
tion (WHO) to become the third leading cause of death world-
wide by 20303—may have part of their origins early in life4–9. 
These observations fit well with the Developmental Origins 
of Health and Disease (DOHaD) concept that describes how 
early life exposures may have a long-term impact on diseases in  
adulthood5,6,10–12. Within this framework, we review studies 
that have contributed to recent advances in understanding lung  
function development and its critical importance for lung 
health into adult life. The review covers key determinants, from  
genetics to early life events and environmental exposures, and 
focuses primarily on lung function trajectories from childhood  
to adulthood.

Factors affecting lung function growth
Genetic factors influencing lung function
The genetic determinants for lung function have been evaluated 
in numerous candidate gene studies over the years and in the  
last 5 to 10 years successfully in large genome-wide association 
studies (GWASs). In the most recent GWAS on almost 50,000  
subjects from the UK Biobank followed by replication in 95,000, it 
was concluded that the number of independent genetic associations 
with any lung function parameter—forced expiratory volume in 
one second (FEV

1
), forced vital capacity (FVC), or the FEV

1
/FVC 

ratio—is now 97, representing loci across the whole genome13. 
The total heritability explained by these 97 signals was esti-
mated to 9.6% for FEV

1
, 6.4% for FVC, and 5.2% for FEV

1
/FVC.  

Importantly, most of the identified single-nucleotide polymor-
phisms (SNPs) seem to influence lung function in both children 
and adults, a pattern that has been observed in several studies14–18.  
Many of the identified SNPs have also been associated with COPD 
in previous studies19. Attempts have been made to identify gene 
variants predisposing to different lung function trajectories from 
childhood to adulthood, and in the US CAMP study a SNP on  
chromosome 8 (rs4445257) between CSMD3 and TRPS1 was  
found to be significantly associated with a normal-growth, early-
decline pattern20. However, in adults, genetic variants known to  
be strongly associated with cross-sectional lung function show little 
or no association with the rate of lung function decline over time21.

Recent understanding that the genetic determinants of lung  
function operate across the life cycle lends support to the hypoth-
esis that lung function trajectories from childhood to adulthood 
are at least partly defined at birth and early life. Intriguingly,  
pathway analyses show enrichment in lung function genes for 
developmental processes, and functional genetic and proteomic 
analyses of fetal lung samples also show that several of these genes 
(for example, TMEM163, FAM13A, HHIP, CDC123, PTCH1, 
and RAGE) affect lung development already at the embryonic  
stage22,23. As such, it is possible that variants associated with 
lung function and respiratory disease in adulthood may actually  
influence risk through mechanisms that are at least partly related to 
lung development.

The relation of preterm birth to lung function
Undisputable examples of early life effects are chronic lung  
disease (for example, bronchopulmonary dysplasia) and lung  
function impairment in individuals born very prematurely (fewer 
than 32 gestational weeks)24–27. Recent studies also show that late 
to moderate preterm birth (32 to 36 gestational weeks) is associ-
ated with significant lung function deficits at least up to adoles-
cence, particularly for airflow limitation indices measured as FEV

1
 

and FEV
1
/FVC11,12. Lung function catch-up (that is, recovery of  

deficits observed during childhood) has been reported in some28,29 
but not all11 studies. The long-term clinical relevance of small to 
moderate lung function deficits in childhood related to preterm 
birth and perinatal events is not known. However, concern has been 
raised as to whether individuals born preterm, especially those 
born extremely preterm, may be at risk of developing COPD-like  
phenotypes later in life30. In addition, it is still unclear whether  
preterm birth is associated with a more rapid age-related decline in 
lung function in adulthood. 

Relevance of environmental exposures
Air pollutants may induce airway inflammation, increased airway 
responsiveness, and lung damage and this is partly due to genera-
tion of free radicals and oxidative stress. Exposure to traffic-related 
air pollution has been negatively associated with lung growth  
and lung function (primarily FEV

1
) in children and young adults 

in several studies, leading to increased risk of clinically important 
deficits31–34. In studies from the Swedish BAMSE (Barn/children 
Allergy Milieu Stockholm Epidemiology) cohort, conducted in 
the Stockholm area with air pollution exposure levels well below 
the current WHO guidelines, exposure during the first year of life 
seemed to have the largest impact on later lung function31,32,35. 
Early life exposure is also associated with increased risk of  
asthma throughout childhood36, and interaction with genetic  
factors related to COPD has recently been reported37. These studies 
indicate a vulnerable time window early in life, and this is con-
sistent with the DOHaD hypothesis. However, it is still unclear 
whether early life exposure has long-term effects into adulthood.  
Reports from the Children’s Health Study in California show  
convincing data on the negative impact on lung function indices 
from air pollution exposures later during childhood and adoles-
cence38,39. Notably, improvements in air quality have been shown 
to have positive effects on lung function growth between 11 and 
15 years, indicating that later exposures are very likely to be of 
importance40.

One of the most well-studied risk factors for respiratory disease 
is tobacco smoke exposure. Several studies have reported mater-
nal smoking during pregnancy as a major risk factor for impaired 
lung development41–43. The epidemiological associations have been 
supported by experimental studies showing structural lung defects, 
hyperplasia of neuro-endocrine cells, and decreased lung growth in 
offspring exposed to tobacco smoke in utero44,45 as well as human 
data reporting consistently altered epigenetic profiles in children 
of mothers who smoked during pregnancy46. Secondhand tobacco 
exposure later during childhood has also been associated with per-
sistence of respiratory symptoms into adult life47,48. Indeed, studies 
reporting interactive effects between parental and active smoking 
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in affecting FEV
1
 decline and COPD risk are among the best illus-

trative examples of how risk factors from early and adult life may 
have detrimental joint health effects. In cross-sectional studies of 
active smokers, having a mother who also smoked was linked to 
airflow limitation49 and early-onset50 and severe51 COPD and these 
observations have been recently expanded to decline of lung func-
tion in longitudinal studies, as described in the following sections. 
Despite these well-known negative health effects and anti-smoking 
campaigns worldwide, smoking during pregnancy and elsewhere 
remains a major public health challenge.

Dietary factors and physical activity
Our constantly changing lifestyle has a broad impact on health and 
well-being. Diet and physical activity are modifiable factors that 
may influence lung development and respiratory disease across the 
life span. Systematic reviews show evidence of a beneficial effect 
of fresh fruits, and antioxidant vitamins on recurrent wheeze and 
asthma, but most evidence stems from cross-sectional studies and 
there is a need for more well-designed randomized controlled tri-
als (RCTs)52. In particular, vitamin D has been implicated to have 
a key role in lung development53, and maternal deficiency has 
been reported to be associated with impaired lung development in 
school-aged offspring54,55. Although recent RCTs have shown that 
fish oil-derived fatty acid, vitamin C, or vitamin D supplementation 
during pregnancy may have beneficial effects on offspring respira-
tory health56–59, there are currently no consensus guidelines or rec-
ommendations of specific diets or supplements for lung function 
improvement in children. Results from ongoing clinical studies in 
this area are much anticipated.

Physical activity and fitness have been associated with childhood 
lung function in some60,61, but not all62 studies. However, recent 
longitudinal data show that achieving increased fitness from young 
adulthood to middle age is associated with less decline in lung 
health over time63. These results are encouraging for patients with 
a lung disease.

Role of lower respiratory tract infections
From a clinical point of view, it is well known that infants with 
severe bronchiolitis triggered by, for example, respiratory syn-
cytial virus (RSV) or rhinovirus (RV) are at risk of later asthma 
or lung function impairment, or both. Longitudinal cohorts show 
that children with virus-induced wheezing symptoms during the 
first years of life may outgrow their symptoms later in childhood 
but as a group do not completely overcome their lung function  
impairment64–70. If a child develops recurrent wheeze or asthma 
following lower respiratory tract infection (LRTI) in infancy, he 
or she may be at increased risk for a further deterioration of lung  
function (the two-hit hypothesis65,71,72) or develop an increased  
susceptibility to later noxious environmental exposures as discussed 
below. Whether these early and later lung function insults are  
related to independent risk factors and pathways or instead share a 
genetically determined susceptibility remains to be elucidated.

The underlying mechanism for the association between respi-
ratory tract infection in early life and later respiratory morbid-
ity is not clear. Proposed mechanisms include modulation of the  
immune response, direct airway damage, pre-existing deficits in 

lung function, and genetic susceptibility—highlighting different 
aspects of cause and effect73–77. Some studies suggest that specifi-
cally an early RV wheezing attack or bronchiolitis event is a marker 
of risk for later asthma78, whereas others suggest that the number, 
not the particular viral species, of LRTI episodes in the first years 
of life is of primary importance for later asthma development79. As 
a possible mechanism linking RV to asthma, the gene encoding 
for the RV receptor (C) is the asthma susceptibility gene CDHR3 
on chromosome 7q22. CDHR3 was first identified in a GWAS on 
severe asthma in children80, and only later did experimental work 
lead to the identification of CDHR3 as the virus receptor81. In addi-
tion, variants at the 17q21 asthma locus (ORMDL3) have been 
specifically associated with asthma in children who had had RV 
wheezing illnesses early in life, connecting genetic susceptibility, 
RV infection, and asthma development82.

Lung function trajectories from childhood into adult life
Long-term effects of lung function development into adult life
A large growing body of evidence indicates that lung function 
development in utero, infancy, and childhood may have long- 
lasting effects on respiratory health throughout the life span. Most 
studies have addressed trajectories of lung function from child-
hood into adult life by focusing on FEV

1
 and the FEV

1
/FVC  

ratio as indices of airflow limitation. Consequently, airway  
obstruction—which is defined by an abnormally low FEV

1
/FVC 

ratio and represents the hallmark of COPD4—has been by far the 
most extensively studied spirometric pattern and will be the main 
focus of this section, although we argue that studies addressing the 
early origins of spirometric restriction83–86 are also needed because 
of its remarkable prevalence, morbidity, and mortality burden.

The possible contribution of childhood factors on the natural his-
tory of obstructive lung diseases across the life span has been the 
topic of much debate for decades87–90. In recent years, the impor-
tance of a full growth to maximal lung function in childhood has 
been reinforced by conclusive evidence that COPD can develop 
in mid to late adult life through at least two main trajectories:  
by the classic trajectory of an accelerated FEV

1
 decline in 

adulthood following a normal lung function development in  
childhood (“Rapid FEV

1
 decline” trajectory, red line in Figure 1, 

modified from reference 7) or alternatively by a low maximal lung 
function attained by the beginning of adult life without necessar-
ily an accelerated FEV

1
 decline thereafter (“Low maximal FEV

1
” 

trajectory, black line in Figure 1). Strikingly, in a recent study7 that 
included three large prospective cohorts, about 50% of participants 
with COPD exhibited features compatible with the latter trajectory, 
suggesting that lung function development in childhood may play 
a substantially more relevant role in COPD susceptibility than tra-
ditionally thought.

Early origins of the low maximal lung function trajectory
Among the characteristics associated with a persistently low 
lung function trajectory are the presence of recurrent wheezing, 
asthma, and asthma-related phenotypes in childhood. As several  
longitudinal birth cohorts have now entered their adult years, 
their findings have been consistent in showing substantial track-
ing of asthma-related lung function deficits from childhood into  
adulthood but no evidence of accelerated decline thereafter91,92. 
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Notably, studies that have measured indices of airway resistance and  
airflow at earlier ages71,72 have demonstrated that, although defi-
cits of lung function can be detected as early as one month after 
birth, most children who have persistent wheezing and asthma by 
early school age experience a progressive deterioration of their 
lung function deficits as they transition from infancy to school  
age. These findings suggest that in utero life, infancy, and early 
childhood may be critical windows of opportunity for early  
prevention of long-term sequelae of childhood asthma on lung 
health.

In this context, several recent studies have provided strong  
evidence that the lung function deficits associated with severe  
childhood asthma may lead in a subgroup of patients to the  
development of COPD. In the Melbourne study93 and Scottish 
WHEASE (What Happens Eventually to Asthmatic children:  
Sociologically and Epidemiologically) cohort94, children with 
asthma—particularly if severe—had a striking increase in the risk 
of having a post-bronchodilator FEV

1
/FVC ratio of less than 70% 

by the age of 50 to 65 years. Consistent with these epidemiologi-
cal data, up to 11% of children with persistent mild to moderate  
asthma in the clinical CAMP study were found to develop COPD 
according to spirometric criteria by age 30 years8. In that study8, 
participants were classified into four groups on the basis of  
visual inspection of their lung function trajectories from childhood 
into young adult life: normal growth, normal growth and early 
decline, reduced growth, and reduced growth plus early decline. 
In line with findings from the studies described above, nearly 85% 
of the cases who went on to develop COPD by young adulthood 

occurred among participants who experienced a reduced lung  
function growth in childhood and adolescence. Interestingly, despite 
the relatively short follow-up in adulthood, an early start of lung 
function decline appeared to also carry an increase in COPD risk. 
Future studies should address to what extent a short plateau phase 
or early decline of lung function may also contribute to COPD 
development among patients with asthma.

It should be noted that the tracking of lung function from  
childhood into adult life is not observed only among individuals 
with asthma but has been repeatedly shown in samples from the  
general population. Tasmanian children who were in the lowest  
quartile of FEV

1
/FVC at age 7 years had a six- to 16-fold increase 

in their odds for COPD in the absence or presence of concomi-
tant asthma by age 459. In the population-based Tucson Children’s  
Respiratory Study, participants in the lowest quartile of airway func-
tion in early infancy had significantly lower values for FEV

1
 and 

FEV
1
/FVC up to age 22 as compared with participants in the upper 

three quartiles95, and a distinct group of individuals with persistently 
low lung function between the ages of 11 and 32 years (a large pro-
portion of whom did not have asthma) could be identified by using 
latent class analysis10. Interestingly, participants in this impaired 
lung function trajectory, as compared with participants in the  
normal lung function trajectory, were nearly twice as likely to have 
had RSV lower respiratory tract infections in the first three years of 
life. Thus, we argue that multiple host factors, exposures, and events 
that have a direct impact on lung function at any developmental 
stage may in principle contribute to put a child in a trajectory of  
persistently low lung function into adult life, with a very broad  

Figure 1. Lung function trajectories to chronic obstructive pulmonary disease (COPD). The figure represents four lung function trajectories 
identified in the study by Lange et al.7 based on levels of forced expiratory volume in one second (FEV1) before the age of 40 years (below 
or above 80% of predicted value) and the presence or absence of Global initiative for chronic Obstructive Lung Disease (GOLD) grade of at 
least 2 COPD at the end of follow-up. The y-axis represents the percentage of expected maximally attained FEV1. Modified from 7.

Page 5 of 11

F1000Research 2017, 6(F1000 Faculty Rev):726 Last updated: 19 MAY 2017



range of effect magnitude. What makes some children robust to the 
effects of these risk factors and why some children may develop 
only initial lung function deficits in response to these exposures 
that are transient and eventually overcome them as they enter adult 
life remain largely unknown and, as discussed in the concluding  
section, a question with critical implications for prevention.

Early origins of rapid lung function decline
Evidence is beginning to emerge that early life factors may also  
predispose to an accelerated decline of lung function in adult life 
(red line in Figure 1). Among adult participants in the European  
Community Respiratory Health Survey, recalling the pres-
ence of “disadvantage” factors in childhood (that is, maternal 
asthma, paternal asthma, childhood asthma, maternal smoking, or  
childhood respiratory infections or a combination of these) was 
associated not only with the presence of airflow limitation but 
also with an accelerated decline of FEV

1
96. Similarly, in the adult  

CARDIA (Coronary Artery Risk Development in Young Adults) 
Study, a low childhood socioeconomic status (as assessed by  
self-reported parental education) was associated with a steeper 
decline of both FEV

1
 and FVC in adult life, although the specific  

factor(s) involved in explaining this association could not be  
identified97.

Despite this evidence, data in support of direct effects of early  
life factors on accelerated decline of lung function in adult life 
are still sparse and consequently the magnitude and consistency  
of these associations unclear. This may be due to the inherent  
methodological difficulties of assessing these effects within a 
longitudinal study design or to the possibility that these effects 
are synergistic with other exposures in adult life. Although both  
scenarios are likely to be correct, the latter is supported by the 
recent and growing body of evidence from epidemiological and 
experimental studies suggesting that early life factors may increase 
susceptibility to the effects of adult life exposures in affecting 
lung disease. The presence of RSV LRTIs in the first 3 years of  
life and other childhood factors have been shown to interact with 
active smoking and occupational hazards in adulthood to affect 
respiratory symptoms and asthma risk98,99. Most interestingly, 
early exposure to maternal and parental smoking has been shown 
to enhance susceptibility to smoking-related accelerated decline 
of lung function in adulthood100,101. In the Tucson cohort, partici-
pants were classified on the basis of exposure to parental smok-
ing (assessed at birth) and active smoking in adult life101. Between 
the ages of 11 and 26 years, participants with exposure to both 
parental and active smoking had the steepest decline in sex-, age-, 
and height-adjusted residuals of FEV

1
/FVC, FEV

1
, forced expira-

tory flow at 25% to 75% of FVC (FEF
25–75

), and FEF
25–75

/FVC. In 
contrast, no significant deficits were seen at this young age among 
participants who were exposed to only parental or only active 
smoking, indicating that early life (or in utero) exposure to envi-
ronmental tobacco smoke increases susceptibility to the deleterious 
effects that active adult smoking will have on lung health. The exact  

mechanisms through which exposures to tobacco smoke in early 
and adult life interact with each other in affecting susceptibil-
ity remain largely unknown, as does the extent to which these  
synergist effects with adult life exposures may apply to other 
early life factors. Epidemiological and clinical studies aimed to  
dissect systematically interactive effects between early and adult 
life events on lung health outcomes are warranted.

Conclusions
Recent years have witnessed critical contributions to our under-
standing of the determinants and long-term implications of lung 
function development. In addition to further delineating the role 
of genetics, perinatal events, childhood environmental exposures, 
lifestyle, infancy LRTIs, and persistent asthma phenotypes, these 
contributions have conclusively demonstrated that lung function 
deficits that are established by school age may track into adult life 
and increase the risk of adult lung obstructive diseases, includ-
ing COPD. Furthermore, these contributions have provided initial  
evidence in support of a direct influence by early life events on an 
accelerated decline of lung function and an increased susceptibil-
ity to its environmental determinants (for example, tobacco smoke) 
well into adult life. Thus, this evidence indicates early life as a  
critical time that may contribute to set the pace of lung aging  
processes that will take place several decades later.

Although this conclusion highlights the critical importance of 
developmental age, it should not undermine in any way the impor-
tance of behavioral and environmental risk factors for obstructive 
lung diseases that take place in adult life. Indeed, avoidance of  
such risk factors in both childhood and adulthood needs to play a 
critical role in primary to tertiary prevention. We argue that tailor-
ing risk profiles and intervention strategies based on information  
from both early and adult life factors may provide a significant 
improvement in the way we prevent and treat lung disease.

As a concluding note, we point out that although great effort has 
been directed to characterize trajectories of lung function deficits 
and to identify risk factors associated with lung function impair-
ment, less is known about factors influencing optimal lung func-
tion growth or recovery from early deficits or after early insults 
such as preterm birth or a severe LRTI (Figure 2). Indeed, whether 
(and to what extent) lung function catch-up occurs in groups of  
children with early deficits has been insufficiently studied to date. 
Identifying effective strategies—apart from avoiding obvious risk 
factors like tobacco smoke, air pollution exposure, and recurrent 
respiratory infections—to enhance this early catch-up would have 
critical implications. The roles of dietary components and sup-
plementations52,53 and those of physical activity and fitness60–62 are 
among those being investigated. Molecules that may play a direct 
protective role in the lung—such as the club cell secretory protein 
(CC16)—are also being evaluated in epidemiological102,103 and 
clinical104,105 studies and may hold promise as future therapeutic 
strategies.
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In this context, the major advances from recent years in under-
standing the genetic and molecular components of lung function  
not only will pave the way for new asthma and COPD drugs but 
also provide critical knowledge to help doctors and caregivers to 
optimize their patients’ lung health. Future health-care programs 
based on precision medicine approaches that integrate deep  
phenotyping with tailored medication and advice to patients should  
also foster optimal lung function growth to be fully effective.
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