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Abstract _
Genomic aberrations and gene expression-defined subtypes in the large Invited Referees
METABRIC patient cohort have been used to stratify and predict survival. The 1 2
present study used normalized gene expression signatures of paclitaxel drug
response to predict outcome for different survival times in METABRIC patients v
receiving hormone (HT) and, in some cases, chemotherapy (CT) agents. This version 3 report
machine learning method, which distinguishes sensitivity vs. resistance in published
breast cancer cell lines and validates predictions in patients; was also used to 12 May 2017
derive gene signatures of other HT (tamoxifen) and CT agents (methotrexate,
epirubicin, doxorubicin, and 5-fluorouracil) used in METABRIC. Paclitaxel gene ? v
signatures exhibited the best performance, however the other agents also version 2 report report
predicted survival with acceptable accuracies. A support vector machine (SVM) published
model of paclitaxel response containing genes ABCB1, ABCB11, ABCCT, 27 Jan2017
ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, ion 1 5 5
MAP4, MAPT, NR112, SLCO1B3, TUBB1, TUBB4A, and TUBB4B was 78.6% version ¢ ¢
accurate in predicting survival of 84 patients treated with both HT and CT gﬂj;ez%w et een
(median survival = 4.4 yr). Accuracy was lower (73.4%) in 304 untreated
patients. The performance of other machine learning approaches was also
evaluated at different survival thresholds. Minimum redundancy maximum 1 Elana Judith Fertig , Johns Hopkins
relevance feature selection of a paclitaxel-based SVM classifier based on University USA
expression of genes BCL2L 1, BBC3, FGF2, FN1, and TWIST1 was 81.1%
accurate in 53 CT patients. In addition, a random forest (RF) classifier using a 2 Chun-Wei Tung , Kaohsiung Medical
gene signature (ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, University Taiwan

BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2,SLCO1B3,
TUBB1, TUBB4A, and TUBB4B) predicted >3-year survival with 85.5%
accuracy in 420 HT patients. A similar RF gene signature showed 82.7%
accuracy in 504 patients treated with CT and/or HT. These results suggest that Comments (0)
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tumor gene expression signatures refined by machine learning techniques can
be useful for predicting survival after drug therapies.

“%% This article is included in the Machine learning: life

sciences collection.
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(i5757:3 Amendments from Version 2

We have addressed the reviewers’ comments regarding overfitting by
1) deriving and validation biochemically inspired machine learning
models using the METABRIC Validation patient dataset independently
of the Discovery data and 2) assessing the accuracy of the Discovery
dataset-based models with patient data derived from an independent
source (reference 5). In addition, we have stratified the patients by
breast cancer subtype and evaluated each subtype with the combined
Discovery+Validation dataset-based models using all of the feature
selection methods (Supplementary File 1).

See referee reports

Introduction

Current pharmacogenetic analysis of chemotherapy makes quali-
tative decisions about drug efficacy in patients (determination of
good, intermediate or poor metabolizer phenotypes) based on vari-
ants present in genes involved in the transport, biotransformation,
or disposition of a drug. We have applied a supervised machine
learning (ML) approach to derive accurate gene signatures, based
on the biochemically-guided response to chemotherapies with
breast cancer cell lines', which show variable responses to growth
inhibition by paclitaxel and gemcitabine therapies™’. We analyzed
stable* and linked unstable genes in pathways that determine their
disposition. This involved investigating the correspondence
between 50% growth inhibitory concentrations (GL) of paclitaxel
and gemcitabine and gene copy number, mutation, and expression
first in breast cancer cell lines and then in patients'. Genes encoding
direct targets of these drugs, metabolizing enzymes, transporters,
and those previously associated with chemo-resistance to pacli-
taxel (n=31 genes) were then pruned by multiple factor analysis
(MFA), which indicated that expression levels of genes ABCCI0,
BCL2, BCL2LI, BIRCS5, BMF, FGF2, FNI, MAP4, MAPT,
NKFB2, SLCOIB3, TLR6, TMEM243, TWISTI, and CSAG2 could
predict sensitivity in breast cancer cell lines with 84% accuracy.
The cell line-based paclitaxel-gene signature predicted sensitiv-
ity in 84% of patients with no or minimal residual disease (n=56;
data from 5). The present study derives related gene signatures
with ML approaches that predict outcome of hormone- and
chemotherapies in the large METABRIC breast cancer cohort®.

Methods

SVM (Support Vector Machine) learning: Previously, paclitaxel-
related response genes were identified from peer-reviewed
literature, and their expression and copy number in breast cancer
cell lines were analyzed by multiple factor analysis of GI; values
of these lines” (Figure 1). Given the expression levels of each gene,
a SVM is evaluated on patients by classifying those with shorter
survival time as resistant and longer survival as sensitive to hormone
and/or chemotherapy using paclitaxel, tamoxifen, methotrexate,
5-fluorouracil, epirubicin, and doxorubicin. The SVM was trained
using the function fitcsvm in MATLAB R2014a’ and tested with
either leave-one-out or 9 fold cross-validation (indicated in
Table 1). The Gaussian kernel was used for this study, unlike
Dorman et al." which used the linear kernel. The SVM requires
selection of two different parameters, C (misclassification cost)
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and sigma (which controls the flexibility and smoothness of
Gaussians)®; these parameters determine how strictly the SVM
learns the training set, and hence if not selected properly,
can lead to overfitting. A grid search evaluates a wide range of
combinations of these values by parallelization. A Gaussian
kernel selects the C and sigma combination that lead to the low-
est cross-validation misclassification rate. A backwards feature
selection (greedy) algorithm was designed and implemented in
MATLAB in which one gene of the set is left out in a reduced gene
set and the classification is then assessed; genes that maintain or
lower the misclassification rate are kept in the signature. The pro-
cedure is repeated until the subset with the lowest misclassifica-
tion rate is selected as the optimal subset of genes. These SVMs
were then assessed for their ability to predict patient outcomes
based on available metadata (see Figure 1 and reference 1). Inter-
active prediction using normalized expression values as input is
available at http://chemotherapy.cytognomix.com.

RF (Random Forest) learning: RF was trained using the WEKA
3.7° data mining tool. This classifier uses multiple random trees for
classification, which are combined via a voting scheme to make
a decision on the given input gene set. A grid search was used to
optimize the maximum number of randomly selected genes for
each tree in RF, where k (maximum number of selected genes
for each tree) was set from 1 to 19. Figure 2 depicts the therapy
outcome prediction process of a given patient using a RF consist-
ing of a series of decision trees derived from different subsets of
paclitaxel-related genes.

Augmented Gene Selection: The most relevant genes (features)
for therapy outcome prediction were found using the Minimum
Redundancy and Maximum Relevance (mRMR) approach'.
mRMR is a wrapper approach that incrementally selects
genes by maximizing the average mutual information between
gene expression features and classes, while minimizing their
redundancies:

mRMR = max ﬁzl(fi,C)—L > 1 f)

2
/€S |S| fi.f,ES

where f; corresponds to a feature in gene set S, I(f,C) is the mutual
information between f, and class C, and I(f, ]j ) is the mutual informa-
tion between features f; and f/

For this experiment, we used a 26-gene signature (genes ABCBI,
ABCBI1, ABCCI1, ABCCI10, BAD, BBC3, BCL2, BCL2LI, BMF,
CYP2CS8, CYP3A4, MAP2, MAP4, MAPT, NRII2, SLCOIB3,
TUBBI, TUBB4A, TUBB4B, FGF2, FNI, GBP1, NFKB2, OPRK],
TLR6, and TWISTI) as the base feature set. These genes were
selected (in Dorman et al.') based either on their known involvement
in paclitaxel metabolism, or evidence that their expression levels
and/or copy numbers correlate with paclitaxel GI,; values. mMRMR
and SVM were combined to obtain a subset of genes that can accu-
rately predict patient survival outcomes; here, we considered 3,
4 and 5 years as survival thresholds for breast cancer patients.
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Figure 1. Biochemically-inspired SVM gene signature derivation workflow. The initial set of genes is carefully selected through the
understanding of the drug and the pathways associated with it. A multiple factor analysis of the Gl values of a training set of breast cancer
cell lines and the corresponding expression levels of each gene in the initial set reduces the list of genes.

Performance was evaluated with several metrics. WEKA deter-
mined accuracy (ACC), the weighted average of precision and
F-measure, the Matthews Correlation Coefficient (MCC) and the
area under ROC curve (AUC).

Results and discussion

Dataset 1. Predicted treatment response for each individual
METABRIC patient''

http://dx.doi.org/10.5256/f1000research.9417.d149864

The predicted and expected response to treatment for each
individual METABRIC patient for each analyses listed in Table 1,
Table 2 and Table 3 are indexed. Patients sensitive to treatment are
labeled with ‘0" while resistant patients are labeled ‘1.

The performances of several ML techniques have been compared
such that they distinguish paclitaxel sensitivity and resistance in
METABRIC patients using its tumour gene expression datasets. We
used mRMR to generate gene signatures and determine which genes
are important for treatment response in METABRIC patients. The
paclitaxel models are more accurate for prediction of outcomes in
patients receiving HT and/or CT compared to other patient groups.

SVMs and RF were trained using expression of genes associated
with paclitaxel response, mechanism of action and stable genes
in the biological pathways of these targets (Figure 3). Pair-wise
comparisons of these genes with those from MammaPrint and
Oncotype Dx (other genomic classifiers for breast cancer) find that

these signatures are nearly independent of each other, with only
a single gene overlap. The distinct differences of these signatures
are due to their methodology of derivation, based on different
principles and for different purposes (i.e. drug response for a spe-
cific reagent). SVM models for drugs used to treat these patients
were derived by backwards feature selection on patient subsets
stratified by treatment or outcome (Table 1). The highest SVM
accuracy was found for the paclitaxel signature in patients treated
with HT and/or adjuvant chemotherapy (78.6%). Since some
CT patients were also treated with tamoxifen, methotraxate,
epirubicin, doxorubicin and 5-fluorouracil, we also evaluated
the performance of models developed for these drugs using the
same algorithm. These gene signatures also had acceptable
performance (accuracies between 71-76%; AUCs between 0.686
— 0.766). Leave-one-out validation (CT and HT, no treatment,
and deceased patients) exhibited higher model performance than
9-fold crossvalidation (CT and/or HT, including patients treated
with radiation).

The RF classifier was used to predict paclitaxel therapy outcome
for patients that underwent CT and/or HT (Table 2). The best
performance achieved with RF showed an 85.5% overall accuracy
using a 3-year survival threshold for distinguishing therapeutic
resistance vs. sensitivity for those patients that underwent HT.

The best overall accuracy and AUC (sensitivity and specificity) for
CT/HT patients using mRMR feature selection for SVM predict-
ing outcome of paclitaxel therapy was obtained for CT patients
with 4-year survival (Table 3). Outcomes for HT patients with
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Table 1. SVM gene expression signature performance on METABRIC patients.
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Paclitaxel: ABCC1, ABCC10, BAD,
BIRC5, FN1, GBP1, MAPT, SLCO1B3,
TMEMZ243, TUBB3, TUBB4B
(C=10000, 6=10)

Tamoxifen: ABCC2, ALB, CCNA2,
E2F7, FLAD1, FMO1, NCOA2, NR1/2,
PIAS4, SULT1E1 (C=100000, 6=100)

Methotrexate: ABCC2, ABCG2,
CDK2, DHFRL1 (C=10, o=1)

Epirubicin: ABCB1, CDA, CYP1B1,
ERBB3, ERCC1, MTHFR, PONT,
SEMA4D, TFDP2 (C=1000, o=10)

Doxorubicin: ABCC2, ABCD3, CBR1,
FTH1, GPX1, NCF4, RAC2, TXNRD1
(C=100000, c=100)

5-Fluorouracil: ABCB1, ABCC3,
MTHFR, TP53 (C=10000, c=100)

Paclitaxel: BAD, BCAP29, BCL2,
BMF, CNGA3, CYP2C8, CYP3A4,
FGF2, FN1, NFKB2, NR1l2, OPRK1,
SLCO1B3, TLR6, TUBB1, TUBB3,
TUBB4A, TUBB4B, TWIST1
(C=10000, 6=100)

Paclitaxel: ABCB11, BAD, BBCS,
BCL2, BCL2L 1, BIRC5, CYP2C8,
FGF2, FN1, GBP1, MAPT, NFKB2,
OPRK1, SLCO1B3, TMEM243
(C=100, 6=10)

Paclitaxel: ABCB1, ABCB11, BBC3,
BCL2L1, BMF, CYP3A4, FGF2,
GBP1, MAP4, MAPT, NR112, OPRK1,
SLCO1B3, TUBB4A, TUBB4B,
TWIST2 (C=100, 6=10)
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76.2

71.4

72.6

75.0

71.4

66.1

75.3

73.4

uolisioaid

0.787

0.761

0.712

0.725

0.749

0.714

0.652

0.752

0.734

ainses|\-4

0.782

0.760

0.711

0.723

0.750

0.714

0.643

0.752

0.733

OO

0.559

0.510

0.410

0.434

0.488

0.417

0.287

0.505

0.467

20NV

0.814

0.701

0.766

0.686

0.701

0.718

0.660

0.763

0.769

Initial gene sets preceding feature selection: Paclitaxel - ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCAPZ29,
BCL2, BCL2L1, BIRC5, BMF, CNGA3, CYP2C8, CYP3A4, FGF2, FN1, GBP1, MAP2, MAP4, MAPT, NFKB2, NR1/2,
OPRK1, SLCO1B3, TLR6, TUBB1, TWIST1. Tamoxifen - ABCB1, ABCC2, ALB, C100RF11, CCNA2, CYP3A4, E2F7,
F5, FLAD1, FMO1, IGF1, IGFBP3, IRS2, NCOA2, NR1H4, NR112, PIAS4, PPARA, PROC, RXRA, SMARCD3, SULT1B1,

SULT1E1, SULT2A1. Methotrexate - ABCB1, ABCC2, ABCG2, CDK18, CDK2, CDK6, CDK8, CENPA, DHFRL 1. Epirubicin
- ABCB1, CDA, CYP1B1, ERBB3, ERCC1, GSTP1, MTHFR, NOS3, ODC1, PON1, RAD50, SEMA4D, TFDP2. Doxorubicin
- ABCB1, ABCC2, ABCD3, AKR1B1, AKR1C1, CBR1, CYBA, FTH1, FTL, GPX1, MT2A, NCF4, RAC2, SLC22A16,

TXNRD1. 5-Fluorouracil - ABCB1, ABCC3, CFLAR, IL6, MTHFR, TP53, UCK2. 'MCC: Matthews Correlation Coefficient.

2AUC: Area under receiver operating curve. ° Surviving patients; * Analysis included patients in the METABRIC
‘discovery’ dataset only; ° SVMs tested with 9 fold cross-validation, all others tested with leave-one-out cross-validation;

% Includes all patients treated with HT,CT, combination CT/HT, either with or without combination radiotherapy; * Median

time after treatment until death (> 4.4 years) was used to distinguish favorable outcome, ie. sensitivity to therapy.
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Figure 2. RF decision tree diagram depicts the therapy outcome prediction process of a given patient, using a RF consisting of k
decision trees. Several DTs are built using different subsets of paclitaxel-related genes. The process starts from the root of each tree and
if the expression of the gene corresponding to that node is greater than a specific value, the process continues through the right branch,
otherwise it continues through the left branch until it reaches a leaf node; that leaf represents the prediction of the tree for that specific input.

The decisions of all trees are considered and the one with the largest number of votes is selected as the patient outcome.

Table 2. Results of applying RF to predict outcome of paclitaxel
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56.6

66.0

85.5

78.6

71.0

82.7

73.6

65.3

uoisioaid

0.510

0.698

0.645

0.731

0.715

0.634

0.685

0.647

ainsespy-4

0.524

0.698

0.636

0.788

0.706

0.627

0.749

0.648

1OOIN

-0.095

0.396

0.230

0.000

0.069

0.059

0.000

0.039

20NV

0.441

0.700

0.653

0.606

0.559

0.632

0.506

0.527

0.602 0.593 0.086 0.588

'MCC: Matthews Correlation Coefficient. AUC: Area under receiver operating
curve; both Discovery and Validation patient datasets analyzed. RF predictions
done using a gene panel consisting of 19 genes (ABCB1, ABCB11, ABCCT,
ABCC10, BAD, BBC3, BCL2, BCL2L 1, BMF, CYP2C8, CYP3A4, MAP2, MAPA4,

MAPT, NR1I2, SLCO1B3, TUBB1, TUBB4A, TUBB4B).
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Table 3. Results of mRMR feature selection for an SVM for predicting outcome of paclitaxel therapy.

Data CcT'
Survival years
(as threshold) 8 4 ° 8
# patients? 53
Accuracy (TP)
(%) 81.1 81.1 84.9 85.7
Precision 0.809 0.813 0.852 0.878
F-Measure 0.809 0.811 0.845 0.794
MccC 0.582 0.625 0.675 0.119
AUC 0.783 0.812 0.82 0.508
SVM Par.
(gamma) 0.0 0.5 1.0 1.0
SVM Par.
(cost) 64 128 8 2
ABCB11,
BCL2,
MAP4,
TUBBT,
ABCB11, GBP1,
MAP4, BCL2, SLCO1B3,
GBP1, GBP1, ABCBH1,
FN1, TVI—KII\\/S7T7, SLCO1B3, BAD,
Selected MAPT, BB Cé’ ABCBH1, TWISTT,
genes BBC3, FGE 2’ BAD, FN1,
FGF2, BCL 2L’ 1 TUBBA4A, TUBB4A,
NFKB2, MAPT, MAPT,
TUBB4B NFKB2, OPRK1,
TUBB4B BBC3,
FGF2,
NFKB2,
ABCCHT,
NR1I2

HT CT+HT
4 5 3 4 5
420 504
79.5 72.9 83.1 74.8 67.9
0.765 0.692 0.795 0.703 0.662
0.726 0.663 0.772 0.672 0.666
0.17 0.173 0.161 0.137 0.238
0.533 0.548 0.53 0.531 0.61
0.75 15 0.75 05 1.0
64 2 16 2 2
ABCB11,
BMF,
BCL2,
MAP4,
aBcB11,  aBcBr1,  UBBT MAP4,
maps,  siLcoss GoCT GBP1,
’ ' SLCO1B3, SLCO1B3,
SLCO1B3,  BAD, ABCB1 BAD
BAD, BAD, TUBBA4A, ’ ’
BAD, MAPT,
GBPY, FNT, MAPT, TWIST1 OPRK1
MAPT,  OPRK1, BBCS3, g 5503
BBC3  BBCS, FGF2, i ‘
MAPT, NFKB2,
NFKB2, NFKB2,
OPRK1, =~ ABCCH,
NR1/2, ABCCH1,
TUBB4B NR1I2 B5CS, NR1I2,
FGF2, TUBB4B
NFKB2,
ABCCH,
NR1/2,
TUBB4B

'For patients treated with CT with 24 Yr survival and CT+ HT for > 5 Yr, the cost for the mMRMR model was set to 64. Of those treated with CT for
>4 Yr, genes were selected using a greedy, stepwise forward search, while in other cases, greedy stepwise backward search was used. Also,
gamma = 0 in all cases. “Predicted responses for individual METABRIC patients are provided in Dataset 1.

3-year survival were predicted with 85.7% accuracy; however, the
specificity was lower in this group. SVM combined with mRMR
further improved accuracy of feature selection and prediction
of response to hormone and/or chemotherapy based on survival
time than either SVM or RF alone. Predicted treatment responses
for individual METABRIC patients using the described ML
techniques are indicated in Dataset 1.

Tumor co-variate information was provided by METABRIC,
which included Estrogen receptors (ER), Progesterone Recep-
tor (PR), HER2, Lymph Node (LN) and PAMS50 subtypes.
To assess model co-variate accuracy, predictions described in
Table 1-Table 3 were broken down by subtype (available in
Supplementary file 1). Subtypes with <20 individuals for a

particular treatment combination were not analyzed. The deviation
in classification accuracy between subtypes was mostly consistent
with the average. One exception involved the RF and mRMR
analyses, which was 8.3 to 23.0% below the average for (ER)-
negative, (HER2)-positive and basal subtypes in patients treated
with HT. However, this deviation was not observed for CT-treated
patients with the (ER)-negative subtype, which was consistent
with the fact that CT response was derived from the paclitaxel
gene set. (ER)-negative patients primarily received CT°. Further,
the accuracy of the SVM models tested with CT and HT-treated
patients was significantly higher for (HER2)-positive patients
(26 correct, 3 misclassified; 90% accurate) compared to (HER2)-
negative patients (40 correct, 15 misclassified; 73% accurate).
MAPT expression (present in reduced ‘CT and HT’ paclitaxel
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Figure 3. Schematic elements of gene expression changes associated with response to paclitaxel. Red boxes indicate genes with a
positive correlation between gene expression or copy number, and resistance using multiple factor analysis. Blue demonstrates a negative
correlation. Genes outlined in dark grey are those in a previously published paclitaxel SVM model (reproduced from reference 1 with

permission).

Table 4. Results of applying RF to predict outcome of the paclitaxel signature for the METABRIC Discovery

patient set.
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0.617 0.612 0.224 0.444
0.643 0.646 0.189 0.715
0.722 0.687 0.189 0.571
0.780 0.775 0.018 0.524
0.733 0.710 0.084 0.527
0.533 0.601 -0.133 0.594
0.677 0.734 -0.07 0.389
0.554 0.551 -0.143 0.395
0.567 0.579 0.016 0.479

Paclitaxel gene panel consisted of 19 genes (ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8,

CYP3A4, MAP2, MAP4, MAPT, NR1I2, SLCO1B3, TUBB1, TUBB4A, TUBB4B).
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Table 5. Results of mRMR feature selection for an SVM for predicting outcome of the paclitaxel signature for
the METABRIC Discovery patient set.

Treatment CT' HT CT+HT
Survival
years (as 3 4 5 3 4 5 3 4 5
threshold)
# patients 22 185 221
Accuracy
(TP) (%) 57.14 57.14 85.7 81.8 70.9 63.6 71.2 69.7 71.2

Precision 0.595 0.686 0.735 0.726 0.670 0.532 0.647 0.629 0.693
F-Measure  0.571 0.623 0.791 0.769 0.686 0.562 0.668 0.628 0.666

Mcc 0167 -0258 0000  -0.080 0032  -0075 0035 0071 0245
AUC 0583 0333 0500 0479 0514 0477 0513 0521 0586
Zj‘;ﬂm’) 0.0 05 10 10 0.75 15 0.75 05 10
s‘(’c"g ;?r' 64 128 8 2 64 2 16 2 2
TWIST1
BCL2 TWISTT ryisT+
TWIST1 BMF
BvF  Twistr ol cymocs M
CYP2C8  CYP2CS  Lypho  BMF [~ CYPOAd
TWIST1 CYP3A4  CYPaA4 (oo Cvpece DO BoLaLy
BME BoleLi  BCleLt  SL UM BCLeLt ool BBCS
CYP2Cs  BCL2  MAP2  BBC3  BBC3 oo BBC3 o0 TLR6
CYP3A4 BMF  BCL2  TLR6 TLRE  oort. BAD oo BAD
Selocteg | BCL2LT CvPcs Borar  BaD  asceir (il asccr TS0l ascei
conee | DBC3 CYPSA4  BBCS  ABCBI1 ABCCI Lo~ ABCCI0 oo ABCCH
BAD  BAD  MAPT  ABcCt Asccio “URCTT wapa PURCTE wape
MAP2 ABCC1O GBP1 ABCCIO  MAP2 U NR12 S MAPS
MAPT  NFKB2 < NFKB2  MAP4  MAPT  \UT GBPT |l MAPT
NFKB2 MAPT | NR12 G NFKB2 R NR1IZ
FN1 NR12 GBPT LT OPRKT Lot GBPI
GBP1  NFKB2 FN1 NFKB2
NFKB2 NFKB2
NFKB2  FNT D8 P | OPRK
OPRK1 o FNT
FNT

For patients treated with CT with >4 Yr survival and CT+ HT for > 5 Yr, the cost for the mMRMR model was set to 64. Of those treated
with CT for > 4 Yr, genes were selected using a greedy, stepwise forward search, while in other cases, greedy stepwise backward
search was used. Also, gamma = 0 in all cases.

Table 6. Comparison between our mRMR+SVM method and K-TSP method on Discovery patient set of
the METABRIC data.

Data CT HT CT+HT
Survival years 3 4 5 3 4 5 3 4 5
# patients 22 185 221
mRMR+SVM Accuracy (%) 57.14 5714 857 81.8 70.9 63.6 7121 69.70 71.21
K-TSP'* Accuracy (%) 57.14 2857 2857 8091 68.18 69.19 7121 5455 53.03

The performances of several ML techniques have been compared such that they distinguish paclitaxel sensitivity and
resistance in METABRIC patients using its tumour gene expression datasets. We used mRMR to generate gene signatures
and determine which genes are important for treatment response in METABRIC patients. The paclitaxel models are more
accurate for prediction of outcomes in patients receiving HT and/or CT compared to other patient groups.
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model; Table 1) has been shown to segregate well with PAMS0
luminal and basal subtypes'. When analyzing METABRIC patients,
however, the accuracy of these two subtypes are nearly identi-
cal to the average (78.6%, where basal and luminal classification
accuracy is 76.7% [n=30] and 76.2% [n=21], respectively).

We assessed the separate Discovery and Validation datasets,
respectively, as training and test sets and repeated the previous
experiments. In this scenario, the performance of the model was
poor (slightly better than random). This occurred because the gene
expression distributions of many of the paclitaxel-related genes
in our signature were not reproducible between these two sets
(based on Wilcoxon rank sum test, Kruskal-Wallis test and t-tests;
Supplementary file 2). Cross-study validation allows for the com-
parison of classification accuracy between the generated gene
signatures. The observed heterogeneity in gene expression high-
lights one of the many challenges of cross-validation of gene
signatures between these data from the same study exhibit drastic
differences (for example, BCL2LI; Supplementary file 2). Fur-
thermore, these gene expression differences also affect the per-
formance of these methods when these datasets were combined
(compare Table 2 and Table 4 for RF; Table 3 and Table 5 for
mRMR). We considered the possibility that the Discovery model
might be subject to overfitting. We therefore performed cross-study
validation of the Discovery set-signature with an independently-
derived dataset (319 invasive breast cancer patients treated with
paclitaxel and anthracycline chemotherapy’). The mRMR+SVM
CT-models performed well (4-year threshold model had an overall
accuracy of 68.7%; 3-year threshold model exhibited lower overall
accuracy [52%], but was significantly better at predicting patients
in remission [74.2%]).

To evaluate the paclitaxel models without relying on the Validation
dataset, the Discovery set was split into two distinct parts, consist-
ing of 70% of the patient samples randomly selected for training,
and a different set of 30% of samples for testing. This procedure
was repeated 100 times using different combinations of training
and test samples, and the median performance of these runs is
reported (Table 4 and Table 5). We also compared the perform-
ance of our mMRMR+SVM model with the K-TSP model'* (Table 6).
In most cases, our method outperformed K-TSP, based on its
accuracy in classifying new patients. Starting with the same set of
Discovery genes, we also trained a separate model using the Valida-
tion data, and tested this data by 70/30% cross-validation (accuracy
for RF: 56-67% [CT], 67-83% [HT], 56-81% [CT-HT]; accuracy
for mRMR: 33-56% [CT], 70-84% [HT], 64-82% [CT-HT]).
In addition, we evaluated the performance of the model derived
from the Discovery set on a different set of patients treated with
paclitaxel’. These results suggest that the aforementioned issue
with Discovery training and Validation testing was primarily due to
a batch effect, rather than to overfitting.

While not a replication study sensu stricto, the initial paclitaxel
gene set used for feature selection was the same as in our previous
study'. Predictions for the METABRIC patient cohort, which was
independent of the previous validation set’ used in Dorman et al.',
of the either same (SVM) or different ML methods (RF and SVM

F1000Research 2017, 5:2124 Last updated: 31 MAY 2017

with mRMR) exhibited comparable or better accuracies than our
previous gene signature'.

These techniques are powerful tools which can be used to
identify genes that may be involved in drug resistance, as well as
predict patient survival after treatment. Future efforts to expand
these models to other drugs may assist in suggesting preferred
treatments in specific patients, with the potential impact of
improving efficacy and reducing duration of therapy.

Conclusion

In this study we used METABRIC dataset to predict outcome for
different survival times in patients receiving hormone (HT) and,
in some cases, chemotherapy (CT) agents. We used published lit-
erature and various machine learning methods in order to identify
optimal subsets of genes from a biologically-relevant initial gene
set that can accurately predict therapeutic response of patients
who have received chemotherapy, hormone therapy or a combi-
nation of both treatments. The SVM methodology has been pre-
viously shown to outperform randomized gene sets'. The predic-
tions made by our method are based on the level of an individual
drug. Genomic information has been shown to correlate with
tumor therapy response in previous studies™' """, From these stud-
ies, analytical methods have been used to develop gene signatures
for chemotherapy resistance prediction’, subtypes (PAMS50), and
metastatic risk stratification (Oncotype DX™, MammaPrint®). We
also examined the method exhibiting the best performance in the
Sage Bionetworks / DREAM Breast Cancer Prognosis Challenge ',
which was also phenotype-based, however it produces outcome
signatures based on molecular processes rather than the cancer
drugs themselves. While interesting and informative, the results
cannot be directly compared. Our approach may be useful for
selecting specific therapies in patients that would be expected to
produce a favorable response.

Data availability

Patient data: The METABRIC datasets are accessible from the
European Genome-Phenome Archive (EGA) using the accession
number EGAS00000000083  (https://www.ebi.ac.uk/ega/stud-
ies/EGAS00000000083). Normalized patient expression data
for the Discovery (EGADO00010000210) and Validation sets
(EGADO00010000211) were retrieved with permission from EGA.
Corresponding clinical data was obtained from the literature’. While
not individually curated, HT patients were treated with tamoxifen
and/or aromatase inhibitors, while CT patients were most com-
monly treated with cyclophosphamide-methotrexate-fluorouracil
(CMEF), epirubicin-CMEF, or doxorubicin-cyclophosphamide.

F1000Research: Dataset 1. Predicted treatment response for
each individual METABRIC patient, 10.5256/f1000research.9417.
d149864"
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Supplementary File 1: Accuracy of SVM, RF and mRMR by Patient Co-variates.
Accuracy of all models described in Table 1-Table 3 were further broken down by provided patient subtype information (ER, HER, PR,

PAMS50, and LN).

Click here to access the data.

Supplementary File 2: Variation of Gene Expression Distribution between Discovery and Validation Datasets.
Whisker plots showing the distribution of expression in the Discovery and Validation METABRIC datasets for 26 genes used in the paclit-

axel gene signature.

Click here to access the data.
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Thank you for your suggestion. As recommended, we have repeated the 70/30% cross-validation
analysis performed in the manuscript (Tables 4 and 5) with the same genes obtained from the
Discovery dataset (Tables 4 and 5), but using the Validation dataset alone for training and testing.
We found that this analysis had a similar performance level as the analysis reported in the main
manuscript (Tables 4 and 5). There are exceptions. The mRMR+SVM gene signature developed
using “CT-only” patients at a 5-year threshold was much less accurate using the Validation data.
However, the “CT-only” subset of the Validation dataset is small (N=31), and thus variability is not
unexpected. Overall, this analysis suggests that the cross-validation issue was indeed mostly due
to batch effects.

The following sentence was written in the main text which describes this result:

“Starting with the same set of Discovery genes, we also trained a separate model using the
Validation data, and tested this data by 70/30% cross-validation (accuracy for RF: 56-67% [CT],
67-83% [HT], 56-81% [CT-HT]; accuracy for mRMR: 33-56% [CT], 70-84% [HT], 64-82%
[CT-HT]).”

Competing Interests: PKR cofounded Cytognomix. A patent application related to biologically
inspired gene signatures is pending. The other authors declare that they have no competing
interests.
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Elana Judith Fertig
Division of Oncology Biostatistics and Bioinformatics, School of Medicine, Johns Hopkins University,
Baltimore, MD, USA

The authors were very responsive to the previous round of reviews, including more robust
cross-validation and cross-study validation and comparison with other classifiers. Particular concerns
remain that the author’s conclusions that it is inappropriate to perform cross-study validation due to batch
effects are incorrect, particularly since this challenging task is essential to assess overfitting and for
clinical translation of classifiers. In addition, the conclusion was insufficiently revised to place their
classifier in the context of the broader literature in this field.

Methods
1. Abbreviations SVM and RF must be spelled out as Support Vector Machine and Random Forest
on first use. This was not addressed in the revised methods section.

Results
1. The authors did perform a robust cross-study validation, as requested in the previous review. We
agree this is challenging, due in part to batch effects as reported in this manuscript. However, such
cross-study validation is essential to assess the accuracy of classifiers. It is also essential to have
translation of genomic signatures into the clinic, where even different assays may be used. To
address these concerns the authors must do the following: (a) Remove the sentence “This
heterogeneity indicates that it is inappropriate to test our gene expression signatures derived by
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one of these datasets using the other dataset.” (b) Discuss the importance of cross-study
validation, challenges in this application, and potential of overfitting of suggested by these results.

2. The author’s response that specific therapies were not provided in METABRIC is incorrect.
According to Curtis et al., (2012) “Nearly all oestrogen receptor (ER)-positive and/or lymph node
(LN)-negative patients did not receive chemotherapy, whereas ER-negative and LN-positive
patients did. Additionally, none of the HER2* patients received trastuzumab. As such, the
treatments were homogeneous with respect to clinically relevant groupings.” Therefore, the
previous criticism #12 remains. Covariates such as ER/HER2/LN or PAM50 subtypes must be
included in a table describing the sample cohorts remains. In addition, accuracy must be computed
separately for these co-variates or included in the machine learning model.

Conclusion

1. The discussion is insufficient. It still lacks sufficient context of existing genomics classifiers in the
literature. The discrepancy between their algorithm and clinical assays is confusing in revised
sentence “Unlike Mammaprint and Oncotype Dx tests, this model focuses on predicting survival
prediction based on gene expression in the tumor, presumably before or during drug therapy.” As
written, it appears to disregard the long history of predicting clinical outcome from gene expression
involved in developing these classifiers from gene expression data (e.g., van't Veer et al., 2002)
into clinical assays based upon expression of smaller numbers of genes.

2. Based on the previous review, the authors include context with other predictions of the METABRIC
data in the response to the reviewers. This must also be included in the Conclusion to assess the
relevance of their findings in the literature.
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Comment 1. Abbreviations SVM and RF must be spelled out as Support Vector Machine and
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Random Forest on first use. This was not addressed in the revised methods section.

Response: These abbreviations are now spelled out upon their first use in the main text (Methods
section).

Results

Comment 2. The authors did perform a robust cross-study validation, as requested in the previous
review. We agree this is challenging, due in part to batch effects as reported in this manuscript.
However, such cross-study validation is essential to assess the accuracy of classifiers. It is also
essential to have translation of genomic signatures into the clinic, where even different assays may
be used. To address these concerns the authors must do the following: (a) Remove the sentence
“This heterogeneity indicates that it is inappropriate to test our gene expression signatures derived
by one of these datasets using the other dataset.” (b) Discuss the importance of cross-study
validation, challenges in this application, and potential of overfitting of suggested by these results.

Response: In regards to this point:

(a) This sentence has been removed, as requested.

(b) To address concerns regarding potential overfitting of our models, we cross-validate the
acquired models to a non-METABRIC data set (from an independent study). In the Sage
Bionetworks / DREAM Breast Cancer Prognosis Challenge, cross-study validation was performed
using the “OsloVal” data set, which consists of gene expression and copy number data from 184
breast cancer patients (Margolin et al., 2013). However, this dataset is not publically available and
requires Ethics Board / IRB Review which we did not believe to be worth the effort. Instead, we
performed cross-study validation on the gene expression of 310 breast cancer patients made
publically available by Hatzis et al. (2011).

Analysis of this dataset was successful for the mRMR + SVM models developed using
chemotherapy-treated patient (“CT” models), where the threshold for resistance was set to 3-years
and 4-years. The “CT 3-year” model performed well predicting responsive patients (74.2%
accuracy), while the “CT 4-year” model performed better predicting non-responsive patients
(75.1% accuracy). The “CT 4-year” model outperformed the “CT 5-year” model for both sensitive
and resistant patient data sets.

Random Forest and mMRMR+SVM models which used hormone-treated patients (“HT” and
“CT+HT”) were much less accurate compared to the “CT-only” models, and predict patients a large
percentage of patients from the Hatzis data as sensitive.

In the main manuscript, we have replaced the removed sentence from (a) and have written the
following:

“Cross-study validation allows for the comparison of classification accuracy between the generated
gene signatures. The observed heterogeneity in gene expression highlights one of the many
challenges of cross-validation of gene signatures between these data from the same study exhibit
drastic differences (for example, BCL2L 1; Supplementary file 2). Furthermore, these gene
expression differences also affect the performance of these methods when these datasets were
combined (compare Table 2 and Table 4 for RF; Table 3 and Table 5 for mMRMR). We considered
the possibility that the Discovery model might be subject to overfitting. We therefore performed
cross-study validation of the Discovery set-signature with an independently-derived dataset (319
invasive breast cancer patients treated with paclitaxel and anthracycline chemotherapy®). The
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MRMR+SVM CT-models performed well (4-year threshold model had an overall accuracy of
68.7%; 3-year threshold model exhibited lower overall accuracy [52%], but was significantly better
at predicting patients in remission [74.2%]).”

References

Margolin AA, et al. Systematic analysis of challenge-driven improvements in molecular prognostic
models for breast cancer. Sci Transl Med. 2013 Apr 17;5(181):181re1. doi:
10.1126/scitransimed.3006112.

Hatzis, C., et al. 2011. A genomic predictor of response and survival following
taxane-anthracycline chemotherapy for invasive breast cancer. JAMA. 305, 1873-1881.

Comment 3. The author’s response that specific therapies were not provided in METABRIC is
incorrect. According to Curtis et al., (2012) “Nearly all oestrogen receptor (ER)-positive and/or
lymph node (LN)-negative patients did not receive chemotherapy, whereas ER-negative and
LN-positive patients did. Additionally, none of the HER2* patients received trastuzumab. As such,
the treatments were homogeneous with respect to clinically relevant groupings.” Therefore, the
previous criticism #12 remains. Covariates such as ER/HER2/LN or PAM50 subtypes must be
included in a table describing the sample cohorts remains. In addition, accuracy must be computed
separately for these co-variates or included in the machine learning model.

Response: Thank you for the clarification regarding patient treatment. As a response, we have
added an additional supplementary table which breaks down the accuracy of our models by
subtype (ER, HER2, PR, LN and PAM50; Dataset 2). In the main text, we note that accuracy of
most models are consistent between subtypes (+/- 10% deviation in accuracy). Subtypes with less
than twenty individuals were ignored due to its small sample size. The following deviations in
accuracy were noted:

1. Random Forest and mRMR models are shown to be consistently more accurate in
predicting ER+, HER2- when treated with hormone therapy (both “HT” and “CT and/or HT”
categories), when compared to ER- and HER2+ patients. The PAM50 basal subtype is
consistently low in accuracy when testing patients treated with hormone therapy. This is
most likely partially influenced by the RF and mRMR models for ‘HT’ to more often predict
patients as sensitive, combined with the fact that ER+ and HER2- patients were more likely
to response to therapy. It is important to note that the accuracy of predictions by RF and
mRMR with patients treated only with chemotherapy was fairly consistent across all
available subtypes (+/- 10% accuracy).

2. SVM paclitaxel models performed significantly better with HER2+ patients (26 correct, 3
misclassified; 90% accurate) in HER2- patients (40 correct, 15 misclassified; 73% accurate)
when tested on patients treated with both hormone and chemotherapy. In Dorman et al
(2016), it was stated that MAPT expression (which is present in the paclitaxel model)
segregated with PAM50 luminal and basal subtypes. For this model, the accuracies of these
subtypes are nearly identical to the accuracy of the entire subset.

Text describing these results can be found in the third paragraph of the results.

Conclusion

Comment 4. The discussion is insufficient. It still lacks sufficient context of existing genomics
classifiers in the literature. The discrepancy between their algorithm and clinical assays is
confusing in revised sentence:
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“Unlike Mammaprint and Oncotype Dx tests, this model focuses on predicting survival prediction
based on gene expression in the tumor, presumably before or during drug therapy.”

As written, it appears to disregard the long history of predicting clinical outcome from gene
expression involved in developing these classifiers from gene expression data (e.g., van't Veer et
al., 2002) into clinical assays based upon expression of smaller numbers of genes.

Response: We have removed the indicated sentence, which we agree was insufficient to the
comment from the previous iteration of this article: “Must be discussed in the context of existing
genomics classifiers for breast cancer (e.g., OncotypeDx and/or Mammaprint)”.

We in no way meant to ignore the long history of predicting clinical outcome from gene expression
(as well as other genomic factors). A discussion on this topic was not included in earlier
submissions as it initially had an imposed word length limit (upon first submission). We did,
however, reference other articles which do discuss this topic. In Dorman et al. (2016), which
described some of the methodology for initial gene selection that this study was based on, these
contributions are well-referenced, including the history of the prediction of clinical outcome from
genomic status:

“Previous studies have derived associations between the genomic status of one or more genes
and tumor response to certain therapies (Duan et al., 2003; Glinsky et al., 2005; Hatzis et al., 2011;
Ma et al., 2004; Rajput et al., 2013; van't Veer et al., 2002).

Correlations between single gene expression and tumor resistance (Duan et al., 2003, 1999) do
not take into account multiple mechanisms of resistance or assess interactions between multiple
genes. ABC transporter overexpression has long been shown to confer resistance, but enzymatic
or functional inhibition has not substantially improve patient response to chemotherapy (Samuels
etal., 1997).

Multi-gene analytical approaches have previously been successful in deriving prognostic gene
signatures for metastatic risk stratification (Oncotype DX™, MammaPrint®), subtypes (PAM50),
and efforts have been made to predict chemotherapy resistance (Hess et al., 2006; Hatzis et al.,
2011). ¢

In response to Dr. Fertig’'s comments, we have added a short discussion with citations of
previously published approaches (including MammaPrint and Oncotype DX):

“Genomic information has been shown to correlate with tumor therapy response in previous
studies®12-16_ From these studies, analytical methods have been used to develop gene signatures
for chemotherapy resistance prediction®, subtypes (PAM50), and metastatic risk stratification
(Oncotype DX™, MammaPrint®).”

Comment 5. Based on the previous review, the authors include context with other predictions of
the METABRIC data in the response to the reviewers. This must also be included in the Conclusion
fo assess the relevance of their findings in the literature.

Response: We have added the indicated text from the previous ‘response to the reviewers’
(modified) to the Conclusions:

“We also examined the method exhibiting the best performance in the Sage Bionetworks / DREAM
Breast Cancer Prognosis Challenge!”, which was also phenotype-based, however it produces
outcome signatures based on molecular processes, rather than the cancer drugs themselves.
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While interesting and informative, the results cannot be directly compared.”

Please note that the majority of entries in the DREAM project were not fully curated and only exist
as source code. Analyzing these files to determine what methodology was attempted by these
groups is beyond the scope of our study. A description of the second place of the METABRIC
phase of the DREAM challenge is provided in the link below. This link describes how the
METABRIC data is trained using a bipartite graphing as input for linear models, boost models, and
RankSVM. While they state that RankSVM was the least successful between the three methods, it
does not appear that this particular study has been published to the literature. As a result, we
cannot fully review their results, and thus cannot be compared to our methodology in the main
manuscript.

https://sagesynapse.wordpress.com/2012/11/01/breast-cancer-challenge-team-pitttransmed-places-s:
Competing Interests: PKR cofounded Cytognomix. A patent application related to biologically

inspired gene signatures is pending. The other authors declare that they have no competing
interests.

Referee Report 03 October 2016

doi:10.5256/f1000research.10141.r16345

?

Chun-Wei Tung
School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan

This study proposed prediction methods using SVM and RF classifiers with mRMR selected feature sets
from cell line data and demonstrate its prediction ability for outcomes from METABRIC patient cohort. The
classifiers with good prediction performance show the usefulness of combining domain knowledge with
feature selection techniques. However, some details essential for reproducibility and interpretation are
missing.
Required information is listed in the following.

1. What are the values of parameters for SVM and RF classifiers and the methods for parameter

selection (by default or other selection methods)?

2. The development and evaluation of models for patient data are not clear. Whether the models
were trained using partial data from METABRIC or only leave-one-out cross-validation was
applied? If cross-validation is the case, then what is the model offered at the online server because
there will be more than one models created, and whether the cross-validation is involved
in the feature selection process that often leads to an overestimation of the performance. For the
case of training on partial data, both training and test performance are essential information for
evaluating the robustness of models.

3. Since some of the datasets are highly imbalanced, the numbers of positives and negatives, as well
as sensitivity and specificity are more important than accuracy for interpreting the results as a high
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accuracy with a low AUC could be the result of all positive/negative predictions on an imbalanced
dataset. Listing all the information along with the accuracy and AUC will help the interpretation of
prediction performances.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Peter Rogan, University of Western Ontario, Canada

Comment 1:What are the values of parameters for SVM and RF classifiers and the methods for
parameter selection (by default or other selection methods)?

Response: The parameter values for these classifiers have been added to the Tables 1-5.

In regards to parameter selection, the first paragraph of the methods now describes C and Sigma
selection as a grid search to find the values with the lowest cross-validation misclassification rate.
Similarly for RF, a grid search was used to optimize the maximum number of randomly selected
genes for each tree (second paragraph of Methods section).

Comment 2: The development and evaluation of models for patient data are not clear. Whether the
models were trained using partial data from METABRIC or only leave-one-out cross-validation was
applied? If cross-validation is the case, then what is the model offered at the online server because
there will be more than one models created, and whether the cross-validation is involved in the
feature selection process that often leads to an overestimation of the performance. For the case of
training on partial data, both training and test performance are essential information for evaluating
the robustness of models.

Response: We obtained new results for both RF and mRMR+SVM models when we use discovery
set as training set and validation set as test set, the performance of the model was poor. After more
investigation we found that there happened to be a large variation between gene expression of 26
targeted genes between discovery and validation set (please see Supplementary Dataset 2).
Hence, building any classifier using discovery and validation set as training and test set in their
current forms will result of poor performance, since the training and test sets are vastly different.

However, we did carry out another experiment on discovery set solely and used 70% of data for
training and remaining 30% for test the performance of the model. The results have been added to
the manuscript (Tables 4 and 5).

Comment 3: Since some of the datasets are highly imbalanced, the numbers of positives and
negatives, as well as sensitivity and specificity are more important than accuracy for interpreting
the results as a high accuracy with a low AUC could be the result of all positive/negative
predictions on an imbalanced dataset. Listing all the information along with the accuracy and AUC
will help the interpretation of prediction performances.

Response: As previously mentioned, we have added more performance measures including MCC
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and AUC. They have been added Tables 1-5 of the manuscript.

Competing Interests: PKR cofounded Cytognomix. A patent application related to biologically
inspired gene signatures is pending. The other authors declare that they have no competing
interests.

Referee Report 30 September 2016

doi:10.5256/f1000research.10141.r16733

?  Elana Judith Fertig
Division of Oncology Biostatistics and Bioinformatics, School of Medicine, Johns Hopkins University,
Baltimore, MD, USA

This study develops SVM and RF algorithms built upon previously learned gene signatures of therapeutic
response to breast cancer. The algorithms are applied and compared to predict patient survival under
different treatment conditions in METABRIC data. The analyses and comparisons are robust and this
study provides a useful assessment of biologically-driven classifiers. The three major areas that require
improvement before the article is indexed are as follows, and described in further detail below.
1. The methods require further clarification to distinguish differences between this study and the
previous study as well as the parameters of the machine learning algorithms.
2. Accuracy in the results must better distinguish results on independent test and training sets.
3. Classifiers must be put in the context of other existing genomics classifiers used in breast cancer
and/or previously published in Mammaprint data.

Title and Abstract
Acceptable
Article content

Methods

1. Abbreviations SVM and RF must be spelled out as Support Vector Machine and Random Forrest
on first use in Methods.

2. Writing in SVM learning subsection of Methods requires clarification to distinguish which of these
methods were developed in the previous Molecular Oncology publication and which were
developed as part of this publications.

3. Details about the SVM learning algorithm are included in the caption to Figure 1, but must also be
included and completely described in text for the corresponding section of the methods.

4. No equations are provided to describe the role of the parameters C and sigma. It is also unclear
whether this greedy search is implemented by the Matlab function fitcsvm or uses custom code
developed by the authors.

Results
1. Need to specify whether reported accuracies are computed with leave-one-out cross validation or
9-fold cross validation (described in Methods).
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2. Ideally, given the size of METABRIC data they would be calculated on independent training (first

1000 patient samples) and training (last 1000 patient samples) datasets.

AUC must be computed separately for discovery and validation sets (Table 2).

4. It is unclear whether the previous validation set described in the sentence “Predictions for the
METABRIC patient cohort, which was independent of the previous validation set” refers to a
validation set used in this publication or the previous publication.

5. Covariates such as ER/PR or PAM50 subtypes must be included in a table describing the sample
cohorts. Accuracy must be computed separately for these co-variates or they must also be
included as co-variates in the machine-learning model.

6. Ideally accuracy would be compared to existing breast cancer classifiers (e.g., using code from
Marchionni et al., BMC Genomics, 2013) and/or survival curves reported in the literature.

w

Conclusions
1. Must be discussed in the context of existing genomics classifiers for breast cancer (e.g.,
OncotypeDx and/or Mammaprint).
2. Results must be put in context with other predictions on METABRIC data, e.g., outcomes from the
DREAM contest.

Data
Acceptable

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Peter Rogan, University of Western Ontario, Canada

Comment 1: The methods require further clarification to distinguish differences between this study
and the previous study as well as the parameters of the machine learning algorithms.

Response: The first paragraph of the Methods describes Support Vector Machine learning, which
has been greatly expanded upon. Differences in SVM methodology between the two studies are
indicated there (i.e. a Gaussian kernel was used instead of a linear kernel). All other feature
selection methods described in the manuscript (Random Forest, mRMR) were not used in Dorman
etal., 2016.

The parameters for machine learning algorithms have been incorporated in the manuscript, and
can be found in the footnote section of each data table.

Comment 2: Accuracy in the results must better distinguish results on independent test and
training sets.

Response: The Validation dataset showed a distinct overall expression profile from the Discovery
set, possibly due to batch effects, which are well known. We added another experiment to the
manuscript by splitting the Discovery set into Training and Test sets. The model was trained using
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70% of the data and then tested using the remaining 30% of data as test set. We repeated this
procedure 100 times and took the median as the final performance result. The results are
presented in Tables 4 and 5 of the manuscript.

Comment 3: Classifiers must be put in the context of other existing genomics classifiers used in
breast cancer and/or previously published in Mammaprint data.

Response: We have added two sentences in the second paragraph of the “Results and
Discussion” section which describes the comparison of our gene signature to those from
MammaPrint and Oncotype Dx. Pair-wise comparison of these three signatures show that they are
nearly independent of one another.

Methods

Comment 4: Abbreviations SVM and RF must be spelled out as Support Vector Machine and
Random Forest on first use in Methods.

Response: We thank the reviewer for this suggestion. It has been addressed in the Methods
section of the manuscript.

Comment 5: Writing in SVM learning subsection of Methods requires clarification to distinguish
which of these methods were developed in the previous Molecular Oncology publication and which
were developed as part of this publications.

Response: This is now clarified within the first paragraph of the Methods section in the manuscript.
The SVM classifier was adopted from previous Molecular Oncology publication, while the feature
selection method has been developed as part of this publication.

Comment 6: Details about the SVM learning algorithm are included in the caption to Figure 1, but
must also be included and completely described in text for the corresponding section of the
methods.

Response: Thanks for the reviewer’s suggestion. This description of the SVM learning algorithm
has been moved from the Figure 1 legend and integrated into the first paragraph of the methods
section.

Comment 7: No equations are provided to describe the role of the parameters C and sigma. It is
also unclear whether this greedy search is implemented by the Matlab function fitcsvm or uses
custom code developed by the authors.

Response: A brief description of the role of each parameter has been added to the first paragraph
of the methods section of the manuscript. Readers are also now directed to a reference (Ben-Hur
and Weston, 2010) if more detail is desired.

The greedy search, also called sequential backward feature selection, was implemented as a
script by our lab in MATLAB. It is not a MATLAB function. This is clarified by changing a few words
in the first paragraph of the methods section: “A backwards feature selection (greedy) algorithm
was designed and implemented in MATLAB in which...”
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Moreover, as described above, the SVM classifier was adopted from previous Molecular Oncology
publication (Dorman et al. 2016), while the feature selection method has been developed as part of
this publication.

Results
Comment 8: Need to specify whether reported accuracies are computed with leave-one-out cross
validation or 9-fold cross validation (described in Methods).

Response: All SVM models described in the manuscript used leave-one-out cross validation
except one, and this is clearly indicated in Table 1, and is now commented on in the methods. A
9-fold cross-validation was used to build a model using 735 patients who were treated with
Chemotherapy and/or Hormone therapy, as leave-one-out cross validation of this many patients
took an unreasonably long time to complete (it exceeded 3 weeks on a dedicated 17 Intel
processor).

Comment 9: Ideally, given the size of METABRIC data they would be calculated on independent
training (first 1000 patient samples) and test (last 1000 patient samples) datasets.

Response: We obtained new results for both RF and mRMR+SVM models using Discovery patient
set for training and Validation set for testing, however the performance of the model was poor.
After further investigation, we found that there were large differences between gene expression
levels of the 26 model signature genes in the Discovery versus Validation sets (we used Wilcoxon
rank sum test, Kruskal-Wallis test and t-test to evaluate the results — shown in the plotted
distributions of gene expression in Supplemental Dataset 2) regardless of patient status (alive or
dead). Hence, building any classifier using discovery and validation set as training and test set in
their current forms will result of poor performance due to this source of heterogeneity.

To address this issue, we did carry out another experiment based on data from the Discovery
patient dataset alone; using 70% of data for training and remaining 30% for testing, the
performance of the model was significantly better. We speculate that the discrepancy between the
expression distributions in the Discovery and Validation sets were the result of batch effects. The
results have been added to the manuscript (Tables 4,5).

Comment 10: AUC must be computed separately for discovery and validation sets (Table 2).

Response: We have included additional performance measures to Tables 1-5, including Area
Under Curve (AUC).

Comment 11: It is unclear whether the previous validation set described in the sentence
“Predictions for the METABRIC patient cohort, which was independent of the previous validation
set” refers to a validation set used in this publication or the previous publication.

Response: This sentence is referring to breast cancer patient data from Hatzis et al. (2013), which
was used as a validation set in Dorman et al. (2016), not this publication. We have modified this
sentence to clarify the issue.

Comment 12: Covariates such as ER/PR or PAM50 subtypes must be included in a table
describing the sample cohorts. Accuracy must be computed separately for these co-variates or
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they must also be included as co-variates in the machine-learning model.

Response: Even with the subtype as covariant, it is not possible to perform the analysis the
reviewer requested. Certain therapies are definitely more effective in particular subtypes (eg.
etoposide, docetaxel, and cisplatin are preferentially active in basal or claudin-low cell lines, as
observed clinically; Heiser et al., 2012). The public METABRIC dataset (or the corresponding
publication) does not provide the specific therapies used to treat individual patients. Had they done
S0, it would have made sense to look at these covariates.

Reference: Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, Gibb WJ, Wang
NJ, Ziyad S, Tong F, et al. (2012). Subtype and pathway specific responses to anticancer
compounds in breast cancer. Proc Natl Acad Sci US A109:2724-2729.

Comment 13: Ideally accuracy would be compared to existing breast cancer classifiers (e.g., using
code from Marchionni et al., BMC Genomics, 2013) and/or survival curves reported in the
literature.

Response: The proposed method has been compared against the K-TSP (Marchionni et al., BMC
Genomics, 2013) as per reviewer’s suggestion and the results are presented in Table 6 of the
manuscript.

Conclusions
Comment 14: Must be discussed in the context of existing genomics classifiers for breast cancer
(e.g., OncotypeDx and/or Mammaprint).

Response: We have added text to both the second paragraph of the “Results and Discussion”
paragraph and to the conclusion of the paper.

Comment 15: Results must be put in context with other predictions on METABRIC data, e.g.,
outcomes from the DREAM contest.

Response: An important distinction to note in regards to our methodology is that the predictions are
based on the genes known to be associated with the response to specific drugs used to treat
breast cancer. In the DREAM contest, the method with the highest METABRIC score (as described
in Cheng et al., 2013) was phenotype-based, finding signatures for molecular processes that are
disregulated in METABRIC, rather than responses to the cancer therapies themselves. While this
is an interesting prediction method, the results cannot compared to our approach. The gene
signatures that we have derived contain components of many different pathways.

Reference: Cheng WY, Ou Yang TH, Anastassiou D. Biomolecular events in cancer revealed by
attractor metagenes. PLoS Comput Biol. 2013;9(2):e1002920.

Competing Interests: PKR cofounded Cytognomix. A patent application related to biologically
inspired gene signatures is pending. The other authors declare that they have no competing
interests.
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