Skip to main content
. 2017 May 12;5:2124. Originally published 2016 Aug 31. [Version 3] doi: 10.12688/f1000research.9417.3

Table 2. Results of applying RF to predict outcome of paclitaxel therapy.

Type of treatment Survival years (as
threshold)
# Patients K (number of genes
to be used in
random selection)
Accuracy (True
Positive - TP) (%)
Precision F-Measure MCC 1 AUC 2
Chemotherapy
(CT)
3 53 7 56.6 0.510 0.524 -0.095 0.441
4 7 69.8 0.698 0.698 0.396 0.700
5 19 66.0 0.645 0.636 0.230 0.653
Hormone therapy
(HT)
3 420 19 85.5 0.731 0.788 0.000 0.606
4 9 78.6 0.715 0.706 0.069 0.559
5 9 71.0 0.634 0.627 0.059 0.632
CT and/or HT 3 504 9 82.7 0.685 0.749 0.000 0.506
4 19 73.6 0.647 0.648 0.039 0.527
5 7 65.3 0.602 0.593 0.086 0.588

1MCC: Matthews Correlation Coefficient. 2AUC: Area under receiver operating curve; both Discovery and Validation patient datasets analyzed. RF predictions done using a gene panel consisting of 19 genes ( ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2, SLCO1B3, TUBB1, TUBB4A, TUBB4B).