Skip to main content
. Author manuscript; available in PMC: 2017 Jun 7.
Published in final edited form as: Technol Health Care. 2017;25(1):89–110. doi: 10.3233/THC-161255

Table 6.

A summary of the top forecasting methods used with each house to forecast the wake scores. Each house shows the machine learning algorithm that performed the best and the corresponding NMAE and NRMSE for each forecasting method. If the NMAE error was less than 2% we highlighted with blue, and if the NMAE error was between 2-4% we highlighted with yellow.

Side by Side Comparison of Results for Original Scores and Normalized Scores when Forecasting for Wake Scores
Original Scores Normalized Scores
Independent Prediction Cross Prediction Joint Prediction Independent Prediction Cross Prediction Joint Prediction
algorithm NMAE NRMSE algorithm NMAE NRMSE algorithm NMAE NRMSE algorithm NMAE NRMSE algorithm NMAE NRMSE algorithm NMAE NRMSE
HH101 svm 0.049 0.084 svm 0.049 0.084 svm 0.049 0.084 forest 9.48E-09 1.64E-08 forest 9.98E-09 1.56E-08 forest 9.60E-09 1.60E-08 HH101
HH102 svm 0.018 0.041 svm 0.018 0.041 svm 0.018 0.041 logistic 1.16E-09 2.23E-09 logistic 1.18E-09 2.50E-09 logistic 1.12E-09 2.41E-09 HH102
HH103 svm 0.017 0.116 svm 0.017 0.116 svm 0.017 0.116 logistic 2.91E-11 1.93E-10 logistic 2.85E-11 1.94E-10 logistic 2.88E-11 1.94E-10 HH103
HH104 forest 0.045 0.082 svm 0.048 0.083 forest 0.047 0.083 forest 3.03E-09 5.56E-09 linear 3.38E-09 5.72E-09 forest 3.11E-09 5.75E-09 HH104
HH105 svm 0.024 0.116 svm 0.024 0.116 svm 0.024 0.116 tree 8.89E-10 3.70E-09 logistic 9.30E-10 4.09E-09 tree 8.89E-10 3.63E-09 HH105
HH106 svm 0.057 0.139 svm 0.057 0.139 svm 0.057 0.139 logistic 6.59E-09 1.48E-08 logistic 7.09E-09 1.50E-08 logistic 6.47E-09 1.45E-08 HH106
HH108 svm 0.069 0.167 svm 0.069 0.167 svm 0.069 0.167 forest 2.61E-09 4.73E-09 tree 2.37E-09 4.68E-09 tree 2.47E-09 4.84E-09 HH108
HH109 svm 0.060 0.112 svm 0.060 0.112 svm 0.060 0.112 linear 1.91E-08 3.27E-08 svm 1.92E-08 3.27E-08 svm 1.95E-08 3.22E-08 HH109
HH110 forest 0.028 0.028 forest 0.023 0.023 logistic 0.029 0.031 forest 1.39E-09 1.54E-09 tree 4.27E-09 5.56E-09 forest 2.06E-09 2.72E-09 HH110
HH111 svm 0.025 0.042 svm 0.025 0.042 svm 0.025 0.042 forest 8.57E-10 1.40E-09 forest 9.19E-10 1.42E-09 forest 8.78E-10 1.46E-09 HH111
HH112 svm 0.045 0.075 svm 0.045 0.075 svm 0.045 0.075 forest 5.30E-09 8.55E-09 forest 5.70E-09 8.84E-09 forest 5.59E-09 8.73E-09 HH112
HH113 svm 0.030 0.097 svm 0.030 0.097 svm 0.030 0.097 svm 2.66E-09 7.05E-09 logistic 2.45E-09 7.23E-09 logistic 2.46E-09 7.13E-09 HH113
HH114 forest 0.100 0.145 forest 0.093 0.142 forest 0.098 0.153 forest 1.19E-08 1.69E-08 forest 1.12E-08 1.67E-08 forest 1.16E-08 1.68E-08 HH114
HH116 svm 0.023 0.080 svm 0.023 0.080 svm 0.023 0.080 tree 1.95E-09 5.88E-09 forest 1.87E-09 5.96E-09 forest 1.92E-09 5.70E-09 HH116
HH117 forest 0.008 0.011 forest 0.024 0.025 forest 0.019 0.023 tree 7.42E-09 1.05E-08 forest 8.35E-09 1.23E-08 forest 4.99E-09 7.00E-09 HH117
HH118 svm 0.044 0.055 svm 0.044 0.055 svm 0.044 0.055 forest 2.30E-09 2.73E-09 tree 2.23E-09 2.81E-09 tree 1.72E-09 2.23E-09 HH118
HH119 svm 0.046 0.069 svm 0.046 0.069 svm 0.046 0.069 forest 6.98E-09 9.96E-09 forest 6.99E-09 1.02E-08 forest 7.02E-09 1.00E-08 HH119
HH120 svm 0.044 0.068 svm 0.044 0.068 svm 0.044 0.068 forest 4.56E-10 6.96E-10 forest 5.05E-10 8.08E-10 tree 4.68E-10 6.68E-10 HH120
HH122 tree 0.017 0.021 logistic 0.027 0.028 tree 0.020 0.026 tree 1.38E-09 1.81E-09 forest 2.16E-10 2.63E-10 logistic 1.08E-09 1.37E-09 HH122
HH123 svm 0.045 0.137 svm 0.045 0.137 svm 0.045 0.137 logistic 7.73E-09 2.06E-08 tree 7.40E-09 2.02E-08 forest 7.51E-09 2.00E-08 HH123