Skip to main content
. Author manuscript; available in PMC: 2017 Jun 7.
Published in final edited form as: Technol Health Care. 2017;25(1):89–110. doi: 10.3233/THC-161255

Table 7.

A summary of the top forecasting methods used with each house to forecast the sleep scores. Each house shows the machine learning algorithm that performed the best and the corresponding NMAE and NRMSE for each forecasting method. If the NMAE error was less than 2% we highlighted with blue, and if the NMAE error was between 2-4% we highlighted with yellow.

Side by Side Comparison of Results for Original Scores and Normalized Scores when Forecasting for Sleep Scores
Original Scores Normalized Scores
Independent Prediction Cross Prediction Joint Prediction Independent Prediction Cross Prediction Joint Prediction
algorithm NMAE NRMSE algorithm NMAE NRMSE algorithm NMAE NRMSE algorithm NMAE NRMSE algorithm NMAE NRMSE algorithm NMAE NRMSE
HH101 svm 0.049 0.084 svm 0.059 0.111 svm 0.059 0.111 logistic 0.002 0.004 logistic 0.002 0.004 logistic 0.002 0.004 HH101
HH102 svm 0.018 0.041 svm 0.106 0.151 svm 0.106 0.151 forest 0.002 0.003 forest 0.002 0.003 linear 0.002 0.003 HH102
HH103 svm 0.017 0.116 tree 0.041 0.089 tree 0.044 0.095 logistic 0.002 0.005 logistic 0.002 0.004 logistic 0.002 0.005 HH103
HH104 forest 0.047 0.083 forest 0.105 0.147 forest 0.104 0.142 svm 0.002 0.002 forest 0.002 0.002 forest 0.002 0.002 HH104
HH105 svm 0.024 0.116 svm 0.097 0.142 svm 0.097 0.142 logistic 0.002 0.003 logistic 0.002 0.003 logistic 0.002 0.003 HH105
HH106 svm 0.057 0.139 svm 0.132 0.179 svm 0.132 0.179 svm 0.004 0.005 forest 0.004 0.005 forest 0.004 0.005 HH106
HH108 svm 0.069 0.167 svm 0.098 0.149 svm 0.098 0.149 tree 0.002 0.004 logistic 0.002 0.004 tree 0.002 0.004 HH108
HH109 svm 0.060 0.112 svm 0.064 0.112 svm 0.064 0.112 forest 0.001 0.002 forest 0.001 0.002 forest 0.001 0.002 HH109
HH110 logistic 0.029 0.031 tree 0.104 0.106 tree 0.100 0.209 logistic 0.003 0.005 tree 0.003 0.003 tree 0.003 0.003 HH110
HH111 svm 0.025 0.042 forest 0.116 0.152 svm 0.117 0.154 forest 0.002 0.003 forest 0.002 0.003 forest 0.002 0.003 HH111
HH112 svm 0.045 0.075 svm 0.125 0.173 tree 0.121 0.169 forest 0.003 0.004 svm 0.003 0.004 svm 0.003 0.004 HH112
HH113 svm 0.030 0.097 logistic 0.091 0.156 logistic 0.091 0.156 logistic 0.002 0.004 logistic 0.002 0.004 logistic 0.002 0.004 HH113
HH114 forest 0.098 0.153 svm 0.091 0.139 svm 0.091 0.139 logistic 0.002 0.004 logistic 0.002 0.004 logistic 0.002 0.004 HH114
HH116 svm 0.023 0.080 svm 0.069 0.114 svm 0.069 0.114 logistic 0.002 0.003 logistic 0.002 0.003 logistic 0.002 0.003 HH116
HH117 forest 0.019 0.023 tree 0.000 0.000 tree 0.000 0.000 logistic 0.000 0.000 logistic 0.000 0.000 logistic 0.000 0.000 HH117
HH118 svm 0.044 0.055 tree 0.075 0.125 tree 0.057 0.082 forest 0.002 0.002 tree 0.002 0.002 tree 0.002 0.003 HH118
HH119 svm 0.046 0.069 svm 0.101 0.155 svm 0.101 0.155 logistic 0.002 0.004 logistic 0.002 0.004 logistic 0.002 0.004 HH119
HH120 svm 0.044 0.068 svm 0.075 0.097 svm 0.075 0.097 logistic 0.001 0.002 logistic 0.002 0.003 logistic 0.001 0.002 HH120
HH122 tree 0.020 0.026 tree 0.009 0.016 tree 0.006 0.012 logistic 0.001 0.001 tree 0.000 0.000 tree 0.000 0.000 HH122
HH123 svm 0.045 0.137 forest 0.136 0.183 forest 0.126 0.168 forest 0.004 0.005 logistic 0.004 0.005 forest 0.004 0.005 HH123