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Abstract

Marginal screening has been established as a fast and effective method for high dimensional 

variable selection method. There are some drawbacks associated with marginal screening, since 

the marginal model can be viewed as a model misspecification from the joint true model. A 

principal components adjusted variable screening method is proposed, which uses top principal 

components as surrogate covariates to account for the variability of the omitted predictors in 

generalized linear models. The proposed method is demonstrated with superior numerical 

performance compared with the competing methods. The efficiency of the method is also 

illustrated with the analysis of the Affymetrix genechip rat genome 230 2.0 array data and the 

European American SNPs data.
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1. Introduction

We consider the problem of ultrahigh dimensional regression, i.e. the dimension of 

predictors used for predicting a response of interest, p, is much larger than sample size, n. It 

is often asssumed that only a relatively small subset of the predictors contribute to the 

response. As a result, an efficient method of variable selection, which can identify the most 

important predictors, plays a key role in the ultra-high dimensional regression.

One group of variable selection methods are based on penalized methods which can select 

variables and estimates parameters simultaneously through solving an ultrahigh dimensional 

regression with some pre-specified penalties leading to sparsity. These methods include 

bridge regression (Frank and Friedman, 1993), LASSO (Tibshirani, 1996), SCAD (Fan and 

Li, 2001), Dantzig selection (Candes and Tao, 2007), and other folded concave 

regularization methods (Fan and Lv, 2011; Zhang and Zhang, 2012). When the dimension is 

very high, however, these methods may have heavy implementation costs and face 

challenges in computational feasibility.
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Recently, variable screening methods have been re-discovered and advocated in the ultra-

high dimensional setting, including sure independence screening (SIS) method (Fan and Lv, 

2008), marginal bridge regression based method (Huang et al., 2008) and some others. 

Specifically, SIS method in (Fan and Lv, 2008) selects important variables in ultrahigh 

dimensional linear models based on the marginal correlations of each predictor with the 

response. They showed that the correlation ranking of the predictors possesses a sure 

independence screening property, that is, the important variables can be selected with 

probability close to one. Later, the marginal screening method was extended to generalized 

linear models (Fan and Song, 2010). Various screening methods have been developed, to 

name a few, tilting methods (Hall et al., 2009), generalized correlation screening (Hall and 

Miller, 2009), nonparametric screening (Fan et al., 2011), robust rank correlation based 

screening (Li et al., 2012), and quantile-adaptive model-free feature screening (He et al., 

2013).

These marginal screening methods face a number of challenges. For example, if the 

marginal working model is too far away from the true model, it is hard to ensure the 

sufficient conditions for sure screening to hold. Consequently marginally unimportant but 

jointly important variables may not be preserved in marginal screening. Meanwhile, the 

marginal screening methods may include noise variables that are weakly correlated with the 

important predictors. It can potentially increase false positive rate.

To address these issues, in this paper, we propose a principal component-adjusted screening 

(PCAS) method for generalized linear models. The key idea is to use principal components 

as surrogate covariates to account for omitted covariates in marginal screening. Specifically, 

we fit p marginal regressions by maximizing the marginal likelihood including not only the 

screened predictor but also some selected principal components. Then we consider an 

independence learning by ranking the maximum marginal likelihood estimators or maximum 

marginal likelihood.

PCAS method has several advantages. First, PCAS retains top principal components as 

surrogate covariates, thus retains the information in those predictors that are not included in 

the marginal screening. Second, it possesses good properties of the conditional screening to 

reduce the correlation among predictors and thus reduce the noise in the process of variable 

selection. Finally, unlike the conditional sure independence screening method (Barut et al., 

2012) where certain variables are known to be responsible for the outcomes, PCAS does not 

need these prior information of the predictors. Extensive numerical results show that the 

proposed PCAS method has superior performance to the original SIS method. As an 

important remark, computing the principal components in the implementation only requires 

eigenvalue-decomposition of an n by n matrix regardless of the dimensionality p.

The setup of generalized linear models is introduced in section 2. Section 3 discussed the 

computation of principal components. In section 4, we introduced the PCAS procedure with 

maximum marginal likelihood estimators (MMLE) and marginal likelihood ratio (MLR). 

Simulation results are presented in section 5 and two real data analysis results are illustrated 

in section 6. Section 7 gives concluding remarks.
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2. Generalized linear models

Consider the generalized linear model where the probability density function of a response 

variable Y takes the form fY(y; θ) = exp{yθ−b(θ)+c(y)}, with known functions b(·), c(·), and 

the natural parameter θ. Suppose that the observed data {(Xi, Yi), i = 1, ···, n} are identically 

independent distributed copies of (X, Y), where Xi = (1, Xi1, ···, Xip)T and Xi1, ···, Xip are p-

dimensional covariates for subject i. β = (β0, β1, ···, βp)T is a (p+1)-vector of parameter. We 

are interested in identifying the sparsity structure of β from the equation

(1)

where x = {x0, x1, ···, xp}T is a (p+1)-vector with x0 = 1 when considering the intercept, b′
(θ) is the first order derivative of b(θ) with respect to θ and g is the link function. For 

demonstration purposes, in the paper we only take canonical link function, that is g = (b′)−1, 

into consideration. In this case, . The ordinary linear model Y = XTβ + ε, 

where ε is the random error, is a special case of model (1) by using the identity link, i.e. g(μ) 

= μ. Considering binary response data, the logistic regression is another special case of 

model (1) by using the logit link g(μ) = log(μ/(1 − μ)).

3. Principal component analysis

Principal component analysis is a widely used tool for high dimensional data analysis in 

many fields, such as signal processing and dimension reduction. Based on projecting a 

dataset to another coordinate system by determining the eigenvectors and eigenvalues of the 

matrix, principal component analysis involves calculations of a covariance matrix of a 

dataset to minimize the redundancy as well as maximize the variance (Shlens, 2014). A 

common method to find the eigenvectors and eigenvalues is singular value decomposition 

(SVD), which decomposes a matrix into a set of rotation and scale matrices. Suppose X̄ is a 

matrix with n rows and p columns (p > n) and columns are normalized to be norm one. A 

singular value decomposition of X̄ is given by 

, where Ū and V̄ are orthonormal matrices 

with dimensions n and p respectively and diag(λ1, …, λn) is a diagonal matrix with diagonal 

elements λ1, …, λn. Additionally, λ1 ≥ λ2 ≥ … ≥ λn ≥ 0. Since

it is clear that the columns of V̄ are the principal directions of X̄. Thus, the principal 

components, that is, the projection of X’s rows on these directions, should be X̄V̄ = 

Ūn×ndiag(λ1, …, λn). In other words, each column of Ū represents each principal 

component up to some scale.
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To calculate Ū, we note . Therefore, if we perform an 

eigenvalue decomposition on X̄X̄T, which is a matrix with much smaller dimensions when p 
is much larger than n, then the columns of Ū consist of all eigenvectors.

4. PCAS procedure

Let  be the true sparse model with non-sparsity size s = |ℳ★|, 

where  denotes the true value. In this paper, we refer to principal 

components adjusted models as fitting models with componentwise covariates and the first 

Kn principal components as offset covariates.

4.1. PCAS with maximum marginal likelihood estimators

PCAS maximum marginal likelihood estimators (PCAS-MMLE) , for j = 1, …, p, is 

defined as the minimizer of the negative marginal log-likelihood

where l(Y; θ) = −(θY − b(θ) + c(Y)), and {Uk} is the kth eigenvector consisting of . 

 measures the strength of the conditional contribution of Xj given the first Kn principal 

components. These principal components represent the information of predictors except for 

Xj in the marginal model. The process can be rapidly computed.

Specifically, in ordinary linear models with normality assumption of random errors, the 

maximum likelihood estimator is identical to the ordinary least squares estimator written as

We select a set of variables

(2)

where γn is a given threshold value. By ranking the importance of features according to their 

magnitude of marginal regression coefficients adjusted for a proportion of principal 

components, we retain variables with large conditional contribution given these principal 

components. Such an independence learning helps to decrease the dimension of the 

parameter space from p (possibly hundreds of thousands) to a much smaller number by 

choosing a large γn, leading to a more feasible computation. Although interpretations and 
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implications of principal components adjusted models are still biased from the joint model, 

the non-sparse information about the joint model can be passed along to the marginal model 

under a mild condition. Hence it is suitable for the purpose of variable screening.

Since the rationale to use the principal components as surrogate covariates is to account for 

the effect of the omitted covariates in the marginal model, we should compute the principal 

components based on the p − 1 omitted covariates for each marginal regression. For 

simplicity of computation, we compute the principal components based on all p covariates 

and use these principal components as surrogate covariates. Based on our observations, the 

numerical performance of two methods are very close while the latter one has significantly 

smaller computational costs.

4.2. PCAS with marginal likelihood ratio

As an alternative method, we can also rank variables based on the likelihood reduction of the 

variable Xj given the first Kn principal components, which we call PCAS with maximum 

likelihood ratio (PCAS-MLR):

where  is the empirical measure, and 

. Denote Ln = (L1,n, L2,n, ···, Lp,n)T. Specifically, in ordinary linear 

models,

where .

The smaller the Lj,n is, the more the variable Xj contributes. We sort the vector Ln in an 

ascending order and choose variables according to

(3)

where νn is a predefined thresholding parameter. PCAS-MLR ranks the importance of 

features according to their marginal contributions to the magnitudes of the log-likelihood 

function given a proportion of principal components. Unlike PCAS-MMLE method which 

only uses the information of magnitudes of estimators, PCAS-MLR method makes use of 

more information, including the magnitudes of the estimators as well as their associated 

variation.
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4.3. Determining the number of selected variables

It remains open on how to choose the number of selected variables d in variable screening 

literature. In applications, it is common for practitioners to select a fixed number of top-

ranked variables, as the fixed number may reflect prior knowledge of the number of 

susceptible predictors or budget limitations. Another commonly used procedure is to set the 

size of the selected set to a number less than the sample size, for example d = [2n/log(n)] 

(Fan and Lv, 2008), so that the follow-up analysis can be performed in a p < n scenario. 

Data-driven procedures for determining the size of the important set are appealing but 

relatively limited. They include information criteria, such as AIC and BIC, and the false 

discovery rate (FDR) based methods (Barut et al., 2012; Zhao and Li, 2012). These methods, 

however, have large computational cost, especially in the ultra-high dimensional framework. 

Following (Fan and Lv, 2008), we used d = [2n/log(n)] in this paper.

4.4. Determining the number of principal components

The choice of numbers of principal components Kn is critical for PCAS. We propose to use 

the following two data adaptive methods. The first method is the scree plot, a classical 

method in factor analysis to determine the number of principal components. As a related 

numerical method, we can also use the maximum eigenvalue ratio criterion (Luo et al., 

2009), defined as λj/λj+1 with 1 ≤ j ≤ n − 1 and λ1 ≥ λ2 ≥ … ≥ λn > 0. We choose the 

number of principal components that can maximize the eigenvalue ratio, that is,

(4)

where kmax ≤ n is a prespecified maximum factor dimension. When the predictors’ 

correlation structure follows a factor model, it was shown in Wang (2012) that k̂ is consistent 

to the dimension of the linear subspace spanned by the column vectors of factors’ matrix.

5. Simulations

In this section, we present several simulated linear model examples and logistic regression 

model examples to evaluate the performance of the proposed procedure and to demonstrate 

some factors influencing the false selection rate. We implement four different scenarios to 

generate data. We vary the size of the nonsparse set of coefficients as well as the number of 

principal components from 1 to 100 for different scenarios, to gauge difficulties of 

simulation models on the basis of 200 simulations with sample size 500.

For each simulation setting, we apply two marginal sure independence screening (SIS) 

procedures based on marginal maximum likelihood estimator (MMLE) and marginal 

likelihood ratio (MLR), and two PCAS procedures including PCAS-MLR and PCAS-

MMLE, to screen variables. The minimum model size required for each method to have a 

sure screening, i.e. to contain the true model ℳ★, is used as a measure of the effectiveness of 

a screening method. This avoids the issues of choosing the thresholding parameter. For each 

simulation model, we evaluate each method by summarizing the median minimum model 
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size (MMMS) as well as its robust estimate of the standard deviation (RSD), which is the 

associated interquartile range (IQR) divided by 1.34.

5.1. Simulation Model I

The covariates X = (X1, ···, Xp)T are generated from a multivariate normal distribution with 

mean vector 0 and compound symmetric covariance matrix Σ, where ρ = Σij = 0.4, when i ≠ 

j. The size of the non-sparse set size s is taken as 6, 8 and 12 with the true regression 

coefficients recorded in Table 1. The MMMS of selected models with its associated RSD for 

linear models and logistic regression models with p = 1000 and p = 10000 are shown in 

Table 1. We record the results of PCAS with number of PCs taking as 1, 3, 5, 10, 30, 50 and 

100 respectively. The case of zero PCs is SIS method (Fan and Song, 2010). The scree plot 

is provided as Figure 1.

Since the first principal component can explain over 40% of the total variability in the 

observed covariate matrix, much larger than that of the rest PCs, the scree plot in Figure 1 

suggests that the number of PCs taken should be one. In addition, the maximum eigenvalue 

ratio estimator gives the same choice, i.e. k̂ = 1. This is consistent with our observation in 

Table 1, where PCAS performs the best when only one PC is adjusted. The performance of 

PCAS method is not improved with the increase in the number of principal components. It is 

reasonable since the proportion of the variation that can be explained by the rest of PCs is so 

small that including more PCs will not be helpful to account for the additional contribution 

from the rest of the covariates, instead, it leads to larger estimation variation hence 

deteriorates the performance of PCAS. We also compute the cases for ρ = 0.2, 0.6 and 0.8. 

Since the results demonstrate a similar trend, we omit the details.

5.2. Simulation Model II

In this model, we evenly divide all variables into five groups, and each group of variables 

follows a multivariate normal distribution with mean 0 and compound symmetric covariance 

matrix Σρ, where ρ = 0.4, 0.5, 0.6, 0.8 and 0.9 respectively. The MMMS of the selected 

models with its associated RSD for linear models and logistic regression models with p = 

1000 and p = 10000 are shown in Table 2.

PCAS-MLR seems to outperform PCAS-MMLE in terms of smaller MMMS and RSD in 

many cases. Unlike PCAS-MMLE which uses only the information of magnitudes of 

estimators, PCAS-MLR makes use of more information, including the magnitudes of the 

estimators as well as their associated variation.

The scree plot in Figure 2 suggests to choose five principal components based on the 

variance explained. In addition, the maximum eigenvalue ratio estimator gives the same 

answer, i.e. k̂ = 5. It is obvious that PCAS method with five principal components adjusted 

outperforms SIS, and the performance of PCAS method is highly related to the number of 

PCs used.
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5.3. Simulation Model III

This simulation model is adopted from (Shen and Huang, 2008), where variables are 

generated after creating the covariance matrix. First, we generate vectors vi, i = 1, ···, p, 

according to a standard normal distribution and let V = (v1, …, vp)′. Let C be a diagonal 

matrix, where among the diagonal entries, the top five values are set as 50 and the rest are 

randomly drawn from a standard uniform distribution. In this way we can generate 

covariates from a multivariate normal distribution with mean 0 and covariance matrix Σ = 

VCVT. The MMMS of the selected models with its associated RSD for linear models and 

logistic regression models with p = 1000 and p = 10000 are shown in Table 3. The scree plot 

in Figure 3 suggests to choose five principal components based on the variance explained. In 

addition, the maximum eigenvalue ratio estimator k̂ = 5. These observations are consistent 

with the results in Table 3.

5.4. Simulation Model IV

This simulation study imitates a genome-wide analysis where the covariates represent 

genotype status at each SNP across the whole genome. Furthermore, the correlation among 

all SNPs carries subject’s ancestry information reflection latent population substructures 

which should be controlled when assessing each SNP effect. The covariates X = (X1, ···, 

Xp)T is generated according to the Balding-Nichols model (Balding and Nichols, 1995) as 

follows. First, we generate a latent variable Y* that follows a Bernoulli distribution with 

parameter 0.5. Second, we generate covariates X from a multinomial distribution with 

parameters depending on the value of the latent variable Y*. If Y* = 0, X follows a 

multinomial distribution with parameters (n, (1 − pl)2, 2pl(1 − pl), ). If Y* = 1, X follows a 

multinomial distribution with (n, 

) as the parameters, where 

pl follows a Beta distribution with shape parameters  and . In addition, 

FST = 0.04 represents the genetic distance between two populations, p = 0.5, and the relative 

risk R = 0.5. We consider s = 3, 6 and 12 for different levels of sparsity. When s = 3, β* = (1, 

1.3, 1)T. When s = 6, β* = (3, −3, 3, −3, 3, −3)T. When s = 12, β★ = (1, 1.3, 1, 1.3, 1, 1.3, 

…)T. The MMMS of the selected models with its associated RSD for linear models when s 
= 12 are shown in Table 4.

PCAS and SIS can both perfectly identify important predictors when s=3 or 6, therefore the 

results are not shown in the table format. This may be because the independence structure 

among predictors leads to the equivalence between the joint population signal and the 

marginal population signal. We now discuss the case when s = 6. Based on the above 

simulation model, we generate iid random variables X1, ···, Xp, E(XiXj) = E(Xi)E(Xj) = 0 for 

i ≠ j and . When j ≤ s = 6,  or −3. When j > s = 6, 

because of the independence structure, EXjY = 0. It is similar for s = 3 case. Although still 

being a model misspecification, the sparsity structure of the joint model is the same as that 

of the marginal model. Moreover, there is a clear gap between the marginal signal and the 
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marginal noise. As a result, we can pick up the exact number of important variables with 

both PCAS and SIS.

When s = 12, the scree plot in Figure 4 recommends to take one principal component. The 

corresponding PCAS outperforms SIS method as principal components play a critical role in 

capturing the correlation structure among predictors. In addition, the performance of PCAS 

method is not improved by the increase in the number of principal components, indicating 

that a certain number of principal components can capture the information among all the 

predictors reasonably well.

6. Real data analysis

6.1. Affymetric GeneChip Rat Genome 230 2.0 Array Example

To illustrate the proposed method, we analyze the dataset reported in (Scheetz et al., 2006), 

where 120 12-week-old male rats were selected for harvesting of tissue from the eyes and 

subsequent microarray analysis. The microarrays used to analyze the RNA from the eyes of 

these animals contain more than 31,042 different probe sets (Affymetric GeneChip Rat 

Genome 230 2.0 Array). The intensity values were normalized using the robust multichip 

averaging method (Irizarry et al., 2003) to obtain summary expression values for each probe 

set. Gene expression levels were analyzed on a logarithmic scale. We are interested in 

finding the genes that are related to the TRIM32 gene, which was found to cause Bardet-

Biedl syndrome (Chiang et al., 2006) and is a genetically heterogeneous disease of multiple 

organ systems, including the retina. Although more than 30,000 probe sets are represented 

on the Rat Genome 230 2.0 Array, many of these are not expressed in the eye tissue. We 

focus only on the 18,975 probes that are expressed in the eye tissue.

We apply SIS and the proposed PCAS to this dataset, where n = 120 and p = 18, 975. 

Because the performance of PCAS-MLR is no worse than that of PCAS-MMLE, we only 

present the results from PCAS-MLR. With PCAS-MLR, we choose the first 2 principal 

components based on its scree plot shown in Figure 5 as well as the maximum eigenvalue 

ratio estimator k̂ = 2.

To evaluate the accuracy of two methods, we use cross validation and compare the 

prediction error (PE):

where yi is the observed value and ŷi is the predicted value. By 6-fold cross validation, we 

randomly partition the data into a training data set of 100 observations and a testing set of 20 

observations. On the training data set, we conduct each variable screening method to select d 
= 50 variables, following the suggestion in (Fan and Lv, 2008). Based on these selected 

variables, we obtain the ordinary least squares (OLS) estimates of the coefficients in the 

linear regression model, and make a prediction on the testing data set. Then we compare the 

predicted response with the true response, and obtain the prediction error as well as its 

standard deviation. As shown in Table 5, PCAS-MLR gives the prediction error 0.2278, 
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which is about 50% smaller than 0.4636 produced by SIS. Furthermore, the much smaller 

standard deviation of PCAS-MLR indicates that PCAS-MLR is more robust than SIS 

method in this data analysis.

6.2. European American SNP Example

Our second example is the European American SNP study in (Price et al., 2006). As part of 

an ongoing disease study, it consists 488 European Americans genotyped on an Affymetrix 

platform containing 116,204 SNPs. Similarly as in (Price et al., 2006), we use 360 

observations after removing outlier individuals. We are interested in finding the SNPs that 

are related to the height phenotype (0/1 binary data) in European Americans, which leads to 

277 variables (Price et al., 2006). We implement the proposed method and the marginal 

screening method on the data set, where n = 360 and p = 277. Both the scree plot in Figure 6 

and the maximum eigenvalue ratio estimator k̂ = 6 suggest to use 6 principal components.

Similar as before, we implement 6-fold cross validation to partition the data into a training 

data set of 300 observations and a testing set of 60 observations. On the training data set, we 

select d = [2n/log(n)] variables using each variable screening method, and fit the logistic 

regression based on these selected variables. We then make a prediction on the testing data 

set, and evaluate the prediction effect by the area under ROC curve (AUC). The result shows 

that PCAS-MLR obtains a 9.42% larger AUC value than that of SIS and a relatively smaller 

standard deviation, indicating that PCAS-MLR is preferred in terms of accuracy and 

robustness.

7. Concluding remarks

In this paper, we propose a PCAS method for generalized linear models, where principal 

components are used as surrogate covariates to account for the variability of the omitted 

covariates. Compared with the marginal screening method, PCAS can represent more 

information of other predictors that are not included in the marginal model, and thus 

decrease the degree of model misspecification to a large extent. With principal components 

included in the marginal model, it improves the accuracy as well as the robustness of 

estimation when dimensionality is ultrahigh. Our proposed method shows improvement 

from both simulation and real data analysis results.

It is important yet challenging to decide how many principal components should be used 

when performing this method. In the paper, we use maximum eigenvalue ratio estimator 

along with the scree plot. There are a few challenges in theoretical development. First, to 

achieve model selection consistency, it is critical to establish that the marginal signals can 

preserve the sparsity structure of the joint signals. Given that the first Kn principal 

components are adjusted, it is challenging to derive the population marginal signals and their 

sparsity structure. Second, ideally we should use the principal components based on the p 
− 1 omitted covariates for each marginal variable Xj, but it will be computationally intensive 

hence we recommend to compute the principal components based on all p covariates and use 

them as surrogate covariates for all the marginal variables. Although this approach greatly 

reduces the computation costs and has almost the same numerical performance, it brings 

additional challenges in theoretical development since the contribution of each marginal 
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variable is somehow overly counted in the calculation of the principal components. These 

are interesting topics for future research.

Software

Software in the form of R code, together with input data sets and complete documentation is 

available on request from the corresponding author (rsong@ncsu.edu).
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Figure 1. 
The Scree Plot for Linear Models in Simulation Model I with p = 1000 and n = 500.
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Figure 2. 
The Scree Plot for Linear Models in Simulation Model II with p = 1000 and n = 500.
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Figure 3. 
The Scree Plot for Linear Models in Simulation Model III with p = 1000 and n = 500.
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Figure 4. 
Scree Plot for Linear Models in Simulation Model IV with p = 40000 and n = 500.
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Figure 5. 
Scree Plot for Rat Genome Data with p = 18975 and n = 120.
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Figure 6. 
Scree Plot for SNP Data with p = 277 and n = 360.
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Table 4

The MMMS and RSD (in parenthesis) of the simulated examples for linear model IV using different number 

of PCs with s = 12, β★ = (1, 1.3, 1, 1.3, 1, 1.3, …)T when p = 40000 and n = 500.

PCs Variance SIS-PCA-MLR SIS-PCA-MMLE

(SIS-MLR) (SIS-MMLE)

0 0 39(70) 39(70)

1 5.9% 13(4) 13(3)

3 6.3% 13(4) 13(4)

5 6.8% 13(4) 13(4)

10 8.0% 13(4) 13(4)

30 12.2% 14(6) 14(7)

50 17.0% 15(12) 15.5(11)

100 27.8% 23(35) 22(37)
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Table 5

Comparison between SIS and PCA-SIS over the rats testing data.

Method Prediction Error Standard Deviation

SIS 0.4636 0.2563

PCA-SIS 0.2278 0.08762
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