Setting 1, linear model with p = 1000 |
|
|
s = 6, β★ = (0.3,−0.3, 0.3, …)T
|
s = 12, β★ = (3, 4, 3, …)T
|
0 |
0 |
13(35) |
13(35) |
101(96) |
101(96) |
1 |
41.5% |
7(3) |
7(4) |
12(0) |
12(0) |
3 |
42.2% |
7(3) |
7(4) |
12(0) |
12(0) |
5 |
42.8% |
7(3) |
7(3) |
12(0) |
12(0) |
10 |
44.4% |
7(4) |
7(4) |
12(0) |
12(0) |
30 |
50.2% |
8(5) |
8(5) |
12(0) |
12(0) |
50 |
55.4% |
11(8) |
10(8) |
12(0) |
12(0) |
100 |
66.4% |
19.5(32) |
19(31) |
12(1) |
12(1) |
Setting 2, logistic regression with p = 1000 |
|
|
s = 6, β★ = (0.7,−0.7, 0.7, …)T
|
s = 8, β★ = (3, 4, 3, …)T
|
0 |
0 |
14(26) |
14(26) |
70.5(80) |
64(82) |
1 |
41.7% |
7(3) |
7(3) |
21(31) |
23(28) |
3 |
42.4% |
7(3) |
7(3) |
22.5(31) |
24(30) |
5 |
43.0% |
7(4) |
7(3) |
25(29) |
26(32) |
10 |
44.6% |
7(4) |
8(4) |
24(38) |
27(38) |
30 |
50.4% |
8(7) |
8(7) |
38(49) |
37(46) |
50 |
55.5% |
10(10) |
10.5(10) |
58(72) |
60(80) |
100 |
66.5% |
22(34) |
24.5(34) |
532(460) |
414(347) |
Setting 3, linear model with p = 10000 |
|
|
s = 6, β★ = (0.3,−0.3, 0.3, …)T
|
s = 12, β★ = (3, 4, 3, 4, …)T
|
0 |
0 |
90.5(501) |
90.5(501) |
830.5(924) |
830.5(924) |
1 |
40.3% |
14.5(37) |
14(35) |
12(1) |
12(1) |
3 |
40.6% |
15(35) |
14(34) |
12(1) |
12(1) |
5 |
41.0% |
15(30) |
14(29) |
12(1) |
12(1) |
10 |
41.9% |
16.5(36) |
15(35) |
12(1) |
12(1) |
30 |
45.2% |
27(49) |
25.5(45) |
12(1) |
12(1) |
50 |
48.5% |
36.5(100) |
36.5(95) |
12(2) |
12(2) |
100 |
56.1% |
70.5(171) |
67.5(170) |
14(8) |
14(7) |
Setting 4, logistic regression with p = 10000 |
|
|
s = 6, β★ = (0.7,−0.7, 0.7, …)T
|
s = 8, β★ = (3, 4, 3, …)T
|
0 |
0 |
112(365) |
112(366) |
641(742) |
609.5(731) |
1 |
41.5% |
15(30) |
16(29) |
142(339) |
146(354) |
3 |
41.8% |
16(32) |
17(32) |
149.5(372) |
160(351) |
5 |
42.2% |
15(37) |
17(36) |
157(392) |
168.5(394) |
10 |
43.0% |
16.5(35) |
17(37) |
154(351) |
160(367) |
30 |
46.3% |
28(51) |
26(50) |
259(663) |
259(646) |
50 |
49.5% |
36(68) |
34.5(71) |
410.5(834) |
455(879) |
100 |
57.0% |
78.5(206) |
80.5(238) |
6837(6317) |
2570(3513) |