Skip to main content
. Author manuscript; available in PMC: 2018 Jun 1.
Published in final edited form as: Comput Stat Data Anal. 2017 Jan 19;110:134–144. doi: 10.1016/j.csda.2016.12.015

Table 1.

The MMMS and RSD (in parenthesis) of the simulated examples for linear and logistic regression from simulation model I with n = 500 when p = 1000 and p = 10000. PC=0 refers to the marginal screening in Fan and Lv (2008).

PCs Variance SIS-PCA-MLR SIS-PCA-MMLE SIS-PCA-MLR SIS-PCA-MMLE
Setting 1, linear model with p = 1000
s = 6, β = (0.3,−0.3, 0.3, …)T s = 12, β = (3, 4, 3, …)T
0 0 13(35) 13(35) 101(96) 101(96)
1 41.5% 7(3) 7(4) 12(0) 12(0)
3 42.2% 7(3) 7(4) 12(0) 12(0)
5 42.8% 7(3) 7(3) 12(0) 12(0)
10 44.4% 7(4) 7(4) 12(0) 12(0)
30 50.2% 8(5) 8(5) 12(0) 12(0)
50 55.4% 11(8) 10(8) 12(0) 12(0)
100 66.4% 19.5(32) 19(31) 12(1) 12(1)
Setting 2, logistic regression with p = 1000
s = 6, β = (0.7,−0.7, 0.7, …)T s = 8, β = (3, 4, 3, …)T
0 0 14(26) 14(26) 70.5(80) 64(82)
1 41.7% 7(3) 7(3) 21(31) 23(28)
3 42.4% 7(3) 7(3) 22.5(31) 24(30)
5 43.0% 7(4) 7(3) 25(29) 26(32)
10 44.6% 7(4) 8(4) 24(38) 27(38)
30 50.4% 8(7) 8(7) 38(49) 37(46)
50 55.5% 10(10) 10.5(10) 58(72) 60(80)
100 66.5% 22(34) 24.5(34) 532(460) 414(347)
Setting 3, linear model with p = 10000
s = 6, β = (0.3,−0.3, 0.3, …)T s = 12, β = (3, 4, 3, 4, …)T
0 0 90.5(501) 90.5(501) 830.5(924) 830.5(924)
1 40.3% 14.5(37) 14(35) 12(1) 12(1)
3 40.6% 15(35) 14(34) 12(1) 12(1)
5 41.0% 15(30) 14(29) 12(1) 12(1)
10 41.9% 16.5(36) 15(35) 12(1) 12(1)
30 45.2% 27(49) 25.5(45) 12(1) 12(1)
50 48.5% 36.5(100) 36.5(95) 12(2) 12(2)
100 56.1% 70.5(171) 67.5(170) 14(8) 14(7)
Setting 4, logistic regression with p = 10000
s = 6, β = (0.7,−0.7, 0.7, …)T s = 8, β = (3, 4, 3, …)T
0 0 112(365) 112(366) 641(742) 609.5(731)
1 41.5% 15(30) 16(29) 142(339) 146(354)
3 41.8% 16(32) 17(32) 149.5(372) 160(351)
5 42.2% 15(37) 17(36) 157(392) 168.5(394)
10 43.0% 16.5(35) 17(37) 154(351) 160(367)
30 46.3% 28(51) 26(50) 259(663) 259(646)
50 49.5% 36(68) 34.5(71) 410.5(834) 455(879)
100 57.0% 78.5(206) 80.5(238) 6837(6317) 2570(3513)