Table V. Predominant pumps and carriers in the tonoplast of guard cells and their functional characteristics.
Genetic codes relate to Arabidopsis, functional data relate to V. faba unless noted otherwise; for Isat current, saturation is at V > > 0 for ATPases or V < < 0 for coupled transport; IV are typical currents within the physiological voltage range and Erev range with typical gradients of the relevant ionic species; currents were converted where necessary assuming 1 μA cm−2 = 1 pA pF−1, tonoplast surface area of 2 × 10−5 cm2, and volume of 3 pL. Shorthand identifiers in parentheses cross-reference to Box 1. n.d., not determined. References are as follows: A (Bentrup et al., 1986; Hedrich et al., 1989; Fricker and Willmer, 1990b, 1990a; Davies et al., 1991, 1992, 1994, 1996; Kasamo et al., 1991; Rea and Poole, 1993; Gambale et al., 1994; Ros et al., 1995; Willmer et al., 1995; Obermeyer et al., 1996; Darley et al., 1998; Facanha and de Meis, 1998; Gaxiola et al., 2007); B (Schumaker and Sze, 1986, 1990; Blackford et al., 1990; DuPont et al., 1990; Askerlund and Evans, 1992; Gavin et al., 1993; Askerlund, 1997; Harper et al., 1998; Hirschi, 1999; Palmgren and Harper, 1999; Geisler et al., 2000; Pardo et al., 2006; Pittman, 2011); C (Blumwald and Poole, 1985, 1987; Yamaguchi et al., 2003; Pardo et al., 2006; Rodríguez-Rosales et al., 2009; Chanroj et al., 2011; Barragán et al., 2012; Andrés et al., 2014; Han et al., 2015); D (Accardi and Miller, 2004; De Angeli et al., 2006, 2009a; von der Fecht-Bartenbach et al., 2010; Jossier et al., 2010); E (Burla et al., 2013).
Transporter | Name | Locus | Function | No. | Stoichiometry | Isat | IV | Erev | Ion Selectivity | References |
---|---|---|---|---|---|---|---|---|---|---|
×106 cell−1 | µA cm−2 | µA cm−2 | mV | |||||||
VH+-ATPase (VH-ATPase) | VHA-A | AT1G78900 | H+ uptake, energization | 3–8* | 2 H+:1 ATP | 2e | 1–2e | −94 to +23 | Assumed high H+ selective | A |
VHA-B | AT1G76030 | 3–3.5a | ||||||||
VHA-C | AT1G12840 | 0.6–1d | ||||||||
VHA-d | AT3G58730 | |||||||||
VHA-E | AT4G11150 | |||||||||
VHA-F | AT4G02620 | |||||||||
VHA-G | AT3G01390 | |||||||||
VHA-H | AT3G42050 | |||||||||
VHA-a | AT2G28520 | |||||||||
VHA-c | AT4G34720 | |||||||||
VHA-c'' | AT4G32530 | |||||||||
VHA-d | AT3G28710 | |||||||||
VHA-e | AT5G55290 | |||||||||
VH+-PPase (VH-PPase) | AVP1 | AT1G15690 | H+ uptake, energization | 6–20** | 1 H+:1 PPi | n.d. | 0.6–2.1 | −60 to −20 | A | |
AVP2 | AT1G78920 | |||||||||
VCa2+-ATPase (VCa-ATPase) | ACA4 | AT2G41560 | Ca2+ uptake | 0.3–1*** | 1 Ca2+:1 ATP**** | See IV | 0.01–0.02c,*** | −100 to −80 | n.d. | B |
ACA11 | AT3G57330 | 0.1b,*** | ||||||||
H+/Ca2+ antiport (CAX) | CAX1 | AT2G38170 | Ca2+ exchange | 0.1–0.3*** | 3 H+:1 Ca2+ | See IV | −0.61,b,*** | >+100 | Assumed selective for Ca2+ and H+ | B |
CAX2 | AT3G13320 | |||||||||
CAX3 | AT3G51860 | |||||||||
CAX5 | AT1G55730 | |||||||||
CAX6 | AT1G55720 | |||||||||
CAX7 | AT5G17860 | |||||||||
H+/cation antiport | NHX1 | AT5G27150 | Cation exchange, pHi regulation | 0.1–0.3*** | 1 H+:1 K+ | C | ||||
NHX2 | AT3G05030 | |||||||||
H+/Cl− (NO3−) antiport (CLC) | CLC-B | AT3G27170 | Anion exchange | 0.3–1*** | 1 H+:2 Cl− | See IV | 0.05–0.12,b | −60 to 0 | NO3−>Cl−>>SO42− | D |
CLC-E | AT4G35440 | 1 H+:2 NO3− | −48b | |||||||
CLC-A | AT5G40890 | |||||||||
CLC-C | AT5G49890 | |||||||||
ABA transport | ABCC1 | AT1G30400 | ABA glycosyl ester uptake | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | E |
ABCC2 | AT2G34660 | ABA glycosyl ester uptake |
Chara corallina.
Arabidopsis.
Brassica oleracea.
Commelina communis.
Beta vulgaris.
> 50 µm [Ca2+]i.
4 mm [NO3−]i.
Calculated assuming a transport rate of 50 H+ s−1, a tonoplast surface area of 2 × 10−5 cm2, and H+ flux from Commelina communis (Willmer et al., 1995).
Calculated from current densities assuming a transport rate of 50 H+ s−1 (Rea and Poole, 1993) and a tonoplast surface area of 2 × 10−5 cm2.
Calculated from Isat or the typical transport current assuming a transport turnover rate of 50 s−1 and a guard cell surface area of 3 × 10−5 cm2; estimates for the Ca2+-ATPase are based on assumption of a 10- to 30-fold lower density than the V-type H+-ATPase and H+-coupled transporters scaled accordingly.
Stoichiometry determined as the minimum thermodynamic requirement to drive net accumulation.