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Stomata control gaseous exchange between the leaf
and bulk atmosphere, limiting CO2 uptake for photo-
synthesis and water loss by transpiration, and therefore
determine plant productivity and water use efficiency.
In order to function efficiently, stomatamust respond to
internal and external signals to balance these two dif-
fusional processes. However, stomatal responses are an
order of magnitude slower than photosynthetic re-
sponses, which lead to a disconnection between sto-
matal conductance and net CO2 assimilation. Here, we
discuss the influence of anatomical features on the ra-
pidity of stomatal movement and explore the temporal
relationship between net CO2 assimilation and stomatal
conductance responses. We describe how these mech-
anisms have been included into recentmodeling efforts,
increasing the accuracy and predictive power under
dynamic environmental conditions, such as those ex-
perienced in the field.

Stomatal anatomical characteristics and behavior
control gaseous fluxes between the internal leaf envi-
ronment and the external atmosphere, with major
implications for photosynthesis, plant water status,
evaporative cooling, and nutrient uptake. The capacity
of stomata to allow CO2 into the leaf or lose water is
known as stomatal conductance (gs), measured as mole
of flux per unit of area (mol m22 s21). Stomatal conduc-
tance is the reciprocal of stomatal resistance and is
determined primarily by stomatal density, distribution,
and pore area. Global water usage is predicted to
double before 2030 (UNESCO, 2009) due to the rising

global population, increasing the need for greater crop
yields but with reductions in the amount of water
available for their growth. This, along with more erratic
precipitation episodes, is putting increasing pressure on
breeders and scientists to find new crop varieties or
breeding targets that would result in sustained or in-
creased crop yields with less inputs of water. Most crop
species are not indigenous to where they are currently
cultivated and often are not fully adapted to the envi-
ronmental conditions, potentially increasing the level of
stress that the plant experiences. For decades, breeders
focused mainly on selecting varieties for increased
yield, decreasing the diversity of other traits of inter-
est (e.g. stomatal behavior) and potential targets for
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selection. As stomata are key to plant photosynthesis
and water use, this makes them attractive targets for
manipulation to improve carbon uptake, optimize
water use, and reduce drought stress. Earlier work
used stable carbon isotopic discrimination as a proxy
for time-integrated water use efficiency (WUE) and
revealed that higher gs in wheat (Triticum aestivum)
resulted in a lower level of limitation of net CO2 as-
similation (A) and higher yield (Fischer et al., 1998). For
this reason, previous research explored improving gas
exchange via specific manipulation of steady-state gs
(e.g. by manipulating stomatal density), while we have
taken a less obvious approach and are exploring the
rapidity of stomatal responses that synchronize gs with
mesophyll demands for CO2 (Lawson et al., 2010;
Lawson and Blatt, 2014; Raven, 2014) to improve A,
WUE, and leaf temperature.

Stomata balance CO2 uptake and water loss by
adjusting the pore aperture to changing environmental
and internal cues. In general, stomata of C3 and C4
plants open with increasing or high light, low [CO2],
and low vapor pressure deficit (VPD), while closure is
driven by the reverse, low light, high [CO2], and high
VPD (Raschke, 1975; Outlaw, 2003). However, it should
be kept in mind that these environmental stimuli are
rarely experienced by the plant in isolation; therefore,
stomata must respond to multiple signals in a hierar-
chical manner (Lawson and Morison, 2004; Lawson
et al., 2010; Aasamaa and Sõber, 2011). Although gs is
closely linked with mesophyll demands for CO2 (Wong
et al., 1979; Farquhar and Sharkey, 1982; Mansfield
et al., 1990; Buckley andMott, 2013), stomatal responses
to changing conditions can be an order of magnitude
and more slower than photosynthetic responses. Re-
ports of correlations between A and gs often refer to
steady-state measurements or long-term observations
that do not reflect the reality of field conditions, as
short-term fluctuations in environmental conditions
can lead to a temporal disconnection between A and gs
(Kirschbaum and Pearcy, 1988; Tinoco-Ojanguren and
Pearcy, 1993; Lawson and Weyers, 1999; Lawson et al.,
2010; McAusland et al., 2016). The lack of temporal
synchronicity between A and gs under natural fluctu-
ating light conditions has important implications for
photosynthetic carbon gain and for the ratio of CO2
gained through photosynthesis to water lost by tran-
spiration, known as WUE, as well as resulting in het-
erogeneity in gas exchange over individual leaves
(Lawson andWeyers, 1999;McAusland et al., 2013) and
within canopies (Weyers and Lawson, 1997). In this
review, we will explore the temporal relationship be-
tween A and gs responses, the impact on WUE, and the
influence of anatomical characteristics on stomatal re-
sponses. Although we recognize the impact of envi-
ronmental variables such as [CO2], relative humidity,
and soil water content on the temporal response of gs,
here we will only focus on changes in light intensity. As
part of describing temporal responses in gs, we will
explore the use of models to better describe and allow a
comparison of responses between different species.

Many current and early models calculate gs in steady
state, and although they are useful as a predictive tool
to assess the role of gs on gaseous fluxes at the local
and regional scale, they fail to incorporate the temporal
(and spatial) heterogeneity in gs observed in the natu-
ral environment due to ever-changing environmental
conditions.

IMPACT OF THE TEMPORAL RESPONSE OF gs
ON PHOTOSYNTHESIS

Temporal Response of gs

Due to technical considerations, most studies re-
garding stomatal behavior on intact leaves have used gs
as a proxy to investigate stomatalmovements instead of
directly measuring pore area. Despite this being a
useful tool for understanding stomatal dynamics, it
should be kept in mind that the relationship between gs
and pore area is not linear, as the influence of pore area
on gs decreases rapidly with the magnitude of stomatal
opening (Kaiser and Kappen, 2001). Nevertheless,
Kaiser and Kappen (1997, 2000, 2001) showed that gs
and pore area measurements, although on different
scales, generally lead to the same conclusion regarding
limitations of photosynthesis (A) and water loss. It is
well known that a low gs or slow stomatal opening can
restrict the uptake of CO2 and, therefore, A (Farquhar
and Sharkey, 1982; Barradas et al., 1994; Barradas and
Jones, 1996; McAusland et al., 2016), while high gs fa-
cilitates higher rates of A but inevitably at the cost of
greater water loss through transpiration (Barradas
et al., 1994; Naumburg and Ellsworth, 2000; Lebaudy
et al., 2008; Lawson et al., 2010; McAusland et al., 2013,
2016; Lawson and Blatt, 2014). In response to fluctua-
tions in environmental parameters, it is commonly as-
sumed that plants try to synchronize stomatal opening
with the mesophyll demand for CO2 and stomatal clo-
sure with the need to minimize water loss through
transpiration (Cowan and Farquhar, 1977; Farquhar
et al., 1980; Mott, 2009; Lawson et al., 2012; Drake
et al., 2013; Jones, 2013). However, slow gs kinetics
(McAusland et al., 2016) means that the stomatal ap-
erture lags behind the steady-state target (Kaiser and
Kappen, 2000).

Light is the greatest environmental driver of photo-
synthesis, and stomatal response to light is one of the
most well-researched stomatal behaviors (Shimazaki
et al., 2007). Numerous studies have investigated
steady-state stomatal responses to light; however, as
these responses are measured under constant condi-
tions, they represent situations that are rarely found in
nature (Jones, 2013). Measurements of gs collected un-
der field conditions are highly variable and, therefore,
correlate poorly with those measured under steady-
state conditions in the laboratory (Poorter et al., 2016),
usually due to slow gs kinetics (McAusland et al., 2016),
meaning that, when measured, stomata have not yet
reached the new steady-state target (Whitehead and
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Teskey, 1995; Kaiser and Kappen, 2000; Lawson et al.,
2010).

Stomatal Response to Dynamic Light

Several studies have investigated the dynamics of
stomatal response and photosynthesis to fluctuations in
environmental variables, especially light (Knapp and
Smith, 1987; Kirschbaum et al., 1988; Tinoco-Ojanguren
and Pearcy, 1993; Barradas et al., 1994; Lawson et al.,
2010; Wong et al., 2012; McAusland et al., 2016).
However, the majority of these have concentrated on
the influence of sun and shade flecks on carbon gain in
understory forest dwelling species (Chazdon, 1988;
Chazdon and Pearcy, 1991; Tinoco-Ojanguren and
Pearcy, 1993; Pearcy, 1994; Leakey et al., 2005) and for
plants that have developmentally acclimated to shaded
or exposed conditions (Knapp and Smith 1987, 1988),
often ignoring dynamic stomatal response and the po-
tential limitation on carbon gain or water loss. Over the
diurnal period, these fluctuations in light (sun/shade
flecks) drive the temporal and spatial dynamics of
carbon gain and water loss (Lawson and Blatt, 2014). It
is often the speed of the stomatal response to environ-
mental fluctuations that is critical when assessing car-
bon uptake and WUE (Raschke, 1975; Kirschbaum and
Pearcy, 1988; Lawson andMorison, 2004; Lawson et al.,
2010). In the field, the response of A and gs is largely
dominated by fluctuations in photosynthetic photon
flux density (PPFD; Pearcy, 1990; Way and Pearcy,
2012), which can vary on a scale of seconds, minutes,
days, and even seasons (Assmann and Wang, 2001),
and is driven by sun angle, cloud cover, and shading
from overlapping leaves (Pearcy, 1990; Chazdon and
Pearcy, 1991; Way and Pearcy, 2012); as a consequence,
leaves are subjected to varying spectral qualities and
light intensities. It is noteworthy that such rapid
changes in PPFD will result in rapid intense modifica-
tions to leaf temperature, with greater gs providing
enhanced evaporative cooling and possible protection
against heat damage (Schymanski et al., 2013).
In the 1980s to early 1990s, Pearcy and colleagues

investigated the impacts of sun flecks, primarily on
carbon gain and later on stomatal dynamics. They
dissected the temporal photosynthetic and gs response
into different phases to explain the periods of response
associated with limitations in A and overshoots of gs
leading to excess water loss. The initial phase was
termed the induction and represents periods of up to
10 min during which biochemical processes rather than
CO2 supply limit carbon assimilation (Barradas and
Jones, 1996). The second phase, dominated by stomatal
limitation, describes slow gs responses that constrain
CO2 diffusion and A (Lawson et al., 2010, 2012; Vialet-
Chabrand et al., 2013;McAusland et al., 2016). The third
phase explains the period in which gs remains high,
exceeding the amount of gs required for maximum rates
of carbon assimilation (Kirschbaum et al., 1988; Tinoco-
Ojanguren and Pearcy, 1993; Lawson et al., 2010),

leading to excess water loss (relative to carbon gained)
and effectively a drop inWUE (McAusland et al., 2016).
Studies mainly on forest understory species have
reported that sun flecks may contribute 10% to 60% of
the total daily carbon gain (Way and Pearcy, 2012),
depending on forest type and plant age. Stomatal lim-
itations on A have been estimated at up to 30%, with
significant implications for carbon sequestration and
crop yields (Fischer et al., 1998; Lawson and Blatt, 2014).
Indeed, Kirschbaum et al. (1988) found that, if initial gs
values were high, A could be 6 times higher 1 min after
an increase in PPFD than if initial gs was low, an 82% gs
limitation on A, illustrating the importance of gs in
natural dynamic conditions such as those found in the
field. Continued increases in gs afterA has reached light
saturation also have been reported, which led to a de-
crease in intrinsic water use efficiency (Wi) with higher
water loss for no CO2 gain (Kirschbaum et al., 1988;
Tinoco-Ojanguren and Pearcy, 1993; Lawson et al.,
2010).

Differences in the speed of stomatal opening and
closing and themagnitude of change in gs in response to
sun and shade flecks are known to exist between spe-
cies and within individual plants (Assmann and
Grantz, 1990; Ooba and Takahashi, 2003; Franks and
Farquhar, 2007; Vico et al., 2011; Drake et al., 2013;
Vialet‐Chabrand et al., 2013). Response times also are
dependent upon the plant water status (Lawson and
Blatt, 2014), leaf age (Urban et al., 2008), the history of
stress (Pearcy and Way, 2012; Porcar-Castell and
Palmroth, 2012; Wong et al., 2012; Zhang et al., 2012),
and the duration and magnitude of changes in PPFD
(Weyers and Lawson, 1997; Lawson et al., 1998, 2012;
Lawson and Blatt, 2014). There is also evidence to
suggest that changes in growth environment during
stomatal development influence the speed of response
in mature leaves (Arve et al., 2017). The speeds of
opening and closing in response to changing PPFD in
many species are not correlated (Ooba and Takahashi,
2003); however, Vico et al. (2011) compared 60 pub-
lished gas-exchange data sets on stomatal response to
PPFD to determine the impact of stomatal delays on
photosynthesis and found a general parallel relation-
ship in the rates of stomatal response, concluding that
rates of stomatal opening were essentially correlated
with the rate of closure. If we assumed that there is no
delay in stomatal opening or closing, optimal leaf gas
exchange would be achievable (Cowan and Farquhar,
1977; Lawson and Blatt, 2014), but it is important to
consider the fact that specific delays in stomatal
movement may be indicators of the current needs of the
plant (Ooba and Takahashi, 2003; Manzoni et al., 2011;
Vico et al., 2011; Drake et al., 2013). The response of gs is
thought to reflect this priority: under well-watered
conditions in the canopy, stomata will remain open
(particularly lower down in the canopywhere VPDwill
be lower) in order to utilize light energy from sunflecks
to maximize CO2 diffusion into the leaf (Lawson
et al., 2012; Way and Pearcy 2012), even at the cost of
further water loss (Allen and Pearcy, 2000), while under
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drought or water-limited conditions, stomata will often
close to conserve water at the expense of carbon gain
(Knapp and Smith, 1988).

Influence of Anatomy on Stomatal Response

Stomatal anatomical features such as stomatal den-
sity and size are known to determine steady-state gs
(Franks and Farquhar, 2001) and are key components
for determining themaximum theoretical gs of the plant
(Dow et al., 2014). Stomatal size and density vary
greatly between plant species and are influenced
by the growth environment (Willmer and Fricker,
1996; Hetherington and Woodward, 2003; Franks and
Beerling, 2009). Stomatal density often has been nega-
tively correlated with stomatal size (Hetherington and
Woodward, 2003; Franks and Beerling, 2009). Re-
cently, a great deal of consideration has been given to
the impact of stomatal anatomical features on stomatal
function and gas exchange, particularly to the mor-
phological and mechanical diversity of stomata with
reference to performance and plasticity (Franks and
Farquhar, 2007). Recent studies and reviews have im-
plied that stomatal response times to environmental
perturbations are affected by physical attributes such as
size and density (Drake et al., 2013; Raven, 2014), the
presence or absence of subsidiary cells (Franks and
Farquhar, 2001), as well as the shape of the guard
cells (McAusland et al., 2016) and their clustering
(Papanatsiou et al., 2016) and that manipulation of
these features could have positive effects for carbon
gain and WUE (Doheny-Adams et al., 2012; Lawson
et al., 2012; Tanaka et al., 2013; Franks et al., 2015).

Hetherington and Woodward (2003) first suggested
that dumbbell-shaped stomata could open and close
faster than kidney-shaped stomata in response to envi-
ronmental perturbations, as even small changes in vol-
ume in the smaller dumbbell-shaped guard cells would
lead to greater stomatal opening compared with the
larger kidney-shaped guard cells. Franks and Farquhar
(2007) took this further by advocating other factors that
may influence the speed of response, such as guard cell
geometry, mechanical advantage, osmotic or turgor
pressure, and the energetic cost of guard cell movements
(as mentioned previously). A mechanical advantage of
dumbbell-shaped stomata was suggested to be associ-
ated with the reciprocal coupling of guard and subsidi-
ary cell osmotic and turgor pressures, leading to more
rapid stomatal movements (Franks and Farquhar, 2007;
Raven, 2014). These findings underlie the potential of
dumbbell-shaped stomata to track changes in environ-
mental conditions and maximize the efficiency of pho-
tosynthesis and water use through increased stomatal
response times (Hetherington and Woodward, 2003;
McAusland et al., 2016), a point also highlighted byChen
et al. (2017) in their analysis of stomatal evolution. Drake
et al. (2013) investigated the correlation between sto-
matal anatomy, specifically density and size, and sto-
matal opening speeds and found that the maximum rate

of stomatal opening was driven by size and density.
Although the work of Drake et al. (2013) and the review
from Raven (2014) made significant progress in linking
stomatal size to function, including the speed of re-
sponse to light and associated implications, the size of
stomata is not the only and main determinant of the
speed of response. For example, Papanatsiou et al. (2016)
note that stomatal clustering can affect gs kinetics inde-
pendent of stomatal dimensions and the available pool
of osmotic solutes available to drive aperture changes.
The results of Drake et al. (2013) also could have been
skewed by the experimental condition, as step changes
in light from a state of darkness not only incur bio-
chemical limitations on stomatal movement and assim-
ilation but represent a state that is rarely seen in the
natural environment except prior to dawn.

Recent work from Kaiser et al. (2016) using similar
experimental conditions could have overestimated the
biochemical limitation and underestimated the diffu-
sional limitation onA due to the slow response of gs from
dark. Producing a step change from low to high light is
more representative of the conditions experienced in the
field during a diurnal period from passing clouds and
overlapping leaves (McAusland et al., 2016; Vialet-
Chabrand et al., 2017); therefore, more relevant infor-
mation can be gained regarding the speed of stomatal
response and the implications this may have for carbon
assimilation and WUE. In a recent study, McAusland
et al. (2016) compared the speed of stomatal responses to
a step change in light, in both dumbbell- and ellipse-
shaped guard cells in a range of species, including
model species and crops. These authors found that guard
cell shape (dumbbell or elliptical) and potentially pho-
tosynthetic type (C3/C4) played a key role in determining
the speed of stomatal response, with dumbbell-shaped
guard cells exhibiting faster responses than those with
elliptical guard cells. Slow stomatal opening in response
to increasing light was demonstrated to limit carbon as-
similation by approximately 10%,whichwould equate to
substantial losses in carbon gain over the course of the
day, potentially negatively impacting productivity and
yield, whereas slow stomatal closure when PPFD de-
creased resulted in a significant decrease in WUE, as
overshoots in gs by up to 80% were observed with only a
negligible 5% gain in A. Closer coupling of A and gs,
therefore, has the potential to enhance carbon gain and
Wi and, in turn, improve performance, productivity, and
yield (Lawson et al., 2010; Lawson and Blatt, 2014; Li
et al., 2016; McAusland et al., 2016; Qu et al., 2016).

MODELING THE TEMPORAL RESPONSE
OF STOMATA

As mentioned above dynamic stomatal behavior
plays a key role in regulating the flux of carbon and
water through the soil-plant-atmosphere continuum
and is an important determinant for scaling leaf-level
measurements of WUE and photosynthesis to the can-
opy level (Weyers et al., 1997). Modeling is generally
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considered the most effective tool for simulating sto-
matal responses to environmental conditions (Damour
et al., 2010), and the importance of integrating stomatal
behavior into scaling models is recognized (Weyers
et al., 1997; Bernacchi et al., 2007; Lawson et al., 2010;
Barman et al., 2014; Bonan et al., 2014; De Kauwe et al.,
2015). Many current models calculate steady-state gs
and have become successful tools for predicting the
impact of gs on water and carbon fluxes at ecosystem
and regional scales. However, heterogeneity in the
spatial and temporal responses of stomata often is
overlooked (Weyers et al., 1997; Lawson and Weyers,
1999), limiting the confidence with which these current
models can predict larger scale responses or the impact
of predicted climate change (Buckley et al., 2003; Dewar
et al., 2009; Baldocchi, 2014). The addition of stomatal
dynamics to existing models has the potential to reveal
the extent to which gs has been inaccurately predicted by
steady-state models. As stomata respond continu-
ously to fluxes in environmental conditions and,
therefore, gs is rarely in steady state, this reinforces the
need for improved mechanistic models of gs (Damour
et al., 2010; Vialet-Chabrand et al., 2016). Greater focus
in future modeling efforts attempting to scale from the
leaf to the canopy level should be given to the inclu-
sion and integration of temporal stomatal dynamics to
fluctuations in environmental signals (Vico et al., 2011;
Vialet-Chabrand et al., 2013) to predict the impact of
large-scale heterogeneity in stomatal traits on water
and CO2 fluxes through the canopy, ecosystem, and
global scales. Furthermore, as stomata are exposed to
constant fluctuations over the diurnal period, it is of-
ten the speed of the stomatal response that is critical in
determining CO2 uptake and transpiration dynamics
over the course of the day (McAusland et al., 2016;
Vialet-Chabrand et al., 2016) rather than the steady-
state values that are often the basis of many existing
models. Here, we will review the existing dynamic
models and the advantages and disadvantages of their
use and predictive power while also discussing the
incorporation of dynamic models for greater accuracy
in predicting stomatal impacts on A, gs, and Wi in a
natural environment.

Modeling the Temporal Response of gs to Changes in
Light Intensity

In the early 1970s, temporal responses of gs were ex-
amined to determine the degree of limitation onA and the
regulation of water loss (Woods and Turner, 1971; Davies
and Kozlowski, 1974; Horie, 1978). Most of these early
studies were based on step increases and decreases in
light intensity, revealing a slow exponential or sigmoidal
variation in gs with time (Fig. 1). The response of gs to a
step change in light intensitywas initially evaluated as the
time for gs to reach the new steady state (Gs) at the new
light level or a percentage of this value as an estimator of
the rapidity of response (Woods and Turner, 1971; Davies
and Kozlowski, 1974; Grantz and Zeiger, 1986; Dumont
et al., 2013). More recently, the rapidity of response has
been estimated using a regression fit to the linear part of
the gs response, providing an estimate of the maximum
rate of gs increase (Tinoco-Ojanguren and Pearcy, 1992;
Fay and Knapp, 1995; Naumburg et al., 2001; Drake et al.,
2013). Temporal responses of gs assessed using these
approaches are prone to errors, as they are largely de-
pendent on the estimation ofGs thatmaynever be reached
and the linearity of the initial part of the curve. The lack of
a standard method to estimate the temporal response of
gs, (e.g. in the choice of the linear part of the curve) pre-
vents a direct comparison of results fromdifferent studies.
A more robust approach is to use normalized observa-
tions of gs between the initial and final Gs (Laffray et al.,
1982; Iino et al., 1985; Barradas et al., 1994; Mencuccini
et al., 2000; Drake et al., 2013). This approach not only
provides a visual representation of the differences in
temporal gs responses but also is independent of the
magnitude of the gs response, although it is unable to
summarize the overall response in one descriptive statis-
tic. Moreover, if a steady state is not reached during the
measurement period, it is difficult to normalize data.

Dynamic Models of gs

An alternative to these earlier error-prone approaches
is to fit a model to the temporal response of gs following
a step change in light intensity and determine a set of

Figure 1. Application of an exponential model (A) and a sigmoidal model (B; red dashed lines) on the temporal response of gs
(black dots) in Arabidopsis (Columbia-0 [Col-0]) to a step change in light intensity (from 100 to 1,000 mmol m22 s21 and from
1,000 to 100 mmol m22 s21, respectively). Gas-exchange measurements of gs were recorded at 60-s intervals; leaf temperature
was maintained at 25°C, and leaf VPD was maintained at 1 kPa.
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parameter values to describe and enable an evaluation
of specific parts of the response curve. In general, such
models require the following parameters: an initial
and final value of gs and a time constant. These pa-
rameters are targets, which means that if Gs is not
reached during the response, the model can constrain
the parameter value based on the shape of the re-
sponse curve. Parameter values can be adjusted using
a statistical method that provides the best set of values
based on the comparison of the observations and the
model outputs.

Typically, two empirical models based on the shape
of the variation of gs are commonly used, an exponen-
tial and a sigmoidal model. For both models, a set of
differential equations and associated analytical solu-
tions are available. To date, a large number of studies
have used the analytical equations of the exponential
response of gs (Horie, 1978; Knapp, 1993; Whitehead
and Teskey, 1995; Naumburg and Ellsworth, 2000;
Franks and Farquhar, 2001, 2007; Naumburg et al.,
2001; Vico et al., 2011; Martins et al., 2016; Qu et al.,
2016) that can be formulated for an increase (Eq. 1) or
decrease (Eq. 2) in gs:

gs ¼ Gmax þ ðGmin 2GmaxÞe2 t=ti ð1Þ

gs ¼ Gmin þ ðGmax 2GminÞe2 t=td ð2Þ

where Gmin and Gmax represent the minimum and max-
imum steady state gs, ti and td represent the time con-
stants for the increase and decrease in gs, and t is
the time at which gs is estimated starting from time 0.
In this model, the time constants represent the time
required to reach 63% of the total variation (when
td ¼ t, gs2Gmin

Gmax 2Gmin
¼ 12 e2 1;0:63). The large number of

studies using the exponential model is due to its ease
of use and the fact that most of the observed temporal
responses of gs have an exponential shape.

A delay in the increase in gs responses after a step
increase in light has been reported for several species
(Barradas et al., 1994; Naumburg and Ellsworth, 2000;
Drake et al., 2013; Elliott-Kingston et al., 2016;
McAusland et al., 2016), and the shape of this type of
response can be described by a sigmoidal equation:

gs ¼ ðGmax 2GminÞe2e
ðl2 t

ki
þ1Þ

þ Gmin ð3Þ

gs ¼ ðGmin 2GmaxÞe2e
ðl2 t

kd
þ1Þ

þ Gmax ð4Þ

where ki and kd represent the time constants for the in-
crease (Eq. 3) or decrease (Eq. 4) of gs and l is the initial
lag time. Time constants ki and kd do not directly repre-
sent a time to reach a percentage of Gs but also depend
on l. However, the time to reach any value of gs can be

calculated by solving the previous equation as a func-
tion of time:

t ¼ l2 ki$
�
ln
�
2 ln

�
gs 2Gmin

Gmax 2Gmin

��
2 1

�
ð5Þ

Using Equation 5, the equivalence between the expo-
nential and sigmoidal time constants can be written as:

ti ¼ l2 ki$
�
ln
�
2 ln

�
12 e2 1��2 1

	 ð6Þ

where t represents the time to reach 63% of the total gs
variation including the initial lag time.

Another interesting property that has been used in
numerous studies to describe the speed of stomatal re-
sponse is the maximum slope of gs increase, which is
calculated based on the previously described parameters:

Slmax ¼ k$
Gmax 2Gmin

e
ð7Þ

Equation 7 relates the effect on gs of stomatal density
(approximated by G) and the speed of response of sto-
mata (estimated by k), highlighting the importance of
differences in stomatal density when drawing conclu-
sions from differences in Slmax. It should be kept inmind
that, as mentioned previously, the scaling up from
stoma to leaf level is not a linear process, and caution
should be taken when interpreting the temporal re-
sponse of gs in terms of stomatal behavior (Kaiser and
Kappen, 2001; Vialet-Chabrand et al., 2016).

Both the exponential (Fig. 1A) and sigmoidal (Fig. 1B)
models can be fitted on data collected using a generic
protocol that consists of a step increase in light intensity
from 100 to 1,000 mmol m22 s21 while other envi-
ronmental variables are held constant (e.g. relative
humidity). This generic protocol has been used in nu-
merous publications and can be adapted depending on
the species. Although a step change in light intensity
often is used as the standard method to assess temporal
responses in gs, this approach is not fully representative
of natural environmental variation but is close towhat a
plant may experience during a sunfleck in the field. We
provide a curve-fitting routine in Microsoft Excel to il-
lustrate the use of the exponential and sigmodal models
described above in an accessible format (Supplemental
File S1). Despite differences in timing or light intensi-
ties, the parameters derived from this protocol can be
compared to characterize the differences in the tempo-
ral response of gs. Under a continuously changing light
environment, the analytical models presented above
can be biased, as they assume a constant Gs between
each calculated time point. In the case of a dynamic
light environment, differential equations would be
preferred for their accurate and continuous descrip-
tions of the gs response. A differential equation de-
scribing an exponential response of gs has been
described previously (Horie, 1978; Noe and Giersch,
2004; Vico et al., 2011) but requires a larger number of
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steps to be solved and, therefore, has rarely been used
(Kirschbaum et al., 1988; Noe and Giersch, 2004; Vialet-
Chabrand et al., 2016):

dgt
dt

¼
�
Gs 2 gt

�
t

ð8Þ

Alternatively, a differential equation for a sigmoidal
variation of gs can be used (Vialet-Chabrand et al., 2013;
Moualeu-Ngangue et al., 2016), providing a control on
the initial lag experienced by stomata after a change in
light intensity:

dgt
dt

¼ k$
�
ln
�
Gs 2 g0
gt 2 g0

��
$
�
gt 2 g0

� ð9Þ

Alternative, more complex equations than Equation
8 have been proposed by Kirschbaum et al. (1988), but
they can be more difficult to parameterize due to their
large number of parameters. The use of a differential
equation required the calculation of the steady-state tar-
get Gs at any point of time, so Vialet-Chabrand et al.
(2013) proposed the use of a spline function to estimate
the light intensity (or any environmental variable) con-
tinuously and then use of these values to predict Gs
using any already available steady-state model. There-
fore, this approach to model the temporal response of gs
can be used in existing steady-state gs models to predict
the transient states of gs resulting from the previous
variations in light intensity.
In many studies, the temporal response of gs has been

associated with stomatal behavior and focused on the
rapidity of stomatal movements (Franks and Farquhar,
2007; Drake et al., 2013; Raven, 2014). However, it is

important to note that the rapidity of stomatal move-
ments is not necessarily correlated to the rapidity of the
variations of gs (Vialet-Chabrand et al., 2016). For ex-
ample, a higher stomatal density can result in a higher
rate of gs increase (Slmax) without changes in stomatal
behavior (McAusland et al., 2016). Both anatomical
traits (e.g. stomatal density and size) and biochemical
traits (e.g. number and regulation of ion channels)

Figure 2. Temporal response of gs in Arabidopsis ecotypes (Col-0) and mutants (gork1-1 and wer1-1) following a step change in
light intensity (from 100 to 1,000 mmol m22 s21 [A] and from 1,000 to 100 mmol m22 s21 [B]). Gas-exchange measurements of gs
were recorded at 60-s intervals; leaf temperature was maintained at 25°C, and leaf VPD was maintained at 1 kPa. Time constants
for an (C) increase (ti) and (D) decrease (td) in gs were derived from the exponential model described in the text; (E) SD, stomatal
density; (F) GC, guard cell. Letters represented the results of Tukey’s posthoc comparisons of group means.

Figure 3. Temporal response of A in Arabidopsis (Col-0, gork1-1, and
wer1-1) to a step change in light intensity (from 100 to 1,000mmolm22 s21).
Insert graph, the time constant (ta) to reach 63% of the steady-state A
under 1,000 mmol m22 s21 light indicates the temporal limitation of
A. Gas exchange was recorded at 60-s intervals; leaf temperature was
maintained at 25°C, and leaf VPD was maintained at 1 kPa.
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describing stomatal behavior need to be considered to
fully understand the kinetics of gs responses following a
change in light intensity or any other environmental
parameter. To this extent, empirical analysis of gs also
may be extracted from mechanistic models of guard
cells, notably OnGuard, which yields outputs in sto-
matal aperture that connect directly to the underlying
processes of solute transport and metabolism (Chen
et al., 2012; Hills et al., 2012; Wang et al., 2012). Indeed,
Wang et al. (2014) have used this platform to undertake
a study of stomatal kinetics, incorporating a first-order
sensitivity analysis of the dependence on individual ion
channels and pumps at the plasma membrane and
tonoplast. Their study yielded a number of unexpected
results, as noted below.

An Example of Dynamic Modeling of gs

To illustrate the use of models to describe temporal gs
responses and the effect of physical and functional
stomatal attributes, we compared the rapidity of the
temporal response of gs in two Arabidopsis (Arabidopsis
thaliana) genotypes and ecotype Col-0, one with altered
stomatal distribution (wer1-1; Lee and Schiefelbein,
1999) and the second with impaired stomatal closure
(gork1-1; Hosy et al., 2003). Compared with Col-0, the
ectopic stomata of wer1-1 resulted in a faster stomatal
response, as illustrated by the lower Gs (Fig. 2, A and B)
and lower ti and td (Fig. 2, C and D). The ectopic
anatomy of the wer1-1 stomata potentially allows faster
pore opening, as there is no back pressure from the
surrounding epidermal cells because the stomatal
guard cells are above and not in line with the epidermal
cells, resulting in faster movements for the same energy
cost. This change in stomatal anatomy also leads to a
lower Gs compared with the wild-type control, al-
though the mechanism for this is unknown and needs
further investigation. As shown previously by Hosy
et al. (2003), plants with impaired outward K+ channels
(gork1-1) have greater ti and td and higher Gs, resulting
in a large unnecessary water loss during stomatal clo-
sure but little effect on stomatal limitation of A due to
the relatively high values of gs. The strong reduction of
the outwardly rectifying K+ channel activity in the
guard cell membrane prevents K+ release and increases
the stomatal aperture by maintaining membrane de-
polarization atmembrane potentials more positive than
the K+ equilibrium potential. This imbalance in osmo-
regulation induced a slow stomatal response by po-
tentially slowing downK+ uptake. Although there were
small but significant differences in anatomical features
such as stomatal density (Fig. 2E) and guard cell length
(Fig. 2F), they cannot explain the different temporal
responses of gs in these plants, highlighting the impor-
tance of other parameters, such as the biochemistry and
mechanics of stomatal movement as described above.
The same conclusions can be drawn, for example, from
studies of slac1 (Wang et al., 2012), amy3 and bam1
(Horrer et al., 2016), and other mutant and transgenic

plants (Eisenach and de Angeli, 2017; Jezek and Blatt,
2017; Lunn and Santelia, 2017). These findings illustrate
the plasticity of temporal gs responses and the potential
impact that manipulating the speed of stomatal re-
sponses could have on A and WUE. For example, the
fast gs response in the wer1-1 plants reduced gs limita-
tion of A under an increase in light (Figs. 2A and 3) and
reduced potential water loss when subjected to a de-
crease in light (Fig. 2B). These plants exhibited a po-
tential for increased/greater synchronization between
A and gs (Fig. 3), which may lead to higher WUE over
the course of the day (McAusland et al., 2016).

CONCLUSION

Despite stomatal behavior occurring at the micro-
scale, it is important to recognize the impact they have
on cycles of carbon and water in large-scale global
systems. Although stomata typically occupy only a
small portion of the leaf surface (0.3%–5%), they are
known to control approximately 95% of all gas ex-
change between the leaf and environment, and esti-
mations show that 98% of all water taken up through
the roots may be transpired through stomatal pores
(Morison, 2003), potentially translating to 60% of all
terrestrial precipitation (Katul et al., 2012). Indeed,most
crop plants will transpire over twice their fresh weight
in water every day (Chaumont and Tyerman, 2014).
With this in mind, stomata represent important targets
for manipulating crop photosynthetic productivity and
water use, which is particularly important considering
that the allocation of fresh water resources is becoming
a significant global concern. As highlighted in this re-
view, the importance of the temporal response of gs is
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largely unknown and underestimated, and under-
standing this variation will aid future scaling efforts
from individual stoma to leaf and canopy levels. What
is apparent is the lack of quantitative data on the ra-
pidity of the stomatal response under different envi-
ronmental conditions, making it difficult to describe the
mechanisms of guard cell movement and assess the
impact of uncoordinated responses on leaf-level gas
exchange. By integrating the dynamic or stomatal re-
sponses to changing environmental conditions, and
taking account of different stomatal morphology as
well as sensing and signaling systems, we may be able
to maximize the benefit of photosynthesis (in terms of
carbon gain) relative to the cost of water and translate
these findings into more sustainable crop production
systems for the future.

Supplemental Data

The following supplemental materials are available.

Supplemental File S1. GS_Fit.xlsm.
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