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Light-induced stomatal responses were first reported
by Darwin (1989). Stomata open in response to light,
including blue and red light (Shimazaki et al., 2007).
Red light induces stomatal opening via photosynthesis
in the mesophyll and guard cell chloroplasts (Mott
et al., 2008; Suetsugu et al., 2014). In contrast, blue light
as a signal induces stomatal opening. Phototropins
expressed in guard cells act as major blue light recep-
tors for stomatal opening (Kinoshita et al., 2001, 2003;
Inoue et al., 2008). Blue light-induced stomatal opening
is mediated through activation of a plasma membrane
(PM)H+ pump, later identified as the PMH+-ATPase, in
guard cells (Assmann et al., 1985; Shimazaki et al., 1986;
Kinoshita and Shimazaki, 1999). The blue light-
activated pump provides driving force for stomatal
opening concomitant with ion accumulation and cell
volume increase in guard cells (Schroeder et al., 1987;
Kinoshita and Hayashi, 2011). Note that stomatal
opening in response to weak blue light as a signal re-
quires background red light, indicating that red light
has a synergistic effect on the blue light response in
guard cells (Shimazaki et al., 2007).

Recent investigations of guard cells with respect to
blue light-induced stomatal opening have greatly ad-
vanced our understanding. In this review, we focus on
the recent progress of the blue light signaling pathway
in guard cells and its regulation of the PM H+-ATPase
activity.

BLUE LIGHT SIGNALING FOR
STOMATAL OPENING

Stomata effectively open in response to blue light,
especially under strong red light (Shimazaki et al., 2007;
Marten et al., 2010). Our understanding of the signaling
model for stomatal opening was mainly constructed
from studies of blue light-induced stomatal opening

(Fig. 1). A single guard cell possesses all signaling
components, from blue light perception to cell volume
increase, for stomatal opening. When guard cells are
irradiated by blue light, blue light-photoreceptor pro-
tein kinases, phototropins, are activated through auto-
phosphorylation and initiate signaling for stomatal
opening (Kinoshita et al., 2001; Christie, 2007). Blue
light induces autophosphorylation of two Ser residues
in the kinase activation-loop of phototropin molecules,
and phosphorylation is required for downstream sig-
naling, probably through substrate recognition (Inoue
et al., 2008, 2010, 2011). The activated phototropins di-
rectly phosphorylate another protein kinase BLUE
LIGHT SIGNALING1 (BLUS1), and phosphorylated
BLUS1 indirectly transmits the signal to type 1 protein
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phosphatase (PP1) and its regulatory subunit PRSL1
(Takemiya et al., 2006, 2013a, 2013b; Takemiya and
Shimazaki, 2016). Note that BLUS1 expression is
specific to guard cells and is not involved in the other
phototropin-mediated responses, such as phototro-
pism, chloroplasts movements, and leaf flattening
(Takemiya et al., 2013a), suggesting that BLUS1 de-
fines signaling specificity of stomatal opening among
the phototropin-mediated responses. The signal gen-
erated by BLUS1 finally activates the PM H+-ATPase,
mainly isoform AHA1, in guard cells through phos-
phorylation of a penultimate Thr in the C terminus
with subsequent binding of a 14-3-3 protein (Shimazaki
et al., 2007; Hayashi et al., 2011; Yamauchi et al., 2016).

Very recently, a Raf-like protein kinase, BLUE LIGHT-
DEPENDENT H+-ATPASE PHOSPHORYLATION
(BHP), was reported, to our knowledge, as the novel
signaling component in blue light-dependent stomatal

opening (Hayashi et al., 2017). BHP was identified
through a screening of protein kinase inhibitors that
suppress blue light-dependent PM H+-ATPase phos-
phorylation in guard cells and similarities to the
mammalian targets of the inhibitors. BHP does not
bind to the PM H+-ATPase but to BLUS1 and forms
an early signaling complex with phototropins to
mediate phosphorylation of a penultimate Thr of the
PM H+-ATPase (Hayashi et al., 2017). Guard cells in
bhp mutant exhibited normal phosphorylation of the
PM H+-ATPase in response to the PM H+-ATPase
activator fusicoccin, suggesting that BHP is not
likely to directly phosphorylate the penultimate Thr
of PM H+-ATPase. There may be an unidentified
protein kinase that directly phosphorylates the PM
H+-ATPase in stomatal opening. In addition, whether
BLUS1 phosphorylates and activates BHP is unknown
at this time. Further analyses are needed to clarify the
early signaling for stomatal opening from phototropins
to the PM H+-ATPase activation and to identify the
endogenous substrates of BLUS1, BHP, and PP1 in
guard cells.

The blue light-activated PM H+-ATPase drives H+

transport across the PM and hyperpolarizes of the
membrane (Shimazaki et al., 2007; Marten et al., 2010).
This membrane hyperpolarization activates inward-
rectifying K+ (K+

in) channels and induces an influx of
K+ (Lebaudy et al., 2008; Kim et al., 2010), resulting in
the accumulation of K+, and the counteranions Cl2,
nitrate, and malate22; K+, and Cl2 are immediately
transported into the vacuole via the tonoplast-localized
K+/H+ exchangers NHX1 and NHX2 and the vacuolar
chloride channels aluminum-activated malate trans-
porter 9 (ALMT9) and chloride channel c (CLCc), re-
spectively (Jossier et al., 2010; Chen et al., 2012; De
Angeli et al., 2013; Andrés et al., 2014), and K+ accu-
mulation into the vacuole involves dynamic remodel-
ing of vacuolar structure for stomatal opening (Andrés
et al., 2014). Accumulation of these ions decreases the
water potential of guard cells, which leads to water
uptake into the vacuole and turgor increase, leading to
stomatal opening (Inoue et al., 2010;Marten et al., 2010).
The details of ion transports in guard cells are reviewed
in this Focus Issue (Eisenacha and De Angeli, 2017;
Jezek and Blatt, 2017). Recently, Santelia and colleagues
demonstrated that starch in guard cell chloroplasts is
degraded by phototropin-mediated signaling down-
stream of PM H+-ATPase activity and the degradation
contributes to stomatal opening (Horrer et al., 2016),
probably through malate synthesis (Shimazaki et al.,
2007). It remains an interesting and important question
on how the activity of the PM H+-ATPase is linked
to the starch degradation pathway in chloroplasts
(Santelia and Lunn, 2017).

In addition to the pursuit of signaling components as
described above, regulation of the expression and lo-
calization of key signaling factors that determines sto-
matal aperture indirectly have also been investigated
recently. For example, the bHLH family transcription
factors of ABA-RESPONSIVE KINASE SUBSTRATEs

Figure 1. Blue light signaling pathway in stomatal guard cells. Arrows
and a T-bar represent positive and negative regulation, respectively. The
P in the white circles indicates a phosphorylation of each protein. The
timescale of each peak of the key signaling events for blue light-induced
stomatal opening (;2 h) is shown as follows: phototropin activation
(within 1 min), H+ pumping (;2.5 min), hyperpolarization (several
min), K+ accumulation (between 30 and 60 min). Triacylglycerol
breakdown, starch degradation, and vacuolar remodeling are observed
within 1 to 2 h after the start of light illumination. phot, Phototropin;
14-3-3, 14-3-3 protein; Chl., chloroplast; PAR, photosynthetically ac-
tive radiation; TAG, triacylglycerol.
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(AKSs) and GARP transcription factors of GOLDEN
2-LIKE1 (GLK1) and GLK2 bind to the promoter of the
K+

in channel KAT1 gene and increase the K+
in channel

expression in guard cells (Takahashi et al., 2013;
Nagatoshi et al., 2016). GLKs also positively regulate
BLUS1 expression (Nagatoshi et al., 2016). These tran-
scriptional regulations contribute to enhance stoma-
tal opening. Moreover, the signaling components for
photoperiodic flowering including cryptochromes,
GIGANTEA, CONSTANS, EARLY FLOWERING3,
FLOWERING LOCUS T (FT), TWIN SISTER OF FT,
and SUPPRESSOR OF OVEREXPRESSION OF CO1,
are expressed in guard cells and also affect light-induced
stomatal opening probably via transcriptional regula-
tions in guard cells, but details of the regulatory targets
are unknown (Kinoshita et al., 2011; Ando et al., 2013;
Kimura et al., 2015). In addition, theMunc13-like protein
PATROL1may be involved in the enhancement of light-
induced stomatal opening by promoting the recruitment
of AHA1 to the PM of guard cells (Hashimoto-Sugimoto
et al., 2013). Both aminophospholipid ATPase (ALA10)
flippase and phospholipaseA2b (PLA2b) are involved in
light-induced stomatal opening through lysophospholi-
pid generation (Seo et al., 2008; Poulsen et al., 2015).
ALA10 promotes phospholipid uptake into guard cells,
and PL A2b generates lysophospholipids using phos-
pholipids as a substrate. One of the products, lyso-
phosphatidylcholine, functions as a specific activator
of the PM H+-ATPase (Palmgren, 2001), because both
ALA10 and PL A2b may have a positive effect on
the stomatal opening through enhancement of PM
H+-ATPase activity.
Furthermore, photosynthetic processes in guard cell

chloroplasts provide fuel (ATP and/or reducing
equivalents) for blue light-dependent H+ pumping of
the PM H+-ATPase and contribute to stomatal opening
(Suetsugu et al., 2014). Correspondingly, guard cells
lacking chloroplasts in the crumpled leaf mutant dis-
played attenuation of both guard cell ATP levels and
stomatal opening in response to light (Wang et al.,
2014). Stored triacylglycerols in guard cells are broken
down in response to light and the catabolic process is
also thought to supply ATP for PM H+-ATPase activity
in stomatal opening (McLachlan et al., 2016).

CROSS TALK BETWEEN BLUE LIGHT AND ABA
SIGNALING IN LIGHT-INDUCED
STOMATAL OPENING

The plant hormone ABA synthesized in response to
drought stress conditions drastically reduces stomatal
aperture to prevent water loss in the presence of light
(Bauer et al., 2013; Waadt et al., 2014; Kim et al., 2010;
Murata et al., 2015; Osakabe et al., 2014). ABA induces
stomatal closure in already open stomata, called “sto-
matal closure,” and simultaneously inhibits light-induced
stomatal opening, called “inhibition of stomatal open-
ing,” and both physiological regulatory mechanisms are
required to close stomata efficiently under sunlight. It

is known that ABA-signaling in guard cells effectively
suppresses blue light-signaling in inhibition of stomatal
opening with various ways, as follows.

First, ABA accelerates the release of ions from guard
cells by activating S- and R-type anion channels,
outward-rectifying K+ channels, and K+ uptake trans-
porters in stomatal closure (Negi et al., 2008; Vahisalu
et al., 2008; Kim et al., 2010; Osakabe et al., 2013). ABA
suppresses these processes via ABA-receptor compo-
nents PYR/PYL/RCAR-PP2Cs-SnRK2s in guard cells
(Fujii et al., 2009; Ma et al., 2009; Park et al., 2009;
Umezawa et al., 2009; Vlad et al., 2009; Jezek and Blatt,
2017) with subsequent second messengers H2O2, H2S,
NO, phosphatidic acid (PA), and cytosolic Ca2+ (Inoue
et al., 2010; Scuffi et al., 2014). It has been reported that
H2S also functions in parallel to ABA signaling events
(Papanatsiou et al., 2015). Simultaneously, in the inhi-
bition of stomatal opening, ABA suppresses blue light-
signaling of the activation of PM H+-ATPase via ABA
receptor components and H2O2, NO, PA, and Ca2+

(Shimazaki et al., 2007; Zhang et al., 2007; Inoue et al.,
2010; Kim et al., 2010; Takemiya and Shimazaki, 2010;
Hayashi et al., 2011; Hayashi and Kinoshita, 2011). PA
directly inhibits PP1 catalytic activity and blocks
blue light-signaling between phototropins and the
PM H+-ATPase (Takemiya and Shimazaki, 2010). In
addition, ABA inhibits K+

in channel activity and
many ABA-signaling components affect this inhibi-
tion (Kim et al., 2010; Jezek and Blatt, 2017). OPEN
STOMATA1 (OST1), an ABA-activated protein ki-
nase that operates downstream of the ABA-receptor
components, suppresses K+

in channel KAT1 activity
through direct phosphorylation (Sato et al., 2009).
The second messengers, such as Ca2+, and G-proteins
Ga and Gb, are also involved in ABA-induced K+

in
channel inhibition (Fan et al., 2008; Kim et al., 2010).
Moreover, the S-type anion channels SLAC1 and
SLAH3, which drive stomatal closure, are strongly
upregulated by drought stress in guard cells and
inhibit KAT1 activity by direct binding (Zhang et al.,
2016).

Second, ABA decreases the expression of K+
in chan-

nel genes via inactivation of AKS transcription factors
through phosphorylation by OST1 in guard cells
(Takahashi et al., 2013, 2016).

Third, ABA promotes internalization of KAT1 from
the PM into endomembrane compartments by endo-
cytosis, thereby reducing the amount of K+

in channels
functioning at the PM (Sutter et al., 2007).

Conversely, when plants are grown under well-
watered conditions, blue light suppresses signaling of
ABA-induced stomatal closure to promote stomatal
opening. Blue light receptor cryptochromes reduce
ABA content in the plant body, and this process is
thought to affect ABA signaling in guard cells
(Boccalandro et al., 2012). More directly, blue light
also stimulates stomatal opening by suppressing
anion release from guard cells. This process involves
light-dependent inhibition of S-type anion chan-
nels in a phototropin-dependent manner (Marten
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et al., 2007). It was also reported that light-produced
phosphatidylinositol 4,5-bisphosphate inhibits anion
channel activity in guard cells (Lee et al., 2007). Con-
sistent with these results, stomata in the slac1-1mutant
are slightly open under dark-adapted conditions and
open larger than those in wild type in response to light
(Wang et al., 2012).

INVOLVEMENT OF PM H+-ATPASE IN
STOMATAL OPENING

PM H+-ATPases, a family of P-type ATPases, consist
of a functional polypeptide with 10 transmembrane
domains and three cytosolic domains, including the
N-terminal domain, catalytic domain, and C-terminal
autoinhibitory domain (Fig. 2). In Arabidopsis, 11 genes
encode PM H+-ATPases (AHA1 to AHA11), and a
double-knockout mutant of AHA1 and AHA2, which
are predominantly expressed in all cell types, displays
an embryonic lethal phenotype (Haruta et al., 2010).
The membrane potential and proton gradient created
by PM H+-ATPases energize multiple ion channels and
various H+-coupled transporters in the PM for diverse
physiological responses including stomatal movement,
phloem loading and unloading, xylem loading and
unloading, seed germination, solute uptake in roots,
leaf movement, tip growth, and cell expansion (Haruta
et al., 2015; Wang et al., 2014b; Takahashi and Kinoshita,
2016). In addition, proton transport through PM
H+-ATPases controls cytosolic pH homeostasis
and apoplastic pH (Falhof et al., 2016). It is worthy of

note that modeling analyses of ion transport in the
stomatal guard cells reveal the importance of PM
H+-ATPase activity not only in proton gradient for-
mation and pH control, but also in driving K+ Ca2+,
anion transport and metabolism in guard cells (Chen
et al., 2012; Hills et al., 2012; Minguet-Parramona et al.,
2016), demonstrating that PM H+-ATPase plays a
pivotal role in guard cells physiology.

Since the 1970s, it has been known that light in-
duces proton extrusion from stomatal guard cells, K+

uptake, and swelling of guard cells. Physiologi-
cal and electrophysiological analyses revealed the
properties of the blue light-activated proton pump us-
ing fava bean (Vicia faba) guard cell protoplasts
(Assmann et al., 1985; Shimazaki et al., 1986). Later,
conclusive evidence was obtained by biochemical
analysis. PM H+-ATPase is activated and phosphory-
lated in response to blue light on a penultimate Thr
residue in the C terminus and 14-3-3 protein binds to
the phosphorylated C terminus region (Kinoshita and
Shimazaki, 1999, 2002).

In addition to biochemical evidence, genetic evidence
has also been obtained. Dominant mutants of AHA1, a
major H+-ATPase isoform in Arabidopsis, ost2-1D and
ost2-2D, displayed constitutively open stomatal phe-
notypes, because dominant mutations cause constitu-
tive activity of H+-ATPase (Merlot et al., 2007). More
recently, it was reported that loss-of-function mutants
of AHA1 showed reduced blue light-induced stomatal
opening (Yamauchi et al., 2016) and a closed stomatal
phenotype (Osakabe et al., 2016). Furthermore, a loss-
of-function mutant of OSA7, a major PM H+-ATPase
isoform in rice, also showed reduced blue light-induced
increase of stomatal conductance (Toda et al., 2016).
Overexpression of AHA2 using a strong guard cell
promoter enhanced light-induced stomatal opening,
leading to increased photosynthetic activity and plant
biomass (Yang et al., 2008; Wang et al., 2014a). These
biochemical and genetic findings clearly demonstrate
that the PMH+-ATPases act as H+ pumps in the PM and
are vital for stomatal opening.

REGULATION OF PM H+-ATPASE BY
REVERSIBLE PHOSPHORYLATION

It has been demonstrated that PMH+-ATPase activity
is regulated by phosphorylation of several sites (Haruta
et al., 2015; Falhof et al., 2016). To our knowledge, the
first reported and most studied phosphorylation site is
the penultimate Thr in the C terminus (Palmgren, 2001;
Wang et al., 2014b). Blue light activates PM H+-ATPase
via the guard cell-specific signaling pathway, leading to
phosphorylation of the penultimate Thr in guard cells
(Shimazaki et al., 2007). In addition, recent investigations
revealed that phosphorylation level of the penultimate
Thr in PM H+-ATPase were modulated in response to
physiological and environmental signals, such as light,
salt, Suc, auxin, gibberellin, and ABA in several tissues
and cell types besides guard cells (Niittylä et al., 2007;

Figure 2. Schematic structure of PM H+-ATPases. PM H+-ATPases
possess 10 transmembrane domains (TM1 to TM10) and three cytosolic
domains, including the N-terminal domain, catalytic domain, and
C-terminal autoinhibitory domain containing the R-I and R-II regions
(Palmgren, 2001). There are several phosphorylation sites in the
C-terminal domain (Thr-881, Ser-899, Thr-924, Ser-931, and Thr-947).
Thr-881, Ser-899, and Ser-931 are phosphorylated by PSY1R, FERONIA,
and PKS5, respectively. The 14-3-3 protein binds to the phosphorylated
penultimate Thr (Thr-947). The numbering of the amino acid residues
corresponds to Arabidopsis H+-ATPase2.
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Chen et al., 2010; Okumura et al., 2012, 2016; Takahashi
et al., 2012; Hayashi et al., 2014; Inoue et al., 2016). These
results indicate that there are several unique signaling
pathways in each tissue and cell type, but a final regu-
latory mechanism, that is, phosphorylation of the pen-
ultimate Thr at the C terminus of the H+-ATPase, is
common in these responses.
The protein kinase responsible for the phosphoryla-

tion of the penultimate Thr in PM H+-ATPase has not
been identified, despite strenuous efforts, although
in vitro protein kinase activity for the penultimate
Thr of PM H+-ATPase was found in the plasma
membrane isolated from spinach leaves, the micro-
somes from guard cell protoplasts of fava bean, and
the plasma membrane from etiolated seedlings of
Arabidopsis (Kinoshita and Hayashi 2011). On the
other hand, it was suggested that dephosphoryla-
tion of the phosphorylated penultimate Thr of PM
H+-ATPases is mediated by the membrane-localized
Mg2+/Mn2+-dependent protein phosphatase 2C
(PP2C)-like activity in fava bean guard cells and Ara-
bidopsis (Arabidopsis thaliana) etiolated seedlings
(Hayashi et al., 2010). Eventually, D-clade PP2Cs were
shown to be involved in the dephosphorylation of PM
H+-ATPase in etiolated seedlings (Schweighofer et al.,
2004; Spartz et al., 2014; Ren and Gray, 2015). In addi-
tion, SMALL AUXIN-UP RNAs (SAURs), a large mul-
tigene family of early auxin-responsive genes, inhibit
D-clade PP2C activity through physical interaction
(Spartz et al., 2014; Sun et al., 2016). It is noteworthy
that SAUR19-overexpressing plants displayed en-
hanced water loss in detached leaves, wilted faster
than wild type upon cessation of watering, and
exhibited delayed stomatal closure (Spartz et al., 2014,
2017), and that many SAUR genes are repressed by
ABA, which certainly reduces stomatal aperture
(Nemhauser et al., 2006; Kodaira et al., 2011). Taken
together, these biochemical and genetic data strongly
suggest that clade D of PP2C and SAURs are involved
in the regulation of PM H+-ATPase in stomatal guard
cells. However, it is still unknown how SAURs are
regulated in response to blue light in guard cells.
In addition to the penultimate Thr, three residues

were demonstrated to regulate PM H+-ATPase ac-
tivity using nonguard cells (Haruta et al., 2015;
Rudashevskaya et al., 2012; Fig. 2). A receptor kinase,
FERONIA, phosphorylates a Ser residue (Ser-899 in
AHA2) in the C-terminal autoinhibitory domain of
PM H+-ATPase and this phosphorylation suppresses
proton efflux by PM H+-ATPase (Haruta et al., 2014).
Moreover, the phosphorylation of a Thr residue
(Thr-881 in AHA2) in the C-terminal autoinhibitory
domain of PM H+-ATPase is induced by a receptor
kinase, PSY1R, and application of the ligand peptide
for PSY1R, PSY1, increased proton efflux, suggest-
ing that phosphorylation of Thr-881 activates PM
H+-ATPase activity (Fuglsang et al., 2014). In ad-
dition, the Ser residue (Ser-931 in AHA2) in the
C-terminal autoinhibitory domain of the PM
H+-ATPase is phosphorylated by PKS5, a Ser/Thr

protein kinase. Phosphorylation of Ser-931 inhibits in-
teraction of the PM H+-ATPase with the 14-3-3 protein
and decreases PM H+-ATPase activity (Fuglsang
et al., 2007). The physical interaction of chaperone
J3 with PKS5 induces the activation of PM
H+-ATPase by repressing PKS5 activity (Yang et al.,
2010). In addition, it has been reported that type 2A
protein phosphatase scaffolding subunit A interacts
with the C terminus region of PMH+-ATPase (Fuglsang
et al., 2006), and that a negative regulator of plant im-
munity RIN4 activates PM H+-ATPase activity and the
rin4 mutant shows reduced stomatal aperture (Liu
et al., 2009). Thus, posttranslational modifications, such
as phosphorylation of multiple sites in the C-terminal
domain and/or protein-protein interactions, regulate
PM H+-ATPase activity. Blue light induces phos-
phorylation on multiple Ser and Thr residues in the
C terminus of the PM H+-ATPase in fava bean guard
cells (Kinoshita and Shimazaki, 1999). However, it is
still unclear whether other phosphorylation sites,
such as Thr-881, Ser-899, and Ser-931, are involved in
the regulation of PM H+-ATPase in guard cells in re-
sponse to blue light. Further investigations will be
needed to clarify this.

CONCLUSION

In this review, we described recent advances in the
blue light signaling pathway in stomatal guard cells
and the regulatory mechanisms of PM H+-ATPase.
Stomata open in response to blue light to facilitate gas
exchange between the plant and the atmosphere. This
response is key to terrestrial plant life, as gas exchange
is necessary not only for photosynthesis but also for
water uptake from the roots. So far, major signaling
components involved in the blue light signaling
pathway in stomatal guard cells have been identified,
such as phototropin, BLUS1, BHP, PP1, and PM
H+-ATPase; however, the signaling mechanism is not
fully understood (see Outstanding Questions). For
example, how do blue light signals induce phospho-
rylation of the penultimate Thr of PMH+-ATPase, which
is a key enzyme for stomatal opening? Whether blue
light signal induces the phosphorylation of PM
H+-ATPase or suppresses dephosphorylation of PM
H+-ATPase, or both, is still unknown. Elucidation of
this mechanism and identification of the kinase and
phosphatase for PM H+-ATPase in guard cells will
provide, to our knowledge, novel insights into both the
blue light signaling pathway through phototropins and
the regulation of H+-ATPase in plant cells. Given the
importance of stomatal regulation, future investiga-
tions will not only improve our understanding of the
molecular mechanisms of signaling pathways in plants,
but also provide important clues for agricultural strat-
egies to improve photosynthetic or water use efficiency,
leading to an increase in the biomass and harvest of
crops.
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