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Abstract: Contrast-enhanced computed tomography (CECT) helps enhance the visibility for 

tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray 

photoelectric absorption would experience a sudden increment, resulting in a significant 

difference of the X-ray transmission intensity between the left and right energy windows of 

the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right 

windows of the K-edge can be measured simultaneously. The differential information of the 

two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge 

differences between various matters allow opportunities for the identification of contrast 

agents in biomedical applications. In this paper, a general radon transform is established to 

link the contrast-agent concentration to X-ray intensity measurement data. An iterative 

algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation 

background simultaneously. Comprehensive numerical simulations are performed to 

demonstrate the merits of the proposed method over the existing K-edge imaging methods. 

Our results show that the proposed method accurately quantifies a distribution of a contrast 

agent, optimizing the contrast-to-noise ratio at a high dose efficiency. 

© 2017 Optical Society of America 

OCIS codes: (170.4580) Optical diagnostics for medicine; (100.6950) Tomographic image processing; (100.3190) 

Inverse problems; (100.3010) Image reconstruction techniques. 
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1. Introduction 

Contrast-enhanced computed tomography (CECT) is widely used in clinical applications, and 

helps enhance the visibility and detection of tumors, especially for precancerous conditions 

[1–5]. Tumor growth and metastasis are accompanied by the development of new blood 

vessels with increased permeability. As a result, the absorption of vascular contrast agents is 

often different in cancerous tissue from normal and benign tissues [6]. Compared with 

conventional CT, CECT seems better than conventional CT in detecting small lesions, 

showing the range of lesions and staging tumors [7]. 

Although CECT improves the imaging performance, there is a need for an efficient and 

effective method that can enhance contrast especially between tumor and normal tissue, and 

reduce dose of radiation and contrast agent while keeping the diagnostic performance [8]. 

Conventional CT scanners are not able to use the K-edge features of contrast agents due to the 

use of energy integrating detectors, in which photons are measured in terms of total X-ray 

energy only [9,10]. A new opportunity is to utilize K-edge features by applying photon 

counting detectors (PCDs). 

The K-edge is the binding energy of the K shell electrons of an atom. There is a sudden 

increase in the attenuation coefficient when X-ray photons of energy just across the K-edge 

interact with the involved high-Z elements which can be used as contrast agents for 

clinical/pre-clinical X-ray imaging [10]. With the development of PCDs, K-edge imaging has 

recently generated considerable interest [11,12]. PCDs are energy-selective with the ability to 

count the X-ray photons in different energy windows by comparing the signal with certain 

energy thresholds, which captures photon signals on both sides of a target K-edge [10–18]. 

The photon-counting technology reduces the impact of electronic noise and improves the 

detective quantum efficiency (DQE) at low signal levels, facilitating low-dose imaging. PCDs 

also have several potential capabilities such as improving signal (and contrast)-to-noise ratios 

(SNR and CNR), refining spatial resolution, and most importantly, through the use of several 

energies, distinguishing multiple contrast agents [14,19–21]. The Medipix3 detector is 

popular and well tested. The sensitive area of Medipix 3 is organized in a matrix of 256 × 256 

pixels with a pitch of 55 µm. The electronics of Medipix3 are fabricated with a 0.13 µm 

CMOS technology, offering energy resolution of around 2 keV [22]. 

There are multiple relevant earlier studies in the literature. Roessl et al. decomposed the 

linear attenuation coefficient into three portions: photo-electric, Compton and K-edge effects 

to reveal quantitative information about the elemental composition of the absorber [10,17]. 

Rubenstein et al. proposed a K-edge substation imaging method to remove the background by 

subtracting two images obtained above and below the K-edge of a contrast agent, highlighting 

the distribution of the contrast agent [2,23–27]. Improved K-edge log-subtraction (KELS) 

imaging technique utilizes PCD [28], achieving effective background suppression and 

enhancing CNR. However, few studies have focused on quantifying the concentration of a 

contrast agent. 

When a high-Z contrast agent interacts with X-rays across its K-edge energy, X-ray 

photoelectric absorption would experience a jump, resulting in a significant difference in the 

X-ray transmission intensity between the left and right energy windows of the K-edge. Using 

the differential information of the two kinds of X-ray transmission intensity data measured 

with photon counting detectors, in this paper a general Radon transform is established, and 

then an iterative algorithm is proposed to reconstruct the contrast-agent distribution and tissue 

attenuation background simultaneously. Comprehensive numerical simulations are performed 

to evaluate the proposed method in comparison with the existing representative K-edge 

imaging methods. 
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The rest of this paper is organized as follows. In Section 2, we give a detailed description 

for the proposed method for reconstruction of the contrast agent distribution from photon-

counting data. In Section 3, we perform comprehensive numerical simulations to demonstrate 

the feasibility and accuracy of our proposed algorithm, relative to the results obtained using 

conventional CT and K-edge subtraction methods in the image domain, as shown in Fig. 1. 

Finally, we discuss relevant issues and make a conclusion. 

 

Fig. 1. Different reconstruction methods with K-edge contrast agents. (a) Conventional CT; (b) 

K-edge subtraction in the image domain; and (c) K-edge imaging in the projection domain. 

2. Methodology 

When X-ray photons interact with a high-Z contrast agent, X-ray photoelectric absorption 

would experience a sudden increase, resulting in a significant difference of the X-ray 

transmission intensities between the left and right energy windows of the K-edge 

respectively. Let 
L  and 

H  respectively express energy bins before and after the K-edge 

energy of a specific contrast agent, as shown in Fig. 2. According to the Beer–Lambert law, 

the number of X-ray photons recorded in the energy bins of 
L  and 

H  can be respectively 

expressed as 

  
 - ,

0

L

r E dr

LI I E e dE




   (1) 

  
 - ,

0

H

r E dr

HI I E e dE




   (2) 
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where  ,r E  is the attenuation coefficient of a scanned object at the energy E, and 
0 ( )I E  is 

the number of photons at energy E emitted from an X-ray source. 

The X-ray transmission intensity 
LI  in the energy window 

L  before the K-edge would 

be much greater than 
HI  in the energy window 

H  after the K-edge, because the attenuation 

coefficient in the energy window of 
L  is smaller than that in the energy window of 

H . 

Using photon-counting detectors, the X-ray intensity data 
LI and 

HI respectively in the left 

and right windows of the K-edge can be simultaneously measured. Thus, we can use 

differential information of the intensities to reconstruct the contrast-agent distribution. 

Specifically, from Eqs. (1) and (2), we have 

      
 

 
 - , - ,

0 0ln ln ln ln

L H

r E dr r E dr

L HI I I E e dE I E e dE
 

 

   
      

   
   
   (3) 

Although the attenuation coefficient is variable with respect to the X-ray energy, the 

attenuation coefficient is slow variation in such narrow energy bins of 
L  and 

H  near the 

K-edge. Hence, we can adopt the average value to approximate the attenuation coefficient in 

each energy bin: 

  
 

 
 

 
 

 
 

,

0

- , - ,

0 0
,

0

ln ln ln

L
L

L

H
H

L H

H

r dr

r E dr r E dr

r dr

e I E dE

I E e dE I E e dE

e I E dE

 

  

 
 







 
    

       
          

 


 


(4) 

where  ,L Lr   is the average attenuation coefficient distribution of the object in energy 

window of 
L , and  ,H Hr   is the average attenuation coefficient distribution of the 

object in the energy window of 
H . 

By reorganizing Eq. (4), we obtain 

 

 

 
   

0

0

ln ln , ,L

H

L

H H L L

H

I E dE
I

r dr r dr
I I E dE





   

 
  

    
  
 
 


 


 (5) 

In contrast-enhanced CT, the enhanced section is composed of contrast agents and human 

tissue. The total linear attenuation of a mixture matter is the sum of the contributions from the 

component materials, which means that the effective linear attenuation coefficient can be 

computed using the following formula: 

           , 1- ,agent agent tissumix agen et Er E r Er r       (6) 

where ( )agent r  is the volume fraction of the contrast agent in the mixture matter, 

( )agent E and ,( )tissue r E  are the linear attenuation coefficients of the contrast agent and tissue 

respectively. 

From Eq. (6), we have 

           _ ,, 1- ,agent L L agentL L age tnt issue L Lr r r r        (7) 

           _ ,, 1- ,agent H H agentH H age tnt issue H Hr r r r        (8) 
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where  _

1
( )

L

agent L L agent

L

E dE


  


   is the average attenuation coefficient with the 

energy window before the K-edge jump and  _

1
( )

H

agent H H agent

H

E dE


  


   is the 

average attenuation coefficient with the energy window after the K-edge jump, 
L and 

H  

are the widths of energy windows 
L  and

H , respectively. An effective method has been 

presented to determine the optimal width of the left and right energy windows at K-edge [12]. 

Energy dependent attenuation coefficients of several kinds of contrast agents are available in 

the databases released by the National Institute of Standards and Technology [29]. 

 

Fig. 2. Energy window around the K-edge of Iodine. 

Then, let us substitute Eqs. (7) and (8) into Eq. (5): 

 

 

 
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_ ,
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ln ln 1- ,
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agent H agent tissue H
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agent L agent tissue
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I

r r r
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I E dE
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


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

 
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
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



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 (9) 

From Eq. (9), we obtain 
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
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Furthermore, Eq. (10) can be reduced to 
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 (11) 

Equation (11) is a general Radon transform to link the contrast-agent concentration to X-

ray intensity measurement data. In practice,  , ,tissue H Hr  ,  , ,tissue L Lr  , and  agent r  in 

Eq. (11) are unknown. Here we present an iterative method to simultaneously reconstruct a 

contrast-agent distribution  agent r and tissue attenuation background  , ,tissue H Hr  and 

 , ,tissue L Lr   based on Eq. (11). More specifically, the image reconstruction process can be 

implemented iteratively as follows: 

Step 1: Assume that  , ,tissue H Hr   and  , ,tissue L Lr   in Eq. (11) are equal. Thus, we have 
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Step 2: Reconstruct  Agent r  from measured K-edge imaging data based on Eq. (12). Image 

reconstruction of  Agent r  can be performed using conventional CT techniques, because 

the right-hand side of Eq. (12) is the weighted Radon transform of the contrast agent 

concentration map. 

Step 3: Reconstruct  , ,tissue H Hr   and  , ,tissue L Lr   based on Eqs. (13) and (14) 

respectively. From Eqs. (1-2) we have 
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In the Eqs. (13) and (14), 
LI  and 

HI are the measured X-ray intensity data, and 
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from the reconstructed concentration  agent r and known attenuation coefficients of 
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the contrast agent respectively. Hence,  , ,tissue H Hr   and  , ,tissue L Lr  can be 

reconstructed from Eqs. (13) and (14) respectively. 

Step 4: Substituting the reconstructed  , ,tissue H Hr   and  , ,tissue L Lr   into Eq. (11), we can 

further reconstruct the contrast agent concentration  agent r in the next iteration. 

3. Numerical simulation 

In this study, we designed three simulation tests to testify the proposed method. In those tests, 

the gadolinium solution was used as the contrast agents to analyze K-edge tomographic 

concentration imaging performance in a region of interest (ROI). In the first simulation, we 

used the FORBILD thorax phantom with a 1.5% gadolinium solution enhanced region in the 

heart area [30], as shown in Fig. 3(a). This phantom was of 40cm × 40cm with 1cm diameter 

enhanced ROI, as shown in Fig. 3. In this simulation, we used an industrial simulation 

environment for CT, called computer-assisted tomography simulation environment (CatSim) 

[31], which was developed by GE Global Research Center. CatSim incorporates 

polychromaticity, realistic quantum and electronic noise models, finite focal spot size and 

shape, finite detector cell size, detector cross-talk, detector lag or afterglow, bowtie filtration, 

finite detector efficiency, non-linear partial volume, scatter (variance-reduced Monte Carlo), 

and absorbed dose [31]. The CatSim simulation model is given by Eq. (15): 

 
1

[ ( exp( ) )] ( )scatter

i k ik iso ok ik CONV electronic

k s o

y E Poisson DQE A l y f Normal
S

          

 (15) 

where 
iy  is the detector signal with a sinogram index i, k is the energy index, s is the beam 

sub-sampling index, 
ikA  is the number of photons arriving at the detector without any 

attenuator in the energy bin indexed by k, 
isol  is the intersection length between the line with 

an index s and an object with an index o , 
ok  is the linear attenuation coefficient of the 

object o  in the energy bin k , scatter

iky is the scatter signal, computed by the Monte Carlo 

simulation, DQE is the detector quantum efficiency, 
CONVf  is a factor to convert from keV to 

the number of electrons, and 
electronic  is the standard deviation of the electronic noise. 

Photon-counting detectors have the additional benefit of being less sensitive to electronic 

noise, which is done by using a threshold to discriminate charge pulses from the noise floor of 

the detector and associated electronics. While electronic noise will alter the energy attributed 

to a given X-ray photon, the number of counts is preserved and photon-counting detectors are 

expected to maintain better overall low-signal performance. We tested our reconstruction 

method in the CatSim simulation environment. 
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Fig. 3. Numerical phantoms representative of real clinical and preclinical applications. (a) The 

FORBILD thorax phantom with a 1.5% Gadolinium solution enhanced region in the heart, 
where the sub region are defined in Table 1; (b) The human body phantom with a contrast 

enhancement region; (c) the mouse phantom with a contrast enhancement region of 0.1cm 

diameter. 

Table 1. Material Type of the Phantom Sub Regions Shown In Fig. 3 

Number Material 

1 air 

2 lung 

3 tissue 

4 heart(blood) 

5 ROI (1.5%Gadolinium + 98.5% Blood) 

6 artery(blood) 

7 bone 

8 marrow 

 

For the second simulation, we designed human body phantoms adapted from a CT slice 

from a human body, which contained various ROIs of different sizes, as shown in Fig. 3(b). 

The phantom was discretized into a 512 × 512 matrix. One phantom includes a circular region 

with a diameter of 1.2 cm in the liver region, filled with tissue and gadolinium solution of 

0.1%, 0.2%, and 0.5%. The other phantom includes a circular region with a diameter of 2 cm 

in the liver region, filled with tissue and gadolinium solution of 0.1%, 0.2%, and 0.5%, as 

shown in Fig. 3. 

In the third simulation test, a mouse phantom was adapted from a micro-CT scan. The 

phantom includes a circular region with a diameter of 0.1 cm in the heart region, which is 

filled with tissue and iodine solution of 1.5%, as shown in Fig. 3(c). The iodine solution was 

used as the contrast agent to evaluate K-edge tomographic reconstruction for preclinical 

applications. 

In the first and third simulations, the concentration map of contrast agents was 

reconstructed using our method as shown in Fig. 4. We adopted two energy bins for the 

FORBILD phantom with 1.5% gadolinium solution: 45–50 keV and 50–55 keV respectively. 

The assessment was also done for the mouse phantom with 1.5% iodine solution, using 

energy bins of 29–33 keV and 33–37 keV. Figure 4 shows that our proposed method can 

provide quantitative distributions of the contrast agent tomographically and works well in the 

CatSim simulation environment, which is very close to real experiments and under preclinical 

conditions. 
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Fig. 4. Contrast agent map. (a) The contrast agent map of the FORBILD thorax phantom with 
the display window [-5e-3, 5e-3], and (b) the contrast agent map of the mouse phantom with 

the display window [0, 15e-3]. 

To quantitatively evaluate the accuracy of reconstructed concentration distribution of 

contrast agent, we defined the average relative error (ARE) as: 

 2

2

( ) ( )
ARE

( )

REC TRUE

TRUE

f ROI f ROI

f ROI


  (16) 

where ( )RECf ROI  is the contrast-agent distribution in the reconstructed map, and ( )TRUEf ROI  

is the contrast-agent distribution in the phantom. We calculated the average errors with 

different energy window widths (e.g., 1 to 30keV). Then, we selected the energy window 

width with the minimum ARE. To evaluate contrast resolution (CNR) [32], we define CNR as 

 CNR
C B

B

 




  (17) 

where 
C  and 

B  are mean concentrations of the contrast agent and background regions, 

respectively, and 
B  is the standard deviation of the background in the reconstructed image. 

3.1 Performance evaluation of reconstruction and iterative algorithm 

We performed numerical simulation to test the convergence of our proposed iterative method. 

We designed a human body phantom adapted from a CT slice. The phantom contained a 

circular region with a diameter of 1.2cm in the liver region, filled with tissue and gadolinium 

solution of 0.1%. The phantom was discretized into a 512 × 512 matrix for numerical 

computation. We defined the difference between the current reconstructed ( )Agent r  and its 

previous value in the iterative process to test the convergence, 

 2

2

Difference
CURRENT PREVIOUS

PREVIOUS

 




  (18) 

In every iterative step, we calculate the difference, and found that the difference is decreasing 

with the growth of iterative times, as shown in Fig. 5. The error reaches its flat region with 

only six iterations, showing a good convergence of the iterative algorithm. 
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Fig. 5. Difference Varied with Iterative Times. 

 

Fig. 6. Attenuation coefficient distributions. (a) An estimated attenuation coefficient 

distribution before the K-edge. (b) The original attenuation coefficient distribution before the 

K-edge. (c) An estimated attenuation coefficient distribution after the K-edge. (d) The original 

attenuation coefficient distribution after the K-edge. The window display is [0, 3000] HU. 

Moreover, the reconstructed attenuation coefficient distribution of tissue with the 

proposed iterative algorithm is very close to the ground truth as illustrated in Fig. 6. The 

average errors before and after the K-edge are 0.0262 and 0.0205 respectively, with the error 

defined as: 
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2

Error
EST ORI

ORI

f f

f


  (19) 

where 
ESTf is estimated attenuation coefficient distribution of tissue, and

ORIf  is original 

attenuation coefficient distribution of tissue. 

3.2 Comparative studies 

In this work, we proposed a method for K-edge imaging in the projection domain. GE 

Maxiray125 sources with a 140kV voltage spectrum and 100mA tube current were assumed 

in the simulation, which were simulated using a free software program (SpectrumGUI). The 

tube was equipped with a 3.0mm Al filter [33]. The photon counting detector measured X-ray 

intensities in spectral windows around the K-edge. The detector efficiency was 90%. Each 

cross-section was discretized into a 512 × 512 matrix for image reconstruction. Parallel-beam 

projections were equi-angularly acquired over a range in every energy window. Each 

projection was covered by 512 detector cells. To perform K-edge imaging, the filtered back 

projection (FBP) method was used based on Eq. (11). Then, a numerical evaluation was 

performed with the human body phantom. First, we calculated ARE under the conditions of 

different energy window widths, contrast concentrations and ROI sizes, using our method for 

K-edge imaging in the projection domain. Then, we selected the energy widow width with the 

minimum ARE to generate its CNR accordingly, as shown in Fig. 7. We evaluate the results 

from visual inspection and quantitative measurement as follows: 

1) Visual inspection 

Figure 8 and Fig. 9, show that (a)-(c) are the K-edge tomographic concentration images of the 

human body phantom with 0.1%, 0.2% and 0.5% gadolinium solution, (d) - (f) are the K-edge 

subtraction images of the human body phantom with 0.1%, 0.2% and 0.5% gadolinium 

solution, and (g) – (i) are the conventional CT reconstructed images of the human body 

phantom with 0.1%, 0.2% and 0.5% gadolinium solution respectively. The distribution of the 

contrast agent could only be recognized using K-edge imaging in the projection domain in the 

case of 0.1% concentration in Figs. 8 and 9. In the second and third columns of Figs. 8 and 9, 

the K-edge imaging method in the projection domain has a better visibility than the other two 

methods in the cases of 0.2% and 0.5% concentrations. Furthermore, the proposed method is 

quantitative in terms of the concentration of the contrast agent. 

Table 2. CNRs of Three Methods with 1.2cm ROI 

Concentration Conventional 

CT 

K-edge 

Subtraction 
Imaging 

(Image 

Domain) 

K-edge Imaging 

(Projection 
Domain) 

CNR 

Compared 
with Image 

Domain 

Subtraction 

CNR Compared 

with 
Conventional 

CT 

0.1% 0.0296 0.4832 1.032 2.14 34.9 

0.2% 0.4651 1.2479 1.8194 1.46 3.91 

0.5% 1.9994 3.5586 3.9775 1.12 1.99 

Table 3. CNRs of Three Methods With 2cm ROI 

Concentration Conventional 

CT 

K-edge 

Subtraction 
Imaging 

(Image 

Domain) 

K-edge Imaging 

(Projection 
Domain) 

CNR 

Compared 
with Image 

Domain 

Subtraction 

CNR Compared 

with 
Conventional 

CT 

0.1% 0.0355 0.4277 0.9506 2.22 26.8 

0.2% 0.5379 1.2177 1.6732 1.37 3.11 

0.5% 1.9022 3.3491 3.5914 1.07 1.89 
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Fig. 7. CNR comparison study. (a) Comparison of the three methods in the 1.2 cm ROI with 

different concentrations of the contrast agent. (b) Comparison of the same methods with the 2 
cm ROI. Note that 1 represents K-edge imaging in the projection domain, 2 is for the image 

domain subtraction, and 3 is for conventional CT. 

2) Quantitative measurement 

 

Fig. 8. Study on the 1.2 cm ROI: (a)–(c) K-edge tomographic concentration images of the 
human phantom with 0.1%, 0.2%, and 0.5% gadolinium solution concentrations, respectively. 

(d)–(f) K-edge subtraction images of the human phantom with 0.1%, 0.2%, and 0.5% 

gadolinium solution concentrations, respectively. (g)–(i) Conventional CT images of the 
human phantom with 0.1%, 0.2%, and 0.5% gadolinium solution concentrations, respectively. 

The display windows are [-3e-3, 3e-3] for (a)–(c), [0, 1500] HU for (d)–(f), and [0, 2500] HU 

for (g)–(i). 
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The results are summarized in Tables 2 and 3. The data indicate that our proposed method has 

higher CNRs than the other two methods. When the contrast concentration was 0.1% in either 

the 1.2cm or 2cm ROI, the CNR with our method is 34.9 and 26.8 times higher than 

conventional CT, and 2.14 and 2.22 times higher than the image domain subtraction, 

respectively. When the concentration was 0.2% in these ROIs, the CNR of our method is 3.91 

and 3.11 times higher than conventional CT, and 1.46 and 1.37 times higher than the image 

domain subtraction, respectively. When the concentration was increased to 0.5% in the ROIs, 

the CNR of our method is 1.99 and 1.89 times higher than conventional CT, and 1.12 and 

1.07 times higher than the image domain subtraction, respectively. The CNR of an image 

increases with the square-root of radiation dose [34], which means that the proposed method 

can improve dose efficiency more than the two other methods. Figure 7 shows that with 

decreased contrast concentration, the capability of our proposed method is much better than 

the other two methods. The proposed method is both simple, sensitive and quantitative in the 

cases of low-contrast concentrations, which helps reduce dose of contrast agents in clinical 

applications. 

 

Fig. 9. Study on the 2 cm ROI: (a)–(c) K-edge tomographic concentration images of the human 

phantom with 0.1%, 0.2%, and 0.5% gadolinium solution concentrations, respectively. (d)–(f) 

K-edge subtraction images of the human phantom with 0.1%, 0.2%, and 0.5% gadolinium 
solution concentrations, respectively. (g)–(i) Conventional CT images of the human phantom 

with 0.1%, 0.2%, and 0.5% gadolinium solution concentrations, respectively. The display 

windows are [-3e-3, 3e-3] for (a)–(c), [0, 1500] HU for (d)–(f), and [0, 2500] HU for (g)–(i). 

4. Discussions and conclusion 

The existing methods for K-edge imaging rely on either projection decomposition or image 

subtraction [10,17]. As suggested in the introduction, the projection decomposition method 

can directly determine the distribution of a contrast agent, such as using a maximum 

likelihood method, which is a complex and time-consuming procedure. The image subtraction 
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method first introduced by Jacobson [35] can remove the anatomical background, and 

enhance the contrast-agent distribution, which is effective in many biomedical applications. 

However, the main disadvantage of the subtraction technique is the increased dose, along 

with a possible image mis-registration. In contrast to these prior results, our method places an 

attention to use the signals from both sides of the K-edge based on the preserved partial 

volume assumption [36]. Dose efficiency is also an important matter in diagnostic X-ray 

imaging. In our numerical experiments, we have compared our method with two popular 

imaging methods for the evaluation of image quality, and the results show that our method 

can achieve higher contrast-to-noise ratio (CNR) and dose-efficiency than the two other 

methods. Also, our method only uses a single X-ray scan to acquire X-ray transmission data 

respectively in the left and right windows of the K-edge, and utilizes the difference of the 

measured intensity data across the K-edge to reconstruct a quantitative distribution of the 

contrast agent, allowing a reduced radiation dose. 

In our phantom simulations, we have demonstrated the merits of the proposed method 

over the existing K-edge imaging methods. Our study differs from the previous methods 

because it implements K-edge imaging based on the preserved partial volume assumption and 

an associated closed-form solution. With the use of photon-counting detectors, the proposed 

method can reconstruct the contrast agent concentration distribution and the linear attenuation 

coefficients of tissue background simultaneously using a single K-edge scan. As shown in 

Figs. 7-9, the reconstruction of the distribution of a gadolinium contrast solution is highly 

accurate. Moreover, the computational cost of our method is much lower than the projection 

decomposition method. 

In conclusion, a new iterative algorithm has been proposed to tomographically quantify a 

concentration distribution of a high-Z contrast agent from two measured transmission 

intensity data in the left and right energy windows of the K-edge based on the photon-

counting detector. Our results have demonstrated that the proposed image reconstruction 

method can accurately quantify the distribution of contrast agent concentrations, and achieve 

optimal contrast-to-noise ratio at high computational and dose efficiencies. Clearly, the 

proposed method can be expanded to image multiple types of contrast agents, and has a great 

potential for dynamic contrast-enhanced cancer imaging and other applications. 
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