Intrinsic dependencies of CT radiomic features on voxel size and number of
gray levels
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Purpose: Many radiomics features were originally developed for non-medical imaging applications
and therefore original assumptions may need to be reexamined. In this study, we investigated the
impact of slice thickness and pixel spacing (or pixel size) on radiomics features extracted from Com-
puted Tomography (CT) phantom images acquired with different scanners as well as different acqui-
sition and reconstruction parameters. The dependence of CT texture features on gray-level
discretization was also evaluated.

Methods and materials: A texture phantom composed of 10 different cartridges of different materi-
als was scanned on eight different CT scanners from three different manufacturers. The images were
reconstructed for various slice thicknesses. For each slice thickness, the reconstruction Field Of View
(FOV) was varied to render pixel sizes ranging from 0.39 to 0.98 mm. A fixed spherical region of
interest (ROI) was contoured on the images of the shredded rubber cartridge and the 3D printed,
20% fill, acrylonitrile butadiene styrene plastic cartridge (ABS20) for all phantom imaging sets.
Radiomic features were extracted from the ROIs using an in-house program. Features categories
were: shape (10), intensity (16), GLCM (24), GLZSM (11), GLRLM (11), and NGTDM (5), fractal
dimensions (8) and first-order wavelets (128), for a total of 213 features. Voxel-size resampling was
performed to investigate the usefulness of extracting features using a suitably chosen voxel size.
Acquired phantom image sets were resampled to a voxel size of 1 x 1 x 2 mm?® using linear inter-
polation. Image features were therefore extracted from resampled and original datasets and the abso-
Iute value of the percent coefficient of variation (%COV) for each feature was calculated. Based on
the %COV values, features were classified in 3 groups: (1) features with large variations before and
after resampling (%COV >50); (2) features with diminished variation (%COV <30) after resampling;
and (3) features that had originally moderate variation (%COV <50%) and were negligibly affected
by resampling. Group 2 features were further studied by modifying feature definitions to include
voxel size. Original and voxel-size normalized features were used for interscanner comparisons. A
subsequent analysis investigated feature dependency on gray-level discretization by extracting 51 tex-
ture features from ROIs from each of the 10 different phantom cartridges using 16, 32, 64, 128, and
256 gray levels.

Results: Out of the 213 features extracted, 150 were reproducible across voxel sizes, 42 improved
significantly (%COV <30, Group 2) after resampling, and 21 had large variations before and after
resampling (Group 1). Ten features improved significantly after definition modification effectively
removed their voxel-size dependency. Interscanner comparison indicated that feature variability
among scanners nearly vanished for 8 of these 10 features. Furthermore, 17 out of 51 texture features
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were found to be dependent on the number of gray levels. These features were redefined to include
the number of gray levels which greatly reduced this dependency.

Conclusion: Voxel-size resampling is an appropriate pre-processing step for image datasets acquired
with variable voxel sizes to obtain more reproducible CT features. We found that some of the radio-
mics features were voxel size and gray-level discretization-dependent. The introduction of normaliz-
ing factors in their definitions greatly reduced or removed these dependencies. © 2017 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.12123]
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1. INTRODUCTION

The techniques of extracting useful quantitative information
from medical images, known as radiomics, holds promise for
early detection, risk assessment, and treatment decisions in
oncology.'  During the last decade, studies have highlighted
the importance of texture analysis by connecting cancer
imaging phenotypes captured by computed tomography
(CT), and other imaging modalities, with underlying gene
expression profiles in several cancer types.*® Radiomics
consists of several distinct processes including image acquisi-
tion and reconstruction, segmentation of the regions of inter-
est, feature extraction and data analysis for subsequent model
building. Every individual process in radiomics has its own
problems and challenges.'® The challenges relevant to robust-
ness of radiomic features because of variations in image
acquisition and reconstruction parameters in CT and other
imaging modalities have been of recent interest.'' > The
standardization of certain CT parameters might be a prerequi-
site for the successful application of radiomics features as
biomarkers for tumor phenotype, diagnosis, prognosis and/or
decision support."* One way to test the robustness of these
features with varying acquisition and reconstruction parame-
ters is to evaluate their fundamental characteristics using
imaging phantoms such as the recently described texture
phantom.">'® In other words, texture phantoms can be used
to investigate the impact of CT parameters on radiomics
features.

Pixel spacing (size) and slice thickness are two important
CT parameters that vary significantly from protocol to proto-
col, across scanners and vendors, as well as per institutional
preferences. In a recent study'”, pixel spacing was varied
from 0.49 to 0.98 mm and slice thickness from 2 to 3 mm
across 17 different scanners. Resampling was performed to
obtain in-plane pixel spacing of 1 mm? before feature calcu-
lation. A separate study of 74 lung cancer patients used 3 to
6 mm variation in slice thickness and a large variation in
pixel spacing.'” A phantom study by Zhao et al., reported
that slice thickness can largely impact radiomic features.'®
The same authors recently reported that CT images recon-
structed with different slice thickness and reconstruction ker-
nels resulted in low reproducibility of most radiomic
features."" Given the variability of pixel spacing and slice
thickness in standard of care imaging, it is important to study
the impact of these parameters on radiomic features among
multiple scanners and multiple vendors.
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As radiomics strives to use standard of care images from
different imaging modalities, an ideal method leading to
automation would be to extract features from minimally or
non-curated images. In this respect, it would be necessary to
arrive at a subset of robust radiomic features and minimal
pre-processing of images. In computed tomography, voxel
size in a region of interest depends on both pixel dimensions
(x-y plane) and slice thickness (z-axis), assuming slice thick-
ness equals inter-slice distance. Any change in these two
parameters changes the CT image resolution or voxel size. A
minimally curation step may be to resample image sets so that
all have the same voxel size. In this paper, voxel-size resam-
pling was investigated as a way to minimize the variability in
feature values because of differing voxel sizes.

Texture features extraction methodology is another impor-
tant factor that has varied wildly from one research study to
another. In particular, voxel intensities within a region of
interest are typically resampled into a limited number of dis-
crete values or bin sizes before calculating feature values."”
Different studies have used different gray-level resampling
before extracting texture features.®'>?°*? Recently, the
impact of SUV discretization on radiomics features in FDG-
PET indicated that there is a need for standardized methodol-
ogy for conducting multi-center studies.”> Therefore, it is
important to determine how feature values behave as a func-
tion of the number of gray levels using stable texture phan-
toms with the intention of later applying rescaling or
normalization factors that make features more reproducible.

The purpose of this study was to investigate the robustness
of CT radiomic features from original and resampled datasets
from multiple scanners and vendors and to identify features
showing voxel size (volume) and/or number of voxels depen-
dencies. Additionally, we evaluated CT texture features as a
function of the number of gray levels. We identified features
with intrinsic dependencies and in several cases were able to
apply normalizing factors to improve robustness of these fea-
tures.

2. MATERIALS AND METHODS
2.A. Acquisition and reconstruction

The phantom employed in this study was the Credence
Cartridge Radiomics (CCR) phantom recently described by
Mackin et al.'”” Scans of the CCR Phantom were acquired
using eight different CT scanners from three different
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TaBLE I. CT scanners and scanning parameters used in this study.

CT Scanner KVp mAs Scan Type Pitch Rotation time (Sec) Reconstruction Kernel Detector Configuration (mm)
GE Discovery STE (GE1) 120 250% Helical 0.984 1.0 Standard Det. Coverage = 40

GE Lightspeed 32 pro (GE2) 120 250% Helical 0.984 1.0 Standard Det. Coverage = 40
Philips Big Bore (P1) 120 250 Helical 1.024 1.0 Standard (B) 16 x 0.75

Philips Brilliance 64 (P2) 120 250 Helical 1.024 1.0 Standard (B) 64 x 0.625

Siemens Definition AS (S1) 120 250 Helical 1.0 1.0 13112 64 x 0.625

Siemens Sensation 64 (S2) 120 250 Helical 1.0 1.0 B31f 64 x 0.625

Siemens Sensation 40 (S3) 120 250 Helical 1.0 1.0 B31f 40 x 0.625

Siemens Sensation 16 (S4) 120 250 Helical 1.0 1.0 B31f 16 x 0.75

For GE scanners manual mA* and for all other scanners quality index mAs was used.

manufactures: 2 General Electric (GE), 4 Siemens and 2 Phi-
lips Healthcare Systems (Table I). One of the GE scanner
employed was a PET/CT scanner (Discovery STE). Slice
thicknesses for the Philips and Siemens scanners were 1.5,
2.0, and 3.0 mm and for the GE scanners were 1.25, 2.5, and
3.75 mm. The adjacent reconstruction interval or zero inter-
slice gap was used for all CT phantom scans. For every slice
thickness, the reconstruction Field Of View (FOV) was varied
from 200 to 500 mm, corresponding to pixel sizes ranging
from 0.39 to 0.98 mm. Pixel size was calculated as FOV/ma-
trix size and a matrix size of 512 by 512 was kept constant for
all scans. The variation in voxel size was obtained by chang-
ing pixel size (5 FOVs per scanner) or slice thickness (3 slice
thicknesses per scanner) for a total 8 CT scanners. Therefore,
there was a total of 120 CT data sets for the voxel-size resam-
pling study. However, 4 CT datasets were corrupted during
file transfer, therefore, 116 datasets were used for analysis. To
facilitate interscanner comparison, similar acquisition and
reconstruction parameters were used across different scanners
as given in Table I.

2.B. Contouring and feature extraction

An advanced imaging software package (Mirada RTx 1.6,
Mirada Medical, Oxford, UK) was used for importing,
exporting, and contouring purposes. The shredded rubber
and ABS20 cartridges of the CCR phantom were predomi-
nantly used. The rubber cartridge was chosen because it was
reported to have HU values characteristics similar to non-
small cell lung cancer (NSCLC) tumors.'> An automatic con-
touring tool in Mirada RTx was used to contour ROIs. A
spherical ROI of volume 4.2 cm® was contoured on the cen-
tral region of each cartridge and kept identical across all scan-
ners. Radiomics features (Data S1) were extracted using an
in-house program. The features were composed of shape
descriptors (10), intensity histogram statistics (16), gray-level
co-occurrences matrices (GLCM, 24), gray-level run-length
matrices (GLRLM, 11), gray-level size zone matrices
(GLSZM, 11), neighborhood gray tone difference matrices
(NGTDM, 9), fractal dimensions (8) and intensity histogram
wavelets (128) for a total of 213 features. Intensity volume
histograms were used to calculate the first-order features
(Table S1). Second order features based on GLCM (Table
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S$3) were initially developed by Haralick et al.*** These fea-
tures were implemented in our program as described by
Aborisade et al.”® Volumetric interpretation of texture fea-
tures were given by Arati et al.”’ GLCM features provide
spatial dependence of neighboring voxels as described by
Oliver et al.”® GLRLM features were implemented according
to definitions provided by Galloway, Chu et al., and Dasar-
athy and Holder.”” *' GLSZM and NGTDM-based features
(Table S4) were first developed by Thibault et al., and
Amadasun et al. respectively.*>** Fractal dimensions features
were calculated as described by Sarkar et al., and Jin
et al.,>** A biorthogonal basis function was applied to the
original and resampled CT images. A combination of a one-
dimensional low pass and a high pass filters applied to a
three-dimensional image generated 8 wavelet filtered data-
sets. The first-order wavelet features were then ex-
tracted from these datasets as described by Aerts et al.® Sixty
four equispaced gray levels (Ng = 64) were used to discretize
the intensities of image voxels for calculating all features
unless otherwise specified.

2.C. Voxel-size resampling

To investigate the effect of resampling, phantom CT-
scan sets were resampled to 1 x 1 x 2 mm® voxel size,
our arbitrarily chosen “standard” voxel size, using linear
interpolation. Image features were extracted from these
resampled datasets and compared with the feature values
extracted from the original datasets. Images were either
up-sampled or down-sampled to the standard voxel size.
The intensity in each voxel in a resampled image dataset
was calculated as the partial-voxel-volume weighted sum
of the contributing voxels from the original image set.
One hundred and sixteen datasets were used for extracting
85 non-wavelet features. The 128 wavelet features were
extracted from 72 image sets for the rubber and ABS20
cartridges using four 64-slice and one 40-slice CT scan-
ners. The absolute value of the percent coefficient of vari-
ation [%COV = |(S.D/Mean)*100|] was calculated for each
feature for both original and resampled datasets. Features
were ordered from highest to lowest %COV value. More-
over, based on the %COV value, all features were classi-
fied into three groups: group 1 included features that had
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large %COV originally and that improved after resampling
marginally (%COV >50); group 2 was composed of fea-
tures that had large %COV originally and that improved
significantly after resampling (%COV <30); Group 3 con-
tained features that were mostly reproducible with small
variation with voxel size and were negligibly effected by
resampling. To further evaluate the potential effect of
lower number of gray levels (Ng) on voxel-size resam-
pling, radiomics features were extracted from original and
resampled datasets for the rubber cartridge images for
Ng = 8, 16, and 32 and compared with Ng = 64.

2.D. Feature normalization by voxel-size (volume)

Most of group 2 features along with Intensity-Entropy
from group 3 (from now on referred to as identified features)
were computed using modified feature definitions using one
of the following equations

Shafig-ul-Hassan et al.: Intrinsic dependencies of radiomic features

1053

where V (P.T) is the volume of an individual voxel, P is the
pixel spacing (0.39 to 0.98 mm), and T is the slice thickness
(1.25 to 3.75 mm) for a total of 42 combinations (7 FOV x 6
slice thicknesses). Equation 1 assumes that all the voxels in a
given scan have same voxel size, which is generally true
in clinical practice. f{P,T) is the original feature definition,
fn(PT) is the modified definition after incorporating voxel
size. The variable n(P,T) is the number of voxels in a given
ROI with pixel spacing P and slice thickness T. Normaliza-
tion by voxel volume for identified features was further inves-
tigated for bigger sized spherical ROI’s of 14 cm® for both
the shredded rubber and the ABS20 cartridges. In addition, a
rectangular ROI of 50 cm® was created on multiple car-
tridges, namely, rubber, ABS20, and sycamore wood, to fur-
ther verify the modified definitions.

Identified features were used to compare the variability
across scanners. Interscanner comparison was done using
originally extracted and voxel volume normalized features.
The features values were first scaled and then plotted to result

Jn(P,T) =f(P,T) x V(P,T) (1) in similar range of values for all features.
f(P,T)
fu(P,T) = V(P,T) @ 2.E. Gray-level discretization
F(P.T) To investigate the dependence of CT texture features on
Jfu(P,T) = W 3) the number of gray levels, Ng, 51 texture features including
o8I GLCM (24), GLRLM (11), GLSZM (11), and NGTDM (5)
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FiG. 1. Absolute value of the %COV calculated from 116 original (solid triangles) and resampled (open triangles) image sets for 83 non-wavelet features. Group
1 features that had %COV >50 after resampling are shown in the insets. Features are ordered (Feature Index) on the x-axis from largest to lowest %COV value
based on the images of the rubber cartridge, same order as in Table II. The feature order for (a) rubber cartridge was applied to (b) ABS20 cartridge. [Colour fig-

ure can be viewed at wileyonlinelibrary.com]
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were extracted with resampled Ng values of 16, 32, 64, 128,
and 256. Spherical ROIs of 14.2 cm® were contoured on 10
different cartridges within the CT-scan image of the phantom.
In addition, 2 rectangular ROIs, one of 50 cm’ (3 adjacent
cartridges: ABS20, rubber, and wood) and the other of 60
cm® (5 adjacent cartridges: rubber, natural cork, solid acrylic,
dense cork, and 3D printed plaster) were contoured to further
evaluate the impact of gray-level discretization on texture fea-
tures extracted from larger ROIs made up of multiple materi-
als. The phantom CT-scan used was acquired with the
Siemens Definition AS scanner with pixel size, slice thick-
ness, mAs, pitch and kVp of 0.49 mm, 3 mm, 250 mAs, 1.0
and 120 kVp, respectively, for all 12 ROIs. The %COV for
each feature was calculated and features having %COV <20
and %COV >20 were classified as reproducible and not
reproducible respectively. Finally, some of the texture fea-
tures were normalized by the number of gray levels.

3. RESULTS
3.A. Voxel-size resampling

The absolute values of %COV for 83 non-wavelet features
for both original and resampled datasets for the shredded rub-
ber and ABS20 cartridges are shown in Figs. la and 1b
respectively. Group 1 features that had large variation after
resampling are shown in the inset of Fig. 1. The same feature
order was adopted for both cartridges according to the group-
ing given in Table II. After resampling, the %COV of all fea-
tures in group 2 dropped from >70% to <30% for both
cartridges. Resampling had insignificant effect on group 3
features numbered 21 through 83; in other words, this group
was robust to voxel-size variations. The features minimum
intensity and skewness (not plotted) for rubber had similar
values (%COV <30) for original and resampled datasets, but
these features had large variation (%COV >100) for the
ABS20 cartridge before and after resampling. Busyness from
NGTDM and most of the GLSZM features in Group 1 were
marginally improved after resampling (%COV >50) for both
cartridges.

The variability of the 83 features extracted from the rubber
cartridge images with Ng = 8, 16, and 32 were compared
with those extracted using Ng = 64 (Figure S1). The %COV
values extracted from the original and resampled image sets
were similar for all 83 features for Ng = 32 and 64 (Fig-
ure Sla). Similar results were obtained when comparing vari-
ability for Ng = 64 to Ng = 16 and 8 (Figures S1b and S1c),
which showed similar %COV values except for several
GLSZM features, namely, Intensity Variability (IV), Short
Area Emphasis (SAE), Large Area Emphasis (LAE), and
High Intensity Large Area Emphasis (HILAE) in group 1
(Table II). These GLSZM features showed %COV values
lower than 50% after resampling. Therefore, voxel-size
resampling did have a noticeable effect on some of the
GLSZM features. The resampling effect at the lower number
of gray levels, Ng = 8 and 16 for these features is readily
observable (Figure S2).
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TaBLE II. Grouping of 85 non-wavelet features based on %COV values after

voxel-size resampling.

Group 1 (%COV >50)

Group 3 Moderate (%COV <50)
and negligible effect of resampling

1- NGTDM-Busyness

2- GLSZM-LISAE

3- GLSZM-LILAE
4- GLSZM-1V

5- GLSZM-LIE

6- GLSZM-HILAE
7- GLSZM-LAE
8- GLSZM-HISAE
9- GLSZM-SAE

Group 2 (%COV <30)

10- GLCM-Variance

11- NGTDM-
Coarseness

12- GLCM-Inverse
variance

13- NGTDM-Texture
Strength

14- Intensity-Icl.
homogeneity

15- GLCM-Mean

16- Intensity-Contrast

17- GLRLM-GLNU

18- Intensity-TGV
19- GLRLM-RLNU

20- Intensity- Energy

21- Fractal- SD

22- GLCM-Info.
Correlation1

23- GLSZM-SZV
24- GLRLM-SRLGE

25- GLRLM-LGRE
26- GLCM-Kurtosis
27- GLRLM-LRLGE
28- Fractal-SDlac3
29- GLCM-Cluster
prominence

30- Fractal-SDlacl
31- GLCM-Contrast

32- Intensity-SD

33- Intensity-Coeff.
Vari.

34- Fractal-SDlac2
(Table S1)

35- GLCM-Difference
Average

36- NGTDM-Contrast

37- GLCM-Info
Correlation2

38- NGTDM-
Complexity

39- GLCM-Inverse
Variance P

40- GLSZM-HIE

41- GLCM-Local
homogeneity

42- GLCM-Energy

43- GLCM-Difference
Variance

44- Shape-Short(mm)

45- Shape-Eccentricity
46- GLCM-Cluster
tendency

47- GLCM-Sum Variance
48- GLCM-Dissimilarity
49- GLSZM-ZP

50- Fractal-MeanLac1

51- GLCM-Homogeneity 1

52- Intensity-Entropy

53- GLCM-Diff.
Entropy

54- GLCM-Correlation

55- GLRLM-LRHGE

56- GLCM-
Autocorrelation

57- GLRLM-HGRE

58- GLRLM-SRHGE
59- Fractal-MeanLac3
60- Intensity-Uniformity
61- Intensity-MaxI

62- Fractal-MeanLac2

63- GLCM-Sum
Average

64- Shape-Convexity
65- Fractal-Mean FD

66- Shape-V(cc)

67- GLRLM-LRE

68- GLRLM-RPC

69- Shape-Surf
A(cm2)

70- GLCM-Sum
Entropy

71- GLCM-Entropy

72- Shape-Surf/vol
73- Shape-Compactness

74- GLCM-Inverse diff.
75- Shape-Long(mm)

76- Intensity-Hist.
Entropy

77- Intensity-Peakl
78- Shape-Sphericity

79- Shape-Sph. disprop.
80- Intensity-RMS

81- Intensity-Meanl

82- GLRLM-SRE

83- GLCM-Inverse
diff. moment

84- Intensity-Minl
(not plotted)

85- Intensity-
Skewness
(not plotted)
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FiG. 2. Absolute value of the %COV calculated from 72 original (solid triangles) and resampled (open triangles) image sets for 128 wavelet features. Group 1
features that had %COV >50 after resampling are shown in the insets. Features are ordered (Feature index) on the x-axis from largest to lowest %COV value. Dif-
ferent feature order was used for (a) rubber cartridge and (b) ABS20 cartridge. [Colour figure can be viewed at wileyonlinelibrary.com]

The wavelet features derived from the first-order statistics
for the rubber and ABS20 cartridges are shown in Figs. 2a
and 2b respectively. First-order energy, contrast, TGV and
local homogeneity derived from 8 different wavelet decom-
positions improved significantly after resampling for both
cartridges. The only exception was for local homogeneity
(LLH), which showed large variation even after resampling
(group 1, Table III). Most skewness combinations for the
rubber cartridge and most kurtosis decompositions for
ABS20 cartridge had large variability before and after resam-
pling. Sixty eight percent of the wavelet features were found
to be reproducible across voxel sizes, and therefore, resam-
pling had negligible effect on these features. The %COV val-
ues for 128 wavelet features extracted using lower number of
gray levels Ng = 8, 16, and 32 were in agreement with results
obtained for Ng = 64. For wavelet features, comparisons of
all four gray levels, Ng = 8, 16, 32, and 64, after resampling
are shown in Figure S3.

3.B. Normalization by voxel size

Identified feature values calculated using the original and
normalized feature definitions are plotted as a function of
pixel size and slice thickness in Fig. 3 (also Figure S4). Fea-
ture values were scaled before plotting to obtain a similar
range of values for all features. The same ROIs as for voxel

Medical Physics, 44 (3), March 2017

resampling were used here. After feature modifications,
energy, TGV, entropy from first-order statistics, mean and
inverse variance from GLCM, and RLNU and GLNU from
GLRLM were found to be reproducible across the studied
voxel volumes. Variations in modified coarseness and texture
strength were relatively larger but median values were similar
for all pixel sizes. Contrast from GLCM indicated high varia-
tions even after feature modifications (Figure S4). Notice that
entropy from first-order statistics was normalized using the
logarithm of the number of voxels in the ROIL. The results
were similar across all ROI sizes. The normalizing factors for
the identified features are shown in Table IV.

Interscanner comparison using voxel-size normalization
for identified features for the rubber cartridge are shown
in Fig. 4 (Figure S5). The normalized feature values in
each case form a horizontal straight line, thereby indicat-
ing that the normalized features were reproducible across
different scanners. Non-normalized feature values for the
two Philips and the four Siemens scanners were in close
agreement, but not so for the two GE scanners; this is
because the GE scanners differed in slice thicknesses, and
thus in voxel size. Exceptions were contrast from GLCM
and texture strength from NGTDM (Figure S5) for which
both GE scanners produced results that were different
from the other 6 scanners even after feature normaliza-
tion.
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TasLE III. Grouping of 128 first-order wavelet features based on %COV values after resampling.
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FiG. 3. Scaled features values extracted from original and normalized feature definitions as a function of pixel size and slice thickness. Modified values are
shown by box plot. Middle, lower and upper lines in the box indicate median, first quartile, and third quartile respectively. Energy (a) from intensity histogram
and GLNU (b) from the GLRLM almost converge to a straight horizontal line after normalization. Coarseness (c) and texture strength (d) from NGTDM exhibit
small variations in median values, but with small dependence on slice thickness and pixel spacing after normalization.

3.C. Normalization by number of gray levels

Only 7 out of 51 texture features, namely, Inverse differ-
ence moment (IDM), inverse difference (ID), information
correlation 1 and information correlation 2 from GLCM;
short run emphasis (SRE) and run percentage (RPC) from
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GLRLM; and coarseness from NGTDM, were found repro-
ducible (%COV <20) with varying gray-level discretization
for all phantom materials. The remaining 44 features had
large variation with discretization (%COV >20). Most of the
remaining 44 features were dependent on the number of gray
levels. For some features, their relationship with gray levels
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appeared to be random, therefore, no normalizing factor
could be identified. However, 17 out of 44 features showed a
trend with varying number of gray levels. Further investiga-
tion indicated that these feature had linear, quadratic and
cubic type relationships with the number of gray levels.
These dependencies were minimized or eliminated by intro-
ducing the normalizing factors given in Table V and
Table VI.

Original and normalized feature values as function of
number of gray levels for contrast and dissimilarity from
GLCM for rubber and ABS20 cartridges are shown in Fig. 5.
The mean value of %COV decreased to below 20% for all 17
texture features after normalization as shown in the Fig. 6.
The normalizing factors were tested for different-sized ROIs
encompassing the rubber and ABS20 cartridges that resulted
in reproducible feature values. Most of GLSZM features and
busyness from NGTDM were found to have large variation
with the number of gray levels.

4. DISCUSSION

A necessary property of a radiomic feature to qualify as a
potential imaging biomarker is robustness, for example,
insensitivity to data acquisition and image reconstruction set-
tings. Recent studies however, show that many features exhi-
bit large variability because of acquisition and reconstruction
parameters.'**® In routine CT diagnostic studies, there is
large variability in slice thickness and pixel spacing of the
images because of user preference, protocol requirements,
manufacturer’s settings, etc. These two parameters determine
the voxel size, i.e., the image spatial resolution. Therefore,
evaluating the impact of voxel size on CT radiomic features is
of paramount importance. Most features were initially devel-
oped for non-medical applications and for planar images.
Consequently, original formulas and algorithms to compute
feature values may have made assumptions that may not be
applicable to modern medical images. Voxel-size resampling

TasLE IV. Ten radiomics features from different feature groups that were normalized using voxel size.

Feature Description

Original Feature formula f(P,T) Modified Feature formula

First-order features based on Intensity Histogram

20- Energy Measures homogeneity of intensity histogram
52- Entropy Measure of disorder
18-TGV Total summed intensity in ROI

16- Contrast Intensity variation of intensity histogram

Second order features based on Co-occurrence matrix

12- Inverse Variance

15- Mean The mean value of the co-occurrence matrix

Gray-level run-length matrix (RLM) features

17- GLNU Measures the non-uniformity of the gray levels

19- RLNU Measure the non-uniformity of the run lengths

Gray-level Neighborhood Difference Matrix (NGTDM)

11- Coarseness Measure of texture uniformity

13- Texture Strength Measure of distinguishability between clusters of

different intensities.

Place low weight on values differing from average matrix value
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V (P, T), n (P, T) are described in text. T (X, y, z) is the normalized value obtained from each voxel. T (i) is the probability of the occurrence of the gray-level i and Ng is
the number of discrete intensity levels. I (v) is the intensity of a voxel, G is the number of voxels in a volume-of-interest (VOI). Other terminology used for GLCM,
GLRLM, and NGTDM features is described in Table V and Table VI. Feature number is given according to Table II.
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FiG. 4. Scaled original (solid triangles) and normalized (open triangles) features values across 8 different scanners: Normalized values for energy (a) from inten-
sity histogram, mean (b) from GLCM, GLNU (c) from GLRLM, and coarseness (d) from NGTDM nearly converge into horizontal straight lines for all scanners,
while the original feature values for two GE scanners were different because of different slice thickness. [Colour figure can be viewed at wileyonlinelibrary.com]

TaBLE V. GLCM features normalized by the number of gray levels.

Modified
Feature
Feature Original Feature formula f formula f,,
Ng Ng . . \ .
71- Entropy - ZI ;p(w) logap(i, j) foamgg * f
i=lj=
. Ng—1
53- Diff. = 20 Puy(i) log2{p.—y (i)} oo *
Entropy =0
2Ng
70- Sum =2 Puiy (i) log2{peiy (D)} e *
Entropy =2
Ng—1 Ng Ng
31- Contrast > nz{z Zp(i,j)},\ifj\ =n m
n=0 i=1i=1
Ne Ng
15- Mean Z}le(i,j) f*Ng*Ng
i=1j=
2Ng . Ng Ng L ) . s
47- Sum i+ 323 i )og(p(i,))” log{pxy()} wing
Variance =2 i
. 2Ng . Ng Ng = ) . ;
43- Difference 3 (i+ > > p(i.j)log(p(i.j)) log{px—y(i)} NeeNe
Variance =2 i
2Ng
63- Sum Average > ipyiy(i) Nig
i=2
2Ng
35- Difference Y ip, (i) i
Average =2
Ng Ng
48- Dissimilarity S 5" |i —jlp(i.)) =

i=1J=1

p (i, j) is the co-occurrence matrix. Ng is the number of discrete gray levels. py is
the ith entry obtained by summing the rows of p (i, j), py is the jth entry obtained
by summing the columns of p(i, j). Feature number is given according to Table II.

or voxel-size normalization might be required for some fea-
tures in the case of 3D medical image sets reconstructed
using a range of voxel sizes. In this phantom study, we found
30% of the features were highly sensitive to voxel size. For
the voxel size-dependent features, we presented two methods
to improve the robustness of the features among images
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reconstructed with different voxel sizes: one method was to
resample all images to a chosen voxel size, and the other
method was to normalize feature values by voxel size.
Resampling of CT phantom image sets to uniform voxel
size increased the robustness of 42 out of 213 features stud-
ied. These were: 4 features from first-order statistics, 3 fea-
tures from GLCM, 2 features from GLRLM, 2 features from
NGTDM, and 31 wavelet features (e.g., energy, local homo-
geneity, TGV, contrast) derived from the first-order statistics
of the 8 different image decompositions from each ROI. Not
surprisingly, the behavior of some wavelet features with
voxel-size resampling was similar to that of first-order fea-
tures derived from the intensity histograms. Interestingly,
some features such as run-length-based GLNU and coarse-
ness from NGTDM were identified as promising features in
recent studies. For example, coarseness, which resembles
human perception of image granularity, was found to be clini-
cally useful in differentiating head and neck tumors and
lymph nodes from normal tissues.’” This feature was also
found to be a useful biomarker in predicting response of
chemotherapy in case of non-small cell lung cancer’® and
esophageal cancer.® Gray-level non-uniformity from GLRLM
was found to have intermediate variations because of FDG-
PET acquisition and reconstruction parameters,'? in contrast
to our results that indicated large dependency on voxel size.
In the same study,'” coarseness from NGTDM exhibited large
variability in close agreement with our results. The large vari-
ability in feature values was greatly reduced after resampling,
thereby suggesting resampling of all image sets to the a pre-
selected voxel size as a way to eliminate dependencies intro-
duced by voxel volume or the number of voxels in the ROL
The voxel size of a CT image can be changed by resam-
pling the slice thickness along the longitudinal z-axis or by
resampling pixel size in the axial (x-y) plane. We found 10
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TasLe VI. GLRLM, GLSZM, and NGTDM features normalized by the number of gray levels.

Feature

Original Feature formula f

Modified Feature formula, f,,

Gray-level run-length matrix (GLRLM) features

17- GLNU Iy [ZNg R(i ')]2 fEN,
0 2ai=1 j=1 ] 8
M Ng
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h h . £2 h R 3
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=0 j=
Nh a2 .
13- Texture strength w m
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Gray-level size zone matrix (GLSZM) feature Ne
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40- HIE s3>, 2()) Vi
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a- GLRLM: R (i, j) is the (i, j)th entry in the given run-length matrix and Ng is the number of discrete gray levels in the image. M is the longest run and n is the number of

pixels in the image.

b- NGTDM: P; is the probability of occurrence of voxel of intensity i and M (i) is the NGTDM value of intensity i. Ny, is the highest gray-level value and Ng is the number

of gray levels present in the image.

c- GLSZM: In size zone matrix z (i, j), rows i indicate gray levels and columns indicating zone sizes. Ng is the number of gray levels and the largest zone size is indicated

by m. Q is the total number of unique connected zones.
Feature number is given according to Table II.
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FiG. 5. Scaled original and normalized feature values as function of number of gray levels (Ng) for rubber and ABS20 cartridges: Contrast (a) and dissimilarity
(b) from GLCM became independent of Ng after gray-level normalization as shown by open triangles and circles.

features that were intrinsically dependent on voxel size.
Therefore, incorporating voxel size in the definitions of these
identified features improved their robustness as shown in
Fig. 3 (and Figure S4). These results were in agreement with
a recent study”’ for Intensity-energy, NGTDM-Coarseness,
GLRLM-GLNU and GLRLM-RLNU, but not for busyness
from NGTDM which showed large variability before and
after normalization. Additionally, we identified more fea-
tures, namely, Intensity-entropy, Intensity-contrast, GLCM-
mean, and NGTDM-Texture strength that were dependent on
voxel size. A cautionary point to make here is that features
are not standardized, and therefore, features with the similar
names may have different definitions/algorithms in different
publications.40 Therefore, standardization of feature names,
mathematical definitions, and implementation algorithms is
needed.
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Imaging data for radiomics studies typically originate
from multiple scanners, therefore, radiomic features that are
robust across scanners would be desirable. In this study, we
showed that features normalized by voxel size were robust
across scanners. Without normalization, the identified fea-
tures behaved similarly for images from Siemens and Philips
scanners, but not for GE scanners (Fig. 4). This was a conse-
quence of the GE detector design which restricted slice thick-
ness values; therefore, voxel size was the reason for the
difference seen in GE scanners. This also explains the depen-
dence of some radiomics features on scanner manufacturer in
a recent study'® in which phantom scans were resampled to
in-plane pixel spacing of 1 mm,” but slice thicknesses ranged
from 2 to 3 mm.

Therefore, without normalization or voxel-size resam-
pling, the identified features convey information related to
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FiG. 6. The %COV calculated over 12 different ROIs (10 ROIs of 14 cm? for each of the 10 cartridges in the phantom and 2 larger ROIs of 50 and 60 cm® con-
toured over multiple cartridges, i.e., ABS, wood and shredded rubber before (dark bars) and after (light bars) normalization. The phantom was scanned with a
Siemens Definition AS scanner with pixel size of 0.48 mm and slice thickness of 3 mm.

the volume of the ROI predominantly, and not to texture or
other intervoxel relationships. To ensure meaningful results,
we recommend researchers perform voxel-size normalization
for these voxel-size-dependent features and resampling for all
features. Resampling of all images to a particular voxel size
should be done for standardization because non-voxel-size-
dependent features may have different values for different
voxel sizes independently of ROI volume.

In a separate analysis, only 7 out of 51 texture features were
found to be robust with respect to varying number of gray
levels. These findings were partly in agreement with a recent
study41 for features such as coarseness, Info correlation 1,
inverse difference and inverse difference moment. However,
we found variability (i.e., %COV >20) for other features such
as difference entropy, sum entropy, entropy, variance, homo-
geneity 1 and homogeneity 2 in contrast to the same study.
We identified 17 texture features that were dependent on Ng;
normalizing these features by the number of gray levels
increased their robustness (Fig. 6). It is possible that for a
given Ng, a texture feature may be robust. Therefore, large
variability as a function of gray-level discretization does not
necessarily imply a feature is useless for clinical applications.

Currently, there is lack of standardization regarding the
feature extracting methodology.”* Different radiomics groups
have used different methodologies, such as different number
of gray levels to extract features. As shown by recent stud-
ies,”* texture features may be highly correlated with Ng. In
this study, we tried to identify normalizing factors for these
features to minimize or eliminate their dependencies on Ng.
These dependencies are in fact expected from the equations
that define the features, but what has not been made clear is,
first, the existence of these intrinsic dependencies, and sec-
ond, how the intrinsic dependencies can be minimized or
eliminated. This is important to eventually be able to compare
features in multicenter studies and clinical trials. Otherwise, a
feature value for a given texture definition would be different
across institutions because of differences in feature extraction
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methods. Moreover, there may be advantages or disadvan-
tages in using features with or without dependencies on the
number of gray levels. A more general approach would be to
consider features computed with different number of gray
levels as different features altogether, that is, the number of
gray levels are part of the feature definitions. The main
import here is that feature may have Ng-dependencies, and
these dependencies may lead to poor or erroneous conclu-
sions if one is unaware.

Gray-level resampling only affects second and higher
order radiomics features. However, voxel-size variation could
impact both first, second and higher order features. Identifi-
cation of texture features that depend on the number of gray
levels and/or the voxel size is necessary to remove or reduce
the intrinsic dependencies from feature definitions. For exam-
ple, coarseness was a feature that showed large variability
with voxel size but robustness with gray-level; hence only
normalization by voxel volume (or number of voxels) would
be required. Other features such as GLNU, mean and texture
strength were sensitive to both voxel size and number of gray
levels, therefore, they would require normalization by voxel
size as well as the number of gray levels.

Finally, a limitation of this study was that we used a tex-
ture phantom; ' therefore biological correlation for identified
features was not addressed. However, stable texture phantoms
are advantageous since they provide stable geometry and
physical characteristics for testing the robustness of CT radio-
mic features; a prerequisite for studies with human subjects.
Moreover, interscanner, intrascanner, and multicenter vari-
ability in CT radiomic features because of acquisition and
reconstruction parameters can be more readily assessed with
phantoms.

5. CONCLUSIONS

In this study, we identified 42 out of 213 features that were
dependent on voxel size. This dependency can be removed
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either by resampling all the image sets to a nominal voxel
size, as described in this paper, or by normalizing by voxel
size. Either approach is a recommended pre-processing step
before feature extraction. Moreover, 17 texture features were
dependent on the number of gray levels. This dependency
can also be removed or reduced by normalizing by the num-
ber of gray levels used. These findings suggest that feature
definitions must be revisited to remove these and perhaps
other dependencies introduced when they were first reported.
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Additional Supporting Information may be found online in
the supporting information tab for this article.

Figure S1: Comparison of 83 features extracted from origi-
nal and resampled data with Ng = 64 to those same features
extracted with lower number of gray levels. Comparison of
Ng = 64 to (a) Ng =32, (b) Ng = 16, and to (c) Ng = 8.
Features indicated similar trend at Ng = 32, 16, and 8 as did
for Ng = 64 except for 4 GLSZM features which showed %
COV <50 after resampling at Ng = 8 and 16 as shown in the
inset of panels b and c.

Figure S2: Comparison of group 1 (Table II in manuscript)
GLSZM features for Ng = 8, 16, 32, and 64 after voxel-size
resampling. Four GLSZM features, namely, IV, LAE, SAE,
and HISAE showed %COV <50 for Ng = 8 and Ng = 16.
Figure S3: Comparisons of first-order wavelets for Ng = 8,
16, 32, and 64 after voxel-size resampling. For group 1

Medical Physics, 44 (3), March 2017

features (Table III in manuscript), %COV >50 for all gray
levels as shown in the inset. The %COV <30 for group 2 fea-
tures (features 11 to 41 in Table III in the manuscript) and %
COV <50 for group 3 (features 42—128 in Table III in the
manuscript) for all Ng values.

Figure S4: Scaled features values extracted from original and
voxel-size normalized feature definitions as a function of
pixel size and slice thickness. Modified values are shown in
box plots. Middle, lower, and upper lines in the box indicate
the median, first quartile and third quartile respectively. The
Mean (a) and Inverse Variance (f) from GLCM; TGV (b) and
Entropy (c) from intensity histogram; and RLNU (d) from
GLRLM all converge into a straight horizontal line after
voxel-size normalization. Contrast (e) from intensity his-
togram showed large variability but its median value was
pretty constant for all voxel sizes.

Figure S5: Scaled original (solid triangles) and voxel-size
normalized (open triangles) feature values as a function of 8
different scanners for the rubber cartridge: Normalized values
for TGV (b) and Entropy (f) from intensity histogram; RLNU
(e) from RLM; and Inverse Variance (d) from GLCM all
nearly converge into straight horizontal line for all scanners.
Normalized and original values for Texture Strength (c) from
NGTDM and Contrast (a) from Intensity histogram were sim-
ilar for 6 scanners but different for GE scanners. The reason
for this difference were the restrictions on slice thicknesses
by the GE scanners used.

Table S1: Acronyms used in this study.

Table S2: Shape and Intensity histogram features.

Table S3: GLCM features.

Table S4: GLSZM, GLRLM, and NGTDM features.

Data S1: Description of radiomics features.



	1. Intro�duc�tion
	2. Mate�ri�als and meth�ods
	2.A. Acqui�si�tion and recon�struc�tion
	2.B. Con�tour�ing and fea�ture extrac�tion
	2.C. Voxel-size resam�pling
	tbl1
	2.D. Fea�ture nor�mal�iza�tion by voxel-size (vol�ume)
	2.E. Gray-level dis�cretiza�tion
	fig1

	3. Results
	3.A. Voxel-size resam�pling
	tbl2
	3.B. Nor�mal�iza�tion by voxel size
	fig2
	3.C. Nor�mal�iza�tion by num�ber of gray levels
	tbl3
	fig3

	4. Dis�cus�sion
	tbl4
	fig4
	tbl5
	tbl6
	fig5

	5. Con�clu�sions
	fig6

	 Acknowl�edg�ments
	 Con�flict of inter�est
	$^var_corr1
	bib1
	bib2
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23
	bib24
	bib25
	bib26
	bib27
	bib28
	bib29
	bib30
	bib31
	bib32
	bib33
	bib34
	bib35
	bib36
	bib37
	bib38
	bib39
	bib40
	bib41

	 1.Intro�duc�tionThe tech�niques of extract�ing use�ful quan�ti�ta�tive infor�ma�tion from med�i�cal images, known as radiomics, holds promise for early detec�tion, risk assess�ment, and treat�ment deci�sions in oncol�ogy. Dur�ing the last decade, stud...

