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YAP and the Hippo pathway in pediatric cancer
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ABSTRACT
The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is
evolutionarily conserved in mammals and is stimulated by cell–cell contact, inhibiting cell proliferation in
response to increased cell density. During early embryonic development, the Hippo signaling pathway
regulates organ development and size, and its functions result in the coordinated balance between
proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the
embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to
cancer development in adults and children. Emerging studies have shed light on the upregulation of
Hippo pathway members in several pediatric cancers and may offer prognostic information on
rhabdomyosarcoma, osteosarcoma, Wilms tumor, neuroblastoma, medulloblastoma, and other brain
gliomas. We review the results of such published studies and highlight the potential clinical application of
this pathway in pediatric oncologic and pathologic studies. These studies support targeting this pathway
as a novel treatment strategy.
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Introduction

The Hippo pathway is an important signaling pathway that
controls cell proliferation and apoptosis. Dysfunction of this
pathway often contributes to cancer development. It is stimu-
lated in normal cells by cell–cell contact and inhibits cell prolif-
eration in response to increased cell density. The pathway is
evolutionarily conserved in mammals, and plays an important
role in tissue homeostasis resulting in coordinated balance
between proliferation, apoptosis, and differentiation.1,2 Hippo
signaling pathway is activated with the phosphorylation of the
large tumor suppressor kinases 1 and 2 (LATS1/2) by the STE-
20 protein kinases (MST1/2) leading to activation of down-
stream members. Protein salvador homolog 1 (Sav1) and Mob
kinase activator 1A (Mob1) are regulatory proteins that coordi-
nate the phosphorylation of MST1/2 and LATS1/2 protein kin-
ases, respectively. A principal member and downstream
effector, Yes-associated protein (YAP), is a transcriptional
coactivator that is phosphorylated and inactivated by the Hippo
signaling cascade. Another member, the transcriptional coacti-
vator with PDZ-binding motif (TAZ), shares similar functions
to YAP in transcriptional activation and regulation.1-4 YAP
and TAZ are phosphorylated by LATS1/2-Mob1 complex at
specific amino acid residues. When Hippo signaling is attenu-
ated, the phosphorylation of YAP and TAZ is reduced, leading
to their nuclear localization. Inside the nucleus, they bind to
one of the DNA-binding TEA domain (TEAD) family of tran-
scription factors and activate target genes that are involved in
cell proliferation, survival, and tissue growth (Fig. 1).

The Hippo pathway is regulated by several upstream pathways
members. Merlin, a cytoskeletal protein and product of NF2
gene, activates MST, eventually leading to YAP phosphorylation.

Another upstream Hippo member, the Kidney and Brain Protein
(KIBRA), causes activation of LATS and YAP. Loss of KIBRA
expression causes cells to display epithelial to mesenchymal tran-
sition features leading to tissue growth, which is concomitant
with decreased LATS and YAP phosphorylation.5 The Hippo
pathway is also regulated through cross-talk interaction with
other intracellular signaling pathways. For example, MST1/2
activity is regulated by RAF-1, a product of the MAPK/ERK
pathway, and by the RAS-association domain (RASSF) family
proteins, which are implicated as tumor suppressors in many
cancers. The phosphoinositide 3-kinase (PI3K) pathway regulates
Hippo core components directly or through Protein kinase B
(AKT) activation. Both YAP and TAZ interact with and are com-
ponents of the Wnt signaling where they play a role as transcrip-
tional mediators, similar to Beta-catenin.3,4

The Hippo signaling pathway regulates cell proliferation and
apoptosis during organ development and is essential for the
accurate formation and maintenance of tissues and organs.6

The nuclear/cytoplasmic distribution of YAP and TAZ is
important in embryonic development through regulation of
cell polarity and signaling by the embryonic stem cells.7,8

Nuclear localization of YAP and TAZ promotes progenitor cell
renewal, facilitates tissue regeneration, and increases prolifera-
tion of undifferentiated progenitor cells in the liver, skin, intes-
tines, and heart. Aberrant activation of nuclear TAZ and YAP
transcriptional activity results in stem cell proliferation. Shift-
ing of YAP to the cytoplasm results in cellular differentiation
and maturation.8,9 Signals mediated by YAP and TAZ are also
important in determining cell fate. Hippo pathway members
influence mesenchymal stem cells and regulate their subse-
quent differentiation. Depletion of TAZ was found to promote
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adipogenesis, and increased nuclear TAZ activity resulted in
osteogenesis.10,11 During further organ development and histo-
genesis, the Hippo pathway becomes essential in regulating
final organ and cell size.9,10

The role of Hippo pathway in embryogenesis and organ
development portends its importance in the development of
many pediatric cancers. In this review, we discuss the role of
Hippo pathway in pediatric malignancies with reference to the
clinical applications of YAP as a diagnostic and prognostic bio-
marker in pathology and oncology.

Hippo pathway and cancer

Hippo signaling pathway in stem cells signifies an impor-
tant role in cancer stem cells and tumor initiation. Dysre-
gulation of Hippo pathway members evokes tumorigenesis
in various human adult cancers, including breast, ovary,
and liver. Hippo core kinases, MST1/2 and LATS1/2 are
often described as tumor suppressors. Other Hippo path-
way members, such as KIBRA, can also play a role in the
development of cancers.5 However, YAP and TAZ are the
main culprits in cancer pathogenesis, mainly through their
interaction with the TEAD family of transcription factors.12

The exact mechanism of YAP in cancer development is still
under investigation. Many previous studies have reported
elevated YAP protein levels in various types of cancer, such
as colorectal, gastric, and human hepatocellular carci-
noma.12,13 In this context, YAP is often described as an
oncogene and its increased expression in cancers correlates
with poor prognosis. For example, increased YAP expres-
sion is associated with high clinical stage and short overall
survival in colorectal and ovarian cancer.13,14 In other con-
texts, YAP functions as a tumor suppressor while inducing
cell apoptosis. This alternate function of YAP has been
noted in few morphologic studies of breast and prostate
cancer, which have shown that YAP expression is lost in
the tumor cells and retained in normal tissues.15,16 YAP

has also been noted to induce apoptosis in several hemato-
logic malignancies.17 This dual role as an oncogene as well
as tumor suppressor gene makes it similar to FAT atypical
cadherin 1, and may be related to its phosphorylation sta-
tus and nuclear versus cytoplasmic localization as shown in
a subset of head and neck squamous cell carcinomas.18,19

Because of its role in embryologic organ development, the
Hippo pathway is thought to play a more significant role in
the development of pediatric cancer. Many pediatric cancers
represent arrest of cellular differentiation at the embryonal
level and childhood cancers are frequently associated with
congenital malformations, consistent with the notion that
disruption of normal embryologic development is linked to
oncogenesis.

Rhabdomyosarcoma

Major components of the mammalian Hippo pathway are
expressed in fully differentiated skeletal muscles, progenitor
cells, myoblasts, and myotubes. Both TAZ and YAP can bind
to and function as coactivators of the paired box protein
PAX3, an important transcription factor in early muscle
development. Unlike canonical Hippo signaling, PAX3-TAZ
and PAX3-YAP complex does not require TEAD factors to
mediate activity, and PAX3 acts as the DNA-binding moi-
ety.20 During normal muscle development and activation of
Hippo kinases, YAP phosphorylation increases and translo-
cates from the nucleus to the cytosol permitting myoblast dif-
ferentiation.21,22 Nuclear expression of TAZ also increases
the expression of myogenic genes and hastens myofiber for-
mation and muscle differentiation through a MYOD1-depen-
dent manner. In pathologic conditions, phosphorylation of
TAZ leads to its cytoplasmic retention and delays myogenic
differentiation.23 Similarly, YAP is retained in the nucleus,
where it promotes satellite cells proliferation, and prevents
their differentiation.

Figure 1. YAP protein interaction, activation, and inactivation within the canonical Hippo Pathway.
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Rhabdomyosarcomas are tumors of skeletal muscle ori-
gin that exhibit overexpression of the myogenic regulatory
proteins, MYOD1 and myogenin. Evidence of disruption
of the Hippo pathway in rhabdomyosarcoma has emerged
in few studies, principally through dysregulation of YAP.
YAP is upregulated and both embryonal and alveolar
rhabdomyosarcoma types show high expression of cyto-
plasmic and nuclear YAP protein. In alveolar rhabdo-
moyosarcoma (aRMS), PAX3-FOXO1 fusion transcript
supports tumor initiation by upregulation of RASSF4.
Enhanced RASSF4 expression in PAX3-FOXO1 fusion pos-
itive aRMS cell lines and tumors promotes tumorigenesis
through inhibition of the Hippo pathway tumor suppressor
MST1 and subsequent increased activity of YAP.24,25 YAP
overexpression was found in RAS-driven rhabdomyosar-
coma, where it supports cell growth, proliferation, and sur-
vival in vitro.24 YAP-deficient alveolar rhabdomyosarcoma
cells were found to be significantly less proliferative than
control cells.26 Additional data have also suggested that
TAZ may play a role, albeit less prominent than that of
YAP, in the pathogenesis of aRMS.23

YAP overexpression is also implicated as a key factor in
the development of embryonal rhabdomyosarcoma (eRMS).
A recent study using multiple genetically engineered mice
has demonstrated that YAP protein overexpression trans-
forms activated satellite cells leading to the development of
embryonal rhabdomyosarcoma-like tumors.26 YAP com-
bines with TEAD1 to upregulate pro-proliferative and onco-
genic genes and maintain eRMS tumorigenesis by blocking
MYOD1 activities. TAZ is also overexpressed in eRMS
where it functions as an oncogene independent from YAP
and activates the expression of other cancer-related genes.
Knockdown of TAZ in human eRMS cell lines reduces their
proliferation and anchorage-independent growth.23

Expression of YAP and TAZ in clinical cases of rhabdo-
myosarcoma signifies their potential applications as diagnos-
tic and prognostic biomarkers. Both proteins show slightly
more expression in eRMS than in aRMS. In immunohisto-
chemical experiments of tissue microarray samples, YAP
and TAZ are detected in 87% and 55% of eRMS and in 72%
and 36% of aRMS respectively.23,26 Activity of both proteins
is related to poor patient prognosis and adverse clinical out-
come. In eRMS, YAP protein expression correlates with
advanced clinical stage and its gene expression correlates
with reduced survival.26 TAZ expression is also associated
with short survival in eRMS.23 In this aspect, blocking or
modulating YAP or TAZ activity may be considered as
potential therapy for rhabdomyosarcoma.27

Ewing’s sarcoma

Sarcomas in general are hypothesized to develop from mesen-
chymal stem/progenitor cells, which are able to differentiate
into many cell types and give rise to several adult human
tumors.28,29 Hippo pathways members are expressed in mesen-
chymal stem cells where they regulate their differentiation and
fate.30 Thus, it is understandable that dysregulations of the
Hippo pathway occur in many bone and soft tissue sarco-
mas.31,32 However, only a few oncogenic mutations are

found in the Hippo pathway that result in its dysregula-
tion. Instead, the most likely cause of perturbed Hippo sig-
naling in sarcoma is the cross-talk with commonly
mutated cancer genes such as KRAS, PIK3CA, CTNNB1, or
FBXW7.33 In tissue microarray samples of human sarco-
mas, both YAP and TAZ are expressed in variety of
tumors, including Ewing’s sarcoma.31 YAP expression in
Ewing’s sarcoma is positively correlated with the expres-
sion of polycomb protein (BMI-1), which promotes the
tumorigenicity of Ewing’s sarcoma. YAP expressions levels
are maintained and do not diminish in confluent Ewing’s
sarcoma tumor cells that express high levels of BMI-1. In
contrast, YAP expression and nuclear localization are
reduced in confluent BMI-1 knockdown cells, suggesting
that silencing of BMI-1 restores contact inhibition by
resuming normal activation of the Hippo-YAP growth-
suppressor pathway.34 YAP nuclear expression is also
documented in clinical human samples of Ewing’s sar-
coma, but this expression does not affect the patient’s sur-
vival.35 These facts suggest that YAP expression may not
have a major diagnostic role in Ewing’s sarcoma but may
be useful in selecting cases for YAP-targeted therapy.
Other canonical Hippo pathway members have not yet
been studied. However, the promoter regions of RASSF1A
and RASSF2, which are closely related to the Hippo path-
way, are found in a hypermethylated state in Ewing’s sar-
coma in correlation with worse clinical outcome.

Osteosarcoma

The Hippo pathway and its downstream targets help regu-
late proliferation of immature osteoblasts and their matu-
ration into nonproliferating mature osteoblasts. It also
regulates chondrocyte differentiation.36,37 Thus, aberrations
in the Hippo signaling are proving to be important in the
biology of osteosarcoma. These aberrations partly occur
through the upregulation of Hedgehog (HH) signaling
leading to increased expression of YAP and partly through
upregulation of the sex-determining region Y-box 2 (Sox2)
leading to inhibition of Mer/NF2 and KIBRA. Inhibition
of HH signaling reduces YAP expression, and knockdown
of YAP significantly inhibits osteosarcoma tumor progres-
sion and decreases cell proliferation and invasion.36,37

Sox2 is highly expressed in osteosarcoma where it main-
tains cancer stem cells.37,38 It disrupts the Hippo pathway
in these cells through the inhibition of Mer/NF2 and
KIBRA leading to increased YAP expression. Expression of
Mer/NF2 in osteosarcoma cell lines leads to a more differ-
entiated phenotype associated with the depletion of Sox2.
Thus, in contrast to cancer stem cells, the more differenti-
ated tumor cells are characterized by the expression of
Mer/NF2 and decreased Sox2 and YAP expression. TAZ is
also elevated in osteosarcoma cells, independent of Sox2,
and stimulates osteogenic differentiation through Runx2
activation.38

Of the Hippo pathways members, only YAP and TAZ have
been studied in human osteosarcoma tissues. A tissue microar-
ray analysis has revealed high YAP protein expression in osteo-
sarcoma when compared to the surrounding noncancerous
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tissue, and the expression correlates with advanced clinical
stage.37 In another immunohistochemical study, both YAP and
TAZ showed expression in up to 60% of osteosarcoma cases
and that nuclear expression of these proteins served as inde-
pendent prognostic factor.39 These experiments hint to the
potential role of YAP and TAZ as prognostic indicators in
osteosarcoma.

Neuroblastoma

YAP is expressed in early neural crests and regulates their phe-
notype and migration. YAP expression subsequently decreases
upon maturation and differentiation of neural crest cells.
Neuroblastoma is a common pediatric malignancy that
arises from neural crests, and thus it is reasonable to
extrapolate that Hippo pathway members are overex-
pressed in this tumor.40 YAP and TAZ activation has been
described in neuroblastoma and shows a positive correla-
tion with adverse prognostic features. Mutations of
PTPN14, which encode a negative regulator of YAP, have
been identified at neuroblastoma relapse.41 Migratory and
invasive properties of human neuroblastoma cells have
been found to be associated with high expression levels of
TAZ. There is evidence that TAZ promotes epithelial to
mesenchymal transition and metastasis of neuroblastoma.42

Although these experiments have suggested a potential role
of YAP and TAZ as therapeutic targets, no experiments
have been conducted so far on the immunohistochemical
expression of these proteins in the different subtypes of
clinical neuroblastoma cases.

Liver cancer

The mammalian Hippo pathway is thought to play an
important role in the regulation of liver progenitor cells.43

Ablation of this pathway in mice has induced YAP expres-
sion and its localization to the nucleus, thus permitting
hepatic tumorigenesis. Several studies have documented
dysregulation of various Hippo members liver cancer, par-
ticularly in hepatocellular carcinoma (HCC). In a recent
study on human HCC tissue, increased expression of YAP
and downregulation of LATS were observed. Inhibition of
LATS or MST1/2 has attenuated YAP phosphorylation and
significantly increased YAP nuclear accumulation.43 In
turn, the upregulation of the YAP inside the nucleus and
its association with TEAD2 has led to transcriptional acti-
vation and cell invasion in HCC cells. Increase in YAP
activity (nuclear localization and decreased phosphoryla-
tion) has also resulted in increased cell proliferation and
HCC formation in mice.44 YAP expression by immunohis-
tochemistry has been noted in adult and pediatric HCC
clinical cases.45-48 Two recent studies have revealed YAP
and TAZ are expressed in 60-70% of HCC cases and their
expression has correlated with clinical stage and high
serum alpha-fetoprotein levels.45,46 In a study of seven
pediatric HCC cases, increase of YAP expression is identi-
fied at the protein and mRNA transcript levels.47 Increased
YAP expression and activity is also noted in pediatric hep-
atoblastoma, where nuclear expression of the protein is

noted in up to 73% of cases.45 However, no prognostic
studies have yet shed light on the significance of YAP
expression in pediatric liver tumors.

Wilms tumors

Genome-wide analysis has unraveled a potential role of the
Hippo signaling system in kidney development through the
regulation of the transcription factor WT-1.49,50 YAP
expression in wild-type developing kidneys is found in the
nephron progenitor cells, ureteric bud, and stroma. There
is evidence to suggest that Fat4 from the stromal fibroblasts
may drive phosphorylation of YAP in the progenitor cells.
In the absence of this FAT4 signal, dephosphorylated YAP
resides in the nucleus, which leads to increased prolifera-
tion and expansion of the progenitor cells.

Wilms tumor is an embryonic kidney tumor in young chil-
dren that harbors WT-1 mutations in most cases. YAP is
expressed in Wilms tumor cell lines and clinical tissue speci-
mens in both the cytoplasm and the nucleus. Immunoblotting
experiments have revealed that YAP and its phosphorylated
counterpart (p-YAP) vary in content across 40 clinical Wilms
tumor specimens. Tumors with unfavorable histology (i.e., ana-
plastic) have shown a 5.2-fold greater p-YAP content than those
with favorable histology.50 Supportive immunohistochemical
studies on Wilms tumor tissue still have to be published.

Brain tumors

The role of Hippo pathway in brain development is
unclear. Deletion of TAZ and YAP in pre-migratory neural
crest has resulted in craniofacial defects suggesting a role
of this pathway in normal brain development.51 In normal
brains, YAP was undetectable in neurons, but expressed in
neural stem cells and astrocytes. At least in mice, there is
evidence for YAP regulation of neocortical astrocytic differ-
entiation and proliferation.51 These facts attests to the
importance of this pathway in pediatric brain tumors, par-
ticularly gliomas where they are widely expressed.

Medulloblastoma

Sonic Hedgehog (HH) interacts with the Hippo pathway in
a subset of medulloblastomas, leading to an upregulation
and nuclear localization of YAP.52 Medulloblastoma falls
into four distinct molecular subgroups, and YAP immuno-
histochemical nuclear staining is clinically validated and
accepted as a surrogate marker for the classification of a
medulloblastoma into the HH tumor subgroup. The HH
subgroup tumors (YAP-positive) have a very good progno-
sis in infants and an intermediate prognosis in all other
age groups.53,54 Though YAP nuclear expression has been
noted in all histological subtypes of medulloblastomas, des-
moplastic nodular medulloblastomas have a particularly
high proportion of cases with YAP immunopositivity. The
staining in desmoplastic nodular medulloblastomas is also
peculiar in that it is highly expressed in the internodular
areas and to a much lesser extent in the intranodular
regions (Fig. 2).
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Astrocytomas

A recent study has determined that YAP is expressed in
astrocytomas that span the entire World Health Organi-
zation (WHO) grading range.53,54 It is frequently
expressed in infiltrating astrocytoma and oligodendro-
glioma and less often in pilocytic astrocytoma. Pilocytic
astrocytomas show variable staining in 30% of cases, and
only 13% show a high level of nuclear staining. Other
WHO II-WHO IV astrocytomas exhibit a higher degree
of nuclear staining. As the WHO grade increases, from
WHO II to WHO IV, YAP expression is increased. Addi-
tionally, pediatric glioblastoma cases are less likely to
show a high degree of nuclear staining when compared
to adult glioblastomas (40% vs. 66%). Furthermore, dif-
fuse astrocytic tumors with high expression of YAP are
associated with a reduction in overall survival when com-
pared to similar tumors without high expression of
YAP.55,56 In vitro experiments have shown that YAP sig-
naling enhances glioblastoma growth and invasiveness
implying that targeting this protein may offer a potential
therapeutic option.57

Other brain tumors

Recently, YAP immunoreactivity was reported in a study
to have strong nuclear staining in atypical teratoid rhab-
doid tumors, medulloepitheliomas, and primitive neurecto-
dermal tumors. This study included only a small number
of these tumor subtypes. Further investigation is needed to
determine the prevalence of YAP immunostaining in these
cases.56

A recent study has highlighted the expression of TAZ in reti-
noblastoma in 65% of clinical cases. High TAZ expression in
this tumor was found to be prognostically significant, associated
with shorter overall survival and disease-free survival rates.58

Although no studies were done on clinical cases of germ cell
tumors, there is a preliminary evidence suggesting that MST1/
MST2 are required for teratoma formation, at least in mice.59

Hematologic malignancies

The role and significance of Hippo pathway in hematopoi-
esis are not well understood. A study using transgenic
mouse model has shown that overexpression of YAP
within the hematopoietic system has no effect on hemato-
poiesis or hematopoietic stem cell functions.60,61 MST1
and MST2, the core components of Hippo pathway, seem
to act as a switch between self-renewal and differentiation
in primitive hematopoiesis in one study using Xenopus
model.62

The deregulation of Hippo pathway and its role in the path-
ogenesis of hematopoietic malignancies have been studied by
several groups, but their results were not consistent. One
study has shown that YAP can trigger DNA damage and
induce apoptosis in myeloma and other leukemia/lym-
phoma cells and that low YAP levels prevent nuclear
ABL1–induced apoptosis.17 Knockdown of MST1 results in
increased YAP expression and triggers cell death.17 YAP
has been found to be consistently downregulated in human
hematologic cancers.63 One study has shown that loss of
MST1 in mice enhances lymphoma development, and that
MST1 is frequently decreased in clinical specimens of lym-
phoma and leukemia.64 In other studies, the expression
levels of MST1/2 and YAP in hematologic malignancies
are not significantly different from normal controls.65,66

The discrepancy of the results may reflect the etiologic
and pathologic heterogeneity of the hematologic malignan-
cies. Further studies with larger sample size and more
components of this pathway should be performed in this
area.

Conclusions

Hippo pathway members are dysregulated in various pedi-
atric tumors, attesting to the importance of this pathway
in the development of these embryonal cancers. Of all Hippo
members, YAP is the most commonly studied protein on clin-
ical cases of pediatric tumors. Evidence indicates that YAP

Figure 2. Potential applications of YAP immunohistochemistry in clinical practice as a diagnostic or a prognostic marker. Immunohistochemistry for YAP was performed at
The Children’s Mercy Hospital, Kansas City, Missouri on the Leica Bond instrument using an antibody against the nonphosphorylated protein (Santa Cruz, Dallas, Texas). A.
Nuclear staining for YAP is identified in embryonal rhabdomyosarcoma cells, while the infiltrating lymphocytes are negative (x400). B. YAP immunoreactivity in nodular
desmoplastic medulloblastoma. Nuclear staining is present in the internodular region (x200).
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expression affects patients’ prognosis in rhabdomyosarcoma,
osteosarcoma, HCC, Wilms tumor, and brain tumors. More
useful clinical applications of YAP and other pathway mem-
bers can be envisioned in the diagnosis and prognosis of pedi-
atric tumors and await further research. Because of their wide
expression, Hippo pathway members, particularly YAP, are
potential novel treatment targets for those tumors that show
overexpression.
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