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Reducing Uncertainty for Acute Febrile Illness in Resource-Limited Settings:

The Current Diagnostic Landscape

Matthew L. Robinson1 and Yukari C. Manabe1*
1Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland

Abstract. Diagnosing the cause of acute febrile illness in resource-limited settings is important—to give the correct
antimicrobials to patients who need them, to prevent unnecessary antimicrobial use, to detect emerging infectious
diseases early, and to guide vaccine deployment. A variety of approaches are yielding more rapid and accurate tests
that can detect more pathogens in a wider variety of settings. After decades of slow progress in diagnostics for acute
febrile illness in resource-limited settings, a wave of converging advancements will enable clinicians in resource-limited
settings to reduce uncertainty for the diagnosis of acute febrile illness.

FINDING THE CORRECT DIAGNOSIS FOR ACUTE
FEBRILE ILLNESS MATTERS

Fever is the most common symptom reported by persons
seeking medical care in resource-limited settings.1,2 There
is no widely accepted, universal definition for acute febrile
illness.3 Abrupt-onset illnesses, lasting less than 2 weeks,
with symptoms that include fever encompass a wide range
of diseases including respiratory tract infections, diarrheal
disease, malaria, and other vector-borne diseases which
combined cause one-third of all morbidity and one-fourth
of all mortality in low-income countries.4,5 Rigorous acute
febrile surveillance studies in resource-limited settings iden-
tify the etiology of acute febrile illness in 37–97% of cases,
but rely on testing performed in capitals or foreign countries
far removed from the majority of patients.6–13 Without
access to diagnostic tools, providers in resource-limited
settings turn to syndrome-based treatment protocols.
World Health Organization (WHO) syndrome-based guide-
lines often advise antimicrobials that prove ineffective for
patients with acute febrile illness, even when effective ones
are widely available in resource-limited settings if the cor-
rect diagnosis can be determined.14 Reliance on such
guidelines also results in over-prescription of antimicrobials
to patients who do not need them.15

Despite concerns of worsening antimicrobial resistance,
more patients perish worldwide from lack of access to anti-
microbials than die of antimicrobial resistance.16 As rickett-
sial illnesses do not respond to typical empiric antibiotic
regimens, patients with rickettsial infections suffer higher
mortality and complications when they are not treated with
widely available tetracyclines.17,18 Zoonotic bacterial infec-
tions that do not respond to standard antibiotics are com-
mon. Rickettsia or Coxiella burnetii were found in 13% of
acute febrile illness cases in Tanzania. Rickettsial infec-
tions outnumbered conventional bacterial infections in cen-
tral nervous system infections in Laos.19,20 In Uganda, one
quarter of human immunodeficiency virus (HIV)-infected
patients with severe sepsis had mycobacteremia, a grave

condition treatable with available targeted therapy, but
frequently fatal with delayed diagnosis.21

Health-care providers in resource-limited settings pre-
scribe antibiotics for 32–74% of patients presenting with
fever amounting to antibiotic prescription for 22–73% of all
health-care encounters.22–26 Patients in resource-limited
settings often receive unnecessary combinations of anti-
microbials, which are continued for longer than necessary.27

Lack of access to diagnostics drives inappropriate anti-
microbial use.28,29 Rollout of rapid diagnostic tests
with accompanied training can reduce antimalarial use in
patients who test negative, and, by proving an alternative
diagnosis, has reduced antibacterial use in patients who
test positive.24,25,30–32 However, testing for malaria alone is
insufficient. In some cases of malaria rapid diagnostic test
deployment, overall antibacterial use rises as fewer patients
are assigned a diagnosis of malaria.30 Despite changing
WHO guidelines to give antimalarials only to patients with
confirmed malaria, 35–58% of smear or rapid diagnostic
test negative patients receive antimalarials in certain set-
tings in an environment of diagnostic uncertainty.33–36 In
resource-limited settings, up to 90% of patient encounters
are with informal health-care providers37; patients and their
families can purchase antibiotics without consulting a medi-
cal professional.38 Out-of-pocket purchase of antibiotics is
associated with more antimicrobial resistance.39 Antimicro-
bial overuse is a driving factor behind the global surge in
antimicrobial resistance.40,41 Rising antimicrobial resistance
in resource-limited settings affects antimicrobial effective-
ness everywhere. Antimicrobial resistance genes that have
emerged in India, the world’s largest consumer of anti-
microbials, are now the most common cause of resistance
in Enterobacteriaceae infections in the United States.42,43

Emerging and reemerging infections are a constant threat
to human health.44 Public health measures may combat
outbreaks of emerging infectious diseases, but only if they
are detected. As a nonspecific acute febrile illness, Zika
virus may have been circulating in Brazil for more than
1 year before its detection.45 In rural Guinea, faced with
poor diagnostic and laboratory infrastructure, 79 people died
over 3 months before samples were sent to reference labo-
ratories in France and Germany, which identified Ebola as
the cause of a mysterious acute febrile illness characterized
by diarrhea.46,47 Once an outbreak such as Ebola is recog-
nized, models show that earlier case detection using rapid
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diagnostics would reduce disease transmission and outbreak
severity.48,49 The capability to diagnose a broader array of
infectious diseases in resource-limited settings where out-
breaks emerge may allow for earlier recognition of public
health threats and mobilization of a public health response
before outbreaks become emergencies.
As vaccines for dengue, Ebola, and other infectious dis-

eases become available, effective diagnostic tools will be
essential to demonstrate vaccine efficacy and to provide
surveillance for outbreaks to most efficiently guide vaccine
deployment. Clever use of cluster-randomized ring vaccina-
tion, inspired by the success of a similar strategy used for
smallpox eradication, generated preliminary data showing
Ebola vaccine efficacy, a study design that critically required
accurate case ascertainment.50 In regions where malaria inci-
dence is declining, more sensitive diagnostics are required to
identify cases of submicroscopic malaria, a key barrier to
elimination.51

TRADITIONAL MICROBIOLOGY TECHNIQUES
REINVENT THEMSELVES

Culture and serologic detection modalities have under-
gone relatively little advancement over the decades since
their discoveries. Bacterial culture, identification, and drug
susceptibility testing require little capital, but complex pro-
cedures and incubators requiring reliable electricity limit the
use of culture outside large referral hospitals in resource-
limited settings. A low-tech approach using a phase-change
material has been developed, which provides warmth for cul-
ture without a machine or electricity.52 Multiple approaches
to miniaturize, automate, and integrate bacterial culture and
antimicrobial susceptibility testing may promise rapid results
in a format that does not require a traditional bacteriology
laboratory (Table 1). The Sensititre MYCOTB MIC Plate
(Thermo Fisher Scientific, Waltham, MA) is preconfigured
with lyophilized antibiotics; it can perform drug susceptibility
testing for Mycobacterium tuberculosis, diagnosing drug-
resistant tuberculosis faster than conventional methods.63

QuantaMatrix (Seoul, Korea) has commercialized an auto-
mated single-cell analysis platform to yield antimicrobial sus-
ceptibility test results within 4 hours.62 In early development,
the 1 cm × 1 cm ePetri on-chip microscopy platform incor-
porates culture media directly over an image sensor to accu-
rately count microcolony growth under 6 hours.59 Other
bacterial culture techniques in early stages of development
use hundreds of nanoliter-scale droplets that may dramati-
cally reduce the size of a microbiology laboratory.60,61

Instead of relying on variable visual inspection or a cum-
bersome microplate reader for enzyme-linked immuno-
sorbent assay, technology has been developed to use
smartphones to accurately read the results of serologic
tests.64,65 As with nucleic acid amplification test (NAAT),
the ability to diagnose multiple infections allows for more
cost-effective and streamlined diagnosis of acute febrile ill-
ness. Multiplex point-of-care immunoassays for HIV and
syphilis as well as mosquito-borne diseases have been
tested, and are commercially available for HIV and syphi-
lis.66–69 Using bacteriophage display libraries, epitopes for
thousands of viral strains have been generated to detect
exposure to almost every virus.58 Diagnosis of neglected
tropical diseases such as human African trypanosomiasis
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and visceral leishmaniasis has traditionally required complex
or unreliable serologic methods, but lateral flow tests to
replace them have now been developed and commercial-
ized.57,70–72 Imaging technologies can replace microscopes
with smartphone-baseddesigns for the identification ofmalaria
and filarial parasites.53,54

NUCLEIC ACID AMPLIFICATION TESTS ARE BECOMING
EASIER TO USE

NAAT using real-time polymerase chain reaction (RT-PCR)
are becoming the standard for diagnosing many infectious
diseases in resource-rich settings.73 Previously limited to
reference laboratories by advanced training needs of labora-
tory staff, high capital costs, and high power usage, recent
advances promise to push NAAT to the bedside in resource-
limited settings. Isothermal nucleic acid amplification tech-
niques such as recombinase polymerase amplification (RPA),
loop-mediated isothermal amplification (LAMP), and nucleic
acid sequence-based amplification (NASBA) use alternative
cocktails of enzymes to accomplish the same goal of
replicating pathogen DNA or RNA for the purpose of detec-
tion without the need to quickly vary the temperature as
required for PCR.74–76 RPA can even be performed using
body heat as the isothermal heat source.77 Obviating the
need for expensive thermocyclers, isothermal NAAT remove
the high capital cost barrier to uptake of NAAT in resource-
limited settings. Systems using LAMP, RPA, and NASBA
have shown promising test characteristics in laboratory
settings detecting a full range of infectious causes of acute
febrile illness including Ebola, Zika, influenza, and scrub
typhus (Table 2).93,105,106,115 Reagents and an instrument
to perform RPA are commercially available from twistDx
(Cambridge, United Kingdom), which have worked effectively
for the field diagnosis of dengue.107 The most mature appli-
cations of LAMP use an instrument with an isothermal heat
source and real-time fluorometric or turbidimetric detection,
available from multiple manufacturers.94,116 Field testing
with RealAmp, a RT-LAMP protocol developed by the Cen-
ters for Disease Control and Prevention, has proved effec-
tive for detecting malaria.94

Most isothermal NAAT still require laborious sample
preparation by skilled technicians and at times nuanced
interpretation of results. Walk-away PCR platforms can per-
form PCR with only minimal user input and training. Per-
formed directly by nurses or clinicians, simply by changing
a self-contained cartridge in which extraction, amplification,
and detection occurs, the robotic GeneXpert platform
(Cepheid, Sunnyvale, CA) can detect a variety of pathogens
such as tuberculosis and Ebola.87,117,118 GeneXpert has
been deployed successfully to the point-of-care at Ebola
treatment centers during the recent outbreak in west
Africa.88,89 The GeneXpert has been shown to have a low
tolerance for heat and humidity119; improvements to increase
robustness and decrease maintenance requirements will
allow more widespread adoption. A competing platform to
GeneXpert, BioFire FilmArray (bioMérieux, Marcy l’Etoile,
France), uses cartridges to simultaneously test for multiple
pathogens within a syndrome, ranging from diarrhea to
meningoencephalitis.80,81 Using an isothermal technique
named nicking endonuclease amplification reaction, Alere
(Waltham, MA) has developed a NAAT for influenza that

gives a result in 15 minutes.78 Walk-away PCR platforms
do offer simplicity, but using proprietary cartridges, only
manufacturers can expand testing for additional diseases
and control pricing, limiting dissemination of such systems
to diagnose neglected tropical diseases in resource-limited
settings. Volume discounts provide GeneXpert cartridges
to resource-limited health-care systems for $10, but the
instrument itself costs $17,500.71 Costs for the BioFire
FilmArray instrument and per-test consumables exceed
$40,000 and $100, respectively.82,83 The Alere isothermal
instrument costs $8,628 and each kit $94.79 Given high
capital and consumable prices, inability to tailor to local
needs, and high electricity demands, current walkaway PCR
systems are still far out of reach for the routine diagnosis of
acute febrile illness in resource-limited settings.
Several devices in development, however, can perform

PCR in a miniaturized, low-cost device that can be battery
powered. Cepheid is developing a portable version of its
GeneXpert system, Omni.120 BioFire has adapted its car-
tridge technology to develop a portable PCR unit for bio-
defense purposes.121,122 Genedrive (Epistem, Manchester,
United Kingdom) is a portable machine whose cartridges use
a paper-based extraction system that has so far been evalu-
ated for tuberculosis diagnosis with inconsistent results.85,86

Biomeme (Philadelphia, PA) is developing a handheld PCR
device that runs off of an iPhone, using its camera for fluoro-
metric detection and screen for interface.114

In an era of global malaria decline, recognition of the
increasingly vast possible etiologies for acute febrile illness
in patients presenting for care in resource-limiting settings
means that sequential testing for individual infectious dis-
eases may be too slow to guide patient care and are not
cost effective. Though potentially cumbersome in their cur-
rent formats, increasingly multiplex PCR assays allow for
the screening of a wide range of pathogens with one assay.
Multiplex PCR for arboviruses include multiple offerings for a
multiplex dengue, chikungunya, and Zika assay, although
there is some controversy regarding the sensitivity of the
Trioplex assay developed by the Centers for Disease Control
and Prevention.123–125 Taqman array cards, sold by Applied
Biosystems (Foster City, CA), can be customized for any
target, and can perform 26 singleplex PCR assays for infec-
tious diseases in parallel.111 Advances in molecular biology
are allowing for increasingly multiplex detection strategies.126

Although no single existing modality can perform sample
extraction, amplification, and detection of numerous patho-
gens in a simple, affordable, customizable package without
a heavy power requirement, advances in each individual
component are paving the way for a future in which such a
device will be surely available.

METAGENOMIC SEQUENCING CAN IDENTIFY
ANY PATHOGEN

Despite increasingly multiplex molecular diagnostic strat-
egies, such an approach would have been unlikely to iden-
tify Ebola in West Africa, Zika in Brazil, or Middle East
respiratory syndrome coronavirus in Saudi Arabia as clini-
cians had no reason to suspect a disease that never in his-
tory had occurred in their respective settings of emergence
or reemergence. Approaches to diagnose any infectious dis-
ease without a priori suspicion would enable surveillance

1288 ROBINSON AND MANABE



programs and clinicians to recognize emerging and reemerg-
ing infectious diseases. Metagenomic sequencing using next-
generation technologies can perform unbiased sequencing
on high-throughput systems at remarkably shrinking costs.127

Use of metagenomic sequencing as a diagnostic tool has
successfully identified expected and wholly unexpected
existing pathogens.128–131 Novel viruses have also been
identified using metagenomic sequencing.132,133 Although
high-throughput, second-generation sequencing techniques
require large machines with expensive capital and consum-
able costs, third-generation sequencing using nanopores
by a device named MinION (Oxford Nanopore Technolo-
gies, Oxford, United Kingdom) can perform metagenomic
sequencing in a package no larger than a thumb drive that
can be powered by a laptop computer.134 MinION has
already identified bacteria and viruses.134–136

NEW MOLECULAR TECHNIQUES ARE NOT PERFECT

Even with improvements in sensitivity, many infectious
diseases do not release pathogen genetic material in the
bloodstream in sufficient quantities to be diagnosed by
NAAT using blood or serum samples. Blood culture theoreti-
cally can detect as little as one bacterium in a large volume
culture bottle. Each bacteria, however, only has one genomic
copy, making it difficult for PCR to equal the sensitivity of
culture. One approach to overcome a paucity of genomic
bacterial DNA has been to detect transcribed RNA, which
for some transcribed targets may be present many fold
more than genomic DNA.137 Other approaches increase
the volume of blood collected or make use of the white
blood cell fraction of blood specimens, which for intracel-
lular bacteria may be more sensitive.138 As metagenomic
methods require the nonspecific amplification of all genomic
material by PCR during the library preparation phase,
organisms not detected by RT-PCR using specific primers
against the target of interest are unlikely to be detected by
next-generation sequencing.139

In resource-limited settings, one-half of patients may wait
until 4 days of illness and one quarter of patients 1 week to
present to health care for evaluation of acute febrile ill-
ness.19,33,140 A broad array of diseases that cause acute
febrile illness such as Zika, hantavirus, and Rickettsia have
only a brief window of detection in which circulating genetic
material is detectable in blood samples, though symptoms
may continue past this window.141–143 New approaches to
use NAAT to detect a host RNA expression signature in lieu
of pathogen nucleic acidsmay circumvent these limitations.144

PUT IT ON PAPER, OR ON A CHIP, AND THROW AWAY
THE NEEDLE

Advancements to produce smaller, simpler, and cheaper
diagnostic instruments for acute febrile illness still leave
users in resource-limited settings reliant on equipment
that may break, disappear, or remain locked in a closet.
Introduced more than a decade ago, the WHO ASSURED
criteria challenges developers to produce ideal point-of-care
diagnostic tests for resource-limited settings that are Afford-
able, Sensitive, Specific, User friendly, Rapid and robust,
Equipment-free, and Delivered.145–147 As has been shown
with HIV, cryptococcal meningitis, and malaria, dispos-

able paper-based lateral flow diagnostics have no infra-
structure requirements, require minimal training, and do not
break.148–150 Iterative improvements can be disseminated
quickly and do not require capital equipment upgrades.
Addition of microfluidic channels to paper-based assays
allows for the production of more complicated, multiplex
systems.151,152 Separate channels enable multiplexing of
serologic tests for multiple pathogens.69 Techniques have
been developed to extract, amplify, and detect nucleic
acids on paper.153–155

Performing PCR on a chip allows for rapid sample heating
and cooling enabling performance of 30 PCR cycles in
2 minutes.156 Further miniaturization of PCR allows for fast
thermocycling at lower power, paving the way for small,
disposable, low-power PCR platforms. One such example in
development can perform 30 cycles in under 5 minutes with
a power requirement that could be met by several AA
batteries.157 Noninvasive approaches are being tested to
detect nucleic acids and antigens that cause acute febrile
illness in saliva and urine.158–160 An intriguing technique may
detect hemozoin, a product of malaria parasite hemoglobin
digestion, using a transdermal probe that would not require
any sample (Table 1).55,56

In an age of constantly emerging pathogens with threat of
global spread, declining efficacy of overused antibiotics, and
large-scale efforts to control specific infectious diseases, we
can no longer accept diagnostic uncertainty for acute febrile
illness in resource-limited settings. Knowing the etiology of
acute febrile illness at both the individual and population
level will allow for targeted treatment, judicious use of
antibiotics and, ultimately, rational vaccine deployment.
Accelerating technologic innovation has led to rapid
breakthroughs in NAAT, improvements in traditional sero-
logic and culture techniques, imaging devices, and next-
generation sequencing as tools for infectious disease
diagnosis. Diagnostic testing for acute febrile illness in
resource-limited settings has the chance to leapfrog over
complicated, expensive tests to simple, low-cost detection
assays. Many of these novel designs are driven by resource
limitations, which demand the elimination of costly equip-
ment to move diagnostics to the bedside. This frugal
innovation has the capacity to improve patient-centered care
and outcomes in all settings.
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