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We present a new framework for calculating coupled cluster (CC) excitation energies at a reduced
computational cost. It relies on correlated natural transition orbitals (NTOs), denoted CIS(D′)-NTOs,
which are obtained by diagonalizing generalized hole and particle density matrices determined from
configuration interaction singles (CIS) information and additional terms that represent correlation
effects. A transition-specific reduced orbital space is determined based on the eigenvalues of the
CIS(D′)-NTOs, and a standard CC excitation energy calculation is then performed in that reduced
orbital space. The new method is denoted CorNFLEx (Correlated Natural transition orbital Frame-
work for Low-scaling Excitation energy calculations). We calculate second-order approximate CC
singles and doubles (CC2) excitation energies for a test set of organic molecules and demonstrate
that CorNFLEx yields excitation energies of CC2 quality at a significantly reduced computational
cost, even for relatively small systems and delocalized electronic transitions. In order to illustrate the
potential of the method for large molecules, we also apply CorNFLEx to calculate CC2 excitation
energies for a series of solvated formamide clusters (up to 4836 basis functions). Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4984820]

I. INTRODUCTION

Nowadays, coupled cluster (CC) theory,1,2 together with
the response function3–7 or the equation-of-motion8–11 for-
malisms, is well-established as the method of choice for the
calculation of electronic transition properties of molecules
dominated by a single electronic configuration. However, the
steep computational scaling with a system size of CC the-
ory limits its application to molecules with a few tens of
atoms. For the calculation of transition properties of large
molecules, more affordable but less reliable methods, such
as time-dependent density-functional-theory (TDDFT), are
generally preferred.12 The limitations of DFT methods are
well-known,13,14 and it is therefore important to provide more
robust alternatives for large-scale calculations of transition
properties.

The steep computational scaling of CC theory can be
attributed to the fact that highly delocalized canonical Hartree-
Fock (HF) orbitals are used to describe electron correlation
effects that are of local nature.15,16 For the calculation of CC
ground state energies, many methods have been developed to
take advantage of the locality of correlation effects to reduce
the cost of CC calculations, and some efficient linear-scaling
algorithms are now available.17–22 We note that the ground
state correlation energy is a size-extensive quantity, and, by
definition, CC algorithms that target size-extensive properties
have to scale at least linearly with the system size. The key
to achieving a reduction in computational cost without affect-
ing significantly the accuracy of the calculated quantities is
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to formulate the CC equations in a basis where the inherent
locality of electron correlation can be efficiently exploited.
While orthogonal localized occupied orbitals are universally
used,23–26 the virtual space has been described by local orthog-
onal virtual orbitals26–28 or non-orthogonal alternatives, such
as projected atomic orbitals (PAOs),29 orbital-specific virtuals
(OSVs),30 or pair-natural orbitals (PNOs).31–33

More recently, some attention has also been given to CC
algorithms with reduced scaling for the determination of exci-
tation energies and other frequency-dependent properties. In
this context, it is important to realize that electronic transition
properties are size-intensive. For local electronic transitions,
it should therefore be possible to devise a procedure where the
computational cost depends only on the character of the elec-
tronic transition and not on the system size. However, unlike
ground state correlation effects, some electronic transitions are
not of local nature, and it is therefore not straightforward to
use the same locality approximations for the calculation of
transition properties as for the ground state energy.

In the design of approximated CC methods for exci-
tation energy calculations, the size-intensivity of electronic
transitions has often been ignored. Instead, the local approx-
imations for ground state calculations have been extended to
take into account the potential delocalized character of elec-
tronic transitions by relying on information from low-level
calculations34–43 [often from the configuration interaction sin-
gles (CIS) model]. Such a strategy allows for a more uniform
description of size-intensive and size-extensive properties but
limits significantly the potential computational savings. On
the other hand, some approaches have been designed specif-
ically for the calculation of size-intensive properties44–49 and
cannot be used to obtain, e.g., correlation energies. Finally,
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we note that computational savings can be obtained by sim-
ply truncating the virtual orbital space in the canonical orbital
basis.50,51

In a previous publication, we have introduced a local
framework for calculating CC excitation energies (LoFEx),49

which provides a general approach for calculating excita-
tion energies at a reduced computational cost. The orbital
space in the LoFEx approach is a mixed space containing
natural transition orbitals (NTOs) determined from a time-
dependent Hartree-Fock (TDHF) calculation and localized
molecular orbitals (LMOs). A subset of this mixed orbital
space is then determined in a black-box manner to ensure
the error control of the calculated quantities. In Ref. 49, it
was shown that a compact description of electronic transi-
tions could be obtained for transitions that are localized to
a small part of the considered molecular system. However,
for transitions that are delocalized over a large part of the
molecule, no computational savings can be obtained with
LoFEx.

In this paper, we investigate alternative orbital spaces
that can be used to efficiently describe all types of transitions
(including delocalized ones) and avoid the need for an opti-
mization of the reduced orbital space. The new orbital spaces
are made of generalized NTOs that include correlation effects
such that an optimal reduced orbital space can be chosen solely
based on the NTO eigenvalues as described in Secs. II and III.
The new method entitled CorNFLEx (Correlated Natural tran-
sition orbital Framework for Low-scaling Excitation energy
calculations) is tested on a set of spectroscopically interest-
ing medium-sized molecules to calculate excitation energies at
the second-order approximated CC singles and doubles (CC2)
level (Sec. IV). We also calculate excitation energies of sol-
vated formamide clusters of increasing size to illustrate the
capabilities of the new method.

II. NATURAL TRANSITION ORBITALS

Our overall goal is to obtain computational savings by car-
rying out a standard CC excitation energy calculation within a
reduced orbital space composed of transition-specific orthog-
onal molecular orbitals (MOs). In this section, we describe
and compare different choices of NTOs that may be used for
this purpose. Throughout the paper, we consider closed-shell
molecules and spin-free orbitals using the following index
convention (unless otherwise noted):

• i, j, k, l: occupied canonical MOs;
• a, b, c, d: virtual canonical MOs;
• I, J, K, L: occupied MOs in the CIS-NTO basis;
• A, B, C, D: virtual MOs in the CIS-NTO basis;
• I ′, J ′, K ′, L′: occupied MOs in the occupied correlation

domain (OCD);
• A′, B′, C ′, D′: virtual MOs in the virtual correlation

domain (VCD);
• p, q, r, s: MOs of unspecified nature and occupation;
• α, β, γ, δ, µ, ν: atomic orbitals;
• µ̃, ν̃: projected atomic orbitals.

In Sec. II A, we summarize how NTOs are obtained at the
CIS level. In Secs. II B and II C, we generalize the concept of

NTOs to include correlation effects at the CC2 and CIS(D)52

levels of theory, while an approximation to CIS(D)-NTOs is
introduced in Sec. II D.

A. CIS-NTOs

NTOs are usually obtained from a singular-value-
decomposition (SVD) of one-particle excitation vectors.53,54

At the CIS level, the excitation vector RCIS associated with
a given electronic transition is obtained from the following
eigenvalue problem:55

(HCIS − EHF1)RCIS = ωCISRCIS, (1)

where HCIS is the CIS Hamiltonian, EHF is the HF ground-state
energy, and the eigenvalue ωCIS is the associated excitation
energy. An SVD of RCIS is equivalent to the diagonalization
of the following hole and particle density matrices:

MCIS
ij =

∑
a

RCIS
ai RCIS

aj , (2a)

NCIS
ab =

∑
i

RCIS
ai RCIS

bi . (2b)

CIS-NTOs are thus obtained by solving the eigenvalue equa-
tions,

MCISUCIS = λCISUCIS, (3a)

NCISVCIS = λ̃
CIS

VCIS, (3b)

where λCIS and λ̃
CIS

are diagonal matrices with eigenvalues
λCIS

p and λ̃CIS
p on the diagonal. The UCIS/VCIS matrices rep-

resent the transformation from the occupied/virtual canonical
MO basis to the occupied/virtual CIS-NTO basis. In the fol-
lowing discussion, it is assumed that the eigenvalues in Eq. (3)
are listed in order of decreasing magnitude and that the number
of virtual orbitals is larger than the number of occupied orbitals
(V > O), which is the case in all practical applications. In order
to simplify the following discussion, we note that the rank of a
matrix equals the number of non-zero singular values and that
the following relations hold for a real matrix B of dimension
(m, n):

rank(BT B) = rank(BBT ) = rank(B) ≤ min(m, n). (4)

Thus, from Eq. (2), it follows that

rank(MCIS) = rank(RCIS) ≤ O, (5a)

rank(NCIS) = rank(RCIS) ≤ O, (5b)

which implies that the last (V � O) eigenvalues of NCIS are
zero. Furthermore, the first O virtual eigenvalues λ̃CIS

p equal
the occupied eigenvalues λCIS

p , i.e.,54

λ̃
CIS
p = λCIS

p (1 ≤ p ≤ O), (6a)

λ̃
CIS
p = 0 (O < p ≤ V ). (6b)

We also note that normalizing the CIS excitation vector is
equivalent to requiring the sum of the eigenvalues to equal
one, ∑

p

λ
CIS
p = 1. (7)

The magnitude of the eigenvalues λCIS
p can be related to the

importance of a given pair of CIS-NTOs for describing the
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transition of interest at the CIS level of theory. It would thus
be convenient to choose a subset of CIS-NTOs based on their
eigenvalues and then carry out a correlated CC calculation
within this reduced orbital space in order to decrease the
computational effort of the CC calculation. However, such a
strategy is not useful in practice since it discards at least all
the virtual CIS-NTOs with zero eigenvalues. This would result
in unacceptable errors in the subsequent CC calculation and
make it impossible to approach the full CC result in a sys-
tematic manner. In Secs. II B–II D, we generalize the concept
of NTOs to include correlation effects with the objective of
calculating accurate CC excitation energies within a reduced
orbital space composed of correlated NTOs.

B. CC2-NTOs

In order to include the effects of CC2 doubles excitations
in the NTOs, we consider the following generalized hole and
particle density matrices at the CC2 level of theory:

MCC2
ij =

∑
a

RCC2
ai RCC2

aj

+
∑
abk

(
1 + δai,bk

2

) 1
2

RCC2
aibk

(
1 + δaj,bk

2

) 1
2

RCC2
ajbk , (8a)

NCC2
ab =

∑
i

RCC2
ai RCC2

bi

+
∑
ijc

(
1 + δai,cj

2

) 1
2

RCC2
aicj

(
1 + δbi,cj

2

) 1
2

RCC2
bicj , (8b)

where RCC2
ai and RCC2

aibj are the singles and doubles components

of the solution vector of the right CC2 eigenvalue problem,56

ARCC2 = ωCC2RCC2, (9)

and A and ωCC2 are the CC2 Jacobian and CC2 excita-
tion energies, respectively. We note that the density matrices
in Eq. (8) (with a slightly different convention for the off-
diagonal elements) were first introduced by Høyvik, Myhre,
and Koch in connection with the multilevel CC scheme57 and
that Tr(MCC2) = Tr(NCC2) = 1 when the RCC2 vector is nor-
malized. In analogy with Eq. (3) for the CIS density matrices,
the CC2-NTOs are obtained by diagonalizing MCC2 and NCC2,

MCC2UCC2 = λCC2UCC2, (10a)

NCC2VCC2 = λ̃
CC2

VCC2. (10b)

For the following analysis, it is convenient to interpret the
total RCC2 eigenvector entering Eq. (8a) as a matrix RM with a
singles block of dimension (V,O) and elements RCC2

a,i and a dou-

bles block of dimension (V2O, O) and elements
( 1+δai,bj

2

) 1
2 RCC2

bja,i

(see Fig. 1, left). This enables us to write the MCC2 matrix in
Eq. (8a) as

MCC2 = (RM )T RM . (11)

Similarly, we consider a matrix RN with a singles block of
dimension (V,O) and elements RCC2

a,i and a doubles block of

dimension (V,O2V ) and elements
( 1+δai,bj

2

) 1
2 RCC2

a,ibj (see Fig. 1,

right) and write the NCC2 matrix in Eq. (8b) as

FIG. 1. Representation of the RM (left) and RN (right) matrices used to
calculate generalized transition density matrices.

NCC2 = RN (RN )T . (12)

Using the general identity in Eq. (4) and the dimensions
of the RM and RN matrices, it then follows that

rank(MCC2) ≤ min(V + V2O, O) = O, (13a)

rank(NCC2) ≤ min(V , O + O2V ) = V . (13b)

This should be put in contrast with the ranks of the CIS density
matrices in Eqs. (5). Comparing Eqs. (2) and (8), we thus see
that the inclusion of the doubles excitation vector component
enables the existence of nonzero eigenvalues for all of the CC2-
NTOs generated by the diagonalization of MCC2 and NCC2.
We also note that in contrast with the CIS case in Eq. (6),
the occupied and virtual CC2-NTO eigenvalues are generally
different, λCC2

p , λ̃CC2
p .

The generation of the CC2-NTOs requires the determina-
tion of the CC2 excitation vector for the full molecular system,
and the CC2-NTOs are therefore primarily of analytical inter-
est if CC2 excitation energies are targeted. It is thus instructive
to look at the explicit expression for the CC2 doubles excita-
tion vector in order to consider approximations in Secs. II C
and II D that could be invoked in practical calculations of CC2
excitation energies. From Ref. 58, the CC2 doubles excitation
vector is given by

RCC2
aibj =

1
(1 + δai,bj)

(ai |̄bj)CC2

ε i − εa + ε j − εb + ωCC2
, (14)

where the transformed integrals are written as

(ai |̄bj)CC2
= Pab

ij

∑
αβγδ

(
Λ̄

CC2
αa Λ

CC2
βi

+ΛCC2
αa Λ̄

CC2
βi

)
Λ

CC2
γb Λ

CC2
δj (αβ |γδ) (15)

with
Pab

ij faibj = faibj + fbjai (16)

and

Λ̄
CC2
αa = −

∑
i

CαiR
CC2
ai , (17a)

Λ̄
CC2
αi =

∑
a

CαaRCC2
ai , (17b)

Λ
CC2
αa = Cαa −

∑
i

Cαitai, (17c)

Λ
CC2
αi = Cαi +

∑
a

Cαatai, (17d)

where C is the standard (canonical) MO coefficient matrix and
tai are the ground state CC2 singles amplitudes, while ε i and
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εa represent the occupied and virtual orbital energies, respec-
tively. The expensive part of the CC2-NTO procedure is the
calculation of the doubles excitation vector components RCC2

aibj
in Eq. (14) and their contraction in Eq. (8), both of which scale
as O(N5) where N is a measure of the size of the molecular
system. In particular, the determination of RCC2

aibj requires the
iterative solution of both the ground state CC2 equations (to
determine tai) and the subsequent iterative solution of the CC2
eigenvalue problem in Eq. (9).

C. CIS(D)-NTOs

As a first approximation to the CC2-NTOs, we consider
NTOs generated from the simpler CIS(D) model.52 In Eq. (14),
this effectively corresponds to setting the ground state singles
amplitudes to zero (ta

i = 0) and using the CIS excitation energy
and excitation vector instead of the corresponding CC2 quan-
tities. Thus, within the CIS(D) model, the RCIS(D)

aibj amplitudes

may be determined in a non-iterativeO(N5) process according
to

RCIS(D)
aibj =

1
(1 + δai,bj)

(ai |̄bj)CIS

ε i − εa + ε j − εb + ωCIS
, (18)

where the transformed integrals are given by

(ai |̄bj)CIS
= Pab

ij

∑
αβγδ

(
Λ̄

CIS
αa Cβi + CαaΛ̄

CIS
βi

)
CγbCδj(αβ |γδ),

(19)

Λ̄
CIS
αa = −

∑
i

CαiR
CIS
ai , (20a)

Λ̄
CIS
αi =

∑
a

CαaRCIS
ai . (20b)

The CIS(D)-NTOs are then obtained by diagonalizing
the CIS(D) hole and particle density matrices, which are
constructed analogously to Eqs. (8),

MCIS(D)
ij =

∑
a

RCIS
ai RCIS

aj

+
∑
abk

(
1 + δai,bk

2

) 1
2

RCIS(D)
aibk

(
1 + δaj,bk

2

) 1
2

RCIS(D)
ajbk ,

(21a)

NCIS(D)
ab =

∑
i

RCIS
ai RCIS

bi

+
∑
ijc

(
1 + δai,cj

2

) 1
2

RCIS(D)
aicj

(
1 + δbi,cj

2

) 1
2

RCIS(D)
bicj .

(21b)

D. CIS(D′)-NTOs

The generation of CIS(D)-NTOs is a non-iterative O(N5)
process, and it is therefore prohibitively expensive for large
molecular systems. In this section, we describe a strategy for
determining approximate CIS(D)-NTOs by using CIS infor-
mation and locality arguments to approximate the doubles
terms in Eq. (21).

The occupied and virtual CIS-NTO bases are defined
by the UCIS and VCIS transformation matrices in Eq. (3).

We now consider two mixed bases—one where the occupied
orbitals are canonical and the virtual orbitals are expressed in
the CIS-NTO basis, and vice versa—leading to the following
approximate doubles vectors:

RCIS(D′)
AiBj =

1
(1 + δAi,Bj)

(Ai |̄Bj)CIS

ε i − FAA + ε j − FBB + ωCIS
, (22a)

RCIS(D′)
aIbJ =

1
(1 + δaI ,bJ )

(aI |̄bJ)CIS

FII − εa + FJJ − εb + ωCIS
, (22b)

where we have used capital letters to denote the CIS-NTO
basis and made the diagonal Fock matrix approximation in the
CIS-NTO basis. The use of Eq. (22) alone does not reduce the
computational effort compared to Eq. (18). However, we now
invoke a procedure where we freeze the most important CIS-
NTOs and transform the remaining orbitals to a local basis in
which the number of important doubles vector elements can
be reduced. The philosophy behind this approach is that the
frozen CIS-NTOs describe the main character of the transition
at the CIS level of theory, while the remaining local orbitals
allow for an efficient description of correlation effects. In the
remainder of this section, we describe the technical details of
this procedure which is also summarized in Figs. 2 and 3.

As a first step, we define a subset of Z occupied and Z
virtual CIS-NTOs for which the eigenvalues add up to one
minus some threshold τCIS,

min
Z

( Z∑
p=1

λ
CIS
p

)
> 1 − τCIS, (23)

where p refers to either occupied (p = I) or virtual (p = A) CIS-
NTOs. In practice, we set τCIS = 10−3. In order to account
for correlation effects associated with the (2Z) important CIS-
NTOs defined by Eq. (23), we define an atomic correlation
domain (ACD), which is a list of atoms that represent the
part of the molecular system where the important CIS-NTOs

FIG. 2. Schematic representation of the generation of the occupied correla-
tion domain (OCD). The UCIS matrix transforms from occupied canonical
molecular orbitals (CMOs) to the CIS natural transition orbital (CIS-NTOs)
basis. A subset of Z CIS-NTOs is selected using τCIS [see Eq. (23)], while
the Uloc matrix transforms the remaining CIS-NTOs to a local basis (LMOs).
The atomic correlation domain (ACD) is constructed as a list of atoms located
in the same part of space as the important CIS-NTOs. Finally, LMOs are
included in the OCD if their atomic extents overlap with any of the atoms in
the ACD, see text for details.
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FIG. 3. Schematic representation of the generation of the virtual correlation
domain (VCD). The VCIS matrix transforms from virtual canonical molec-
ular orbitals (CMOs) to the CIS natural transition orbital (CIS-NTO) basis.
A subset of Z CIS-NTOs is selected using τCIS [see Eq. (23)], while the
P matrix is used to generate projected atomic orbitals (PAOs), see Eq. (25).
The atomic correlation domain (ACD) is constructed as a list of atoms located
in the same part of space as the important CIS-NTOs. A subset of PAOs
assigned to atoms in the ACD is then orthonormalized using the Ṽ matrix
[see Eq. (29)], and redundant PAOs are discarded to arrive at a set of non-
redundant orthogonal PAOs (OPAOs). Finally, all OPAOs with a diagonal
matrix element Fµ̃ µ̃ > τF are discarded. The remaining OPAOs and the Z
important CIS-NTOs then constitute the VCD.

are located. Specifically, for each important CIS-NTO (p), we
determine an orbital extent as the smallest possible reduced
set of atomic orbitals (AOs) {µ}p for which the accumulated
Löwdin charge is above 0.95, i.e.,∑

µ∈{µ }p

Qp
µ > 0.95, (24)

where Qp
µ is the Löwdin charge of CIS-NTO p on AO µ. An

atomic site is then included in the ACD if at least one of its
AOs is contained in one of the orbital extents for the important
CIS-NTOs.

Once the important CIS-NTOs have been identified and
the ACD has been defined, we localize the remaining (O � Z)
occupied orbitals and determine the orbital extent for each of
these as described above. We then define the occupied correla-
tion domain (OCD), which contains the Z important occupied
CIS-NTOs and those localized occupied orbitals for which the
orbital extent contains at least one AO assigned to an atom in
the ACD. The OCD is thus a mixed occupied CIS-NTO/local
basis {I ′} of dimension O′ with Z ≤ O′ ≤ O. As a localiza-
tion function, we use the second power of the second moment
of the orbitals,26 which provides a good compromise between
the locality and computational cost.28 The generation of the
OCD is illustrated in Fig. 2.

A similar but slightly more involved procedure is used
to obtain a reduced virtual correlation domain (VCD). We
first define a set of projected atomic orbitals (PAOs) where all
occupied orbitals and the Z important virtual CIS-NTOs have
been projected out,

| µ̃
〉
=

∑
α

Pαµ |α
〉
, (25)

where the projection matrix P is given by

P = 1 − DS, (26)

Dµν =
∑

i

CµiCνi +
Z∑

A=1

CµACνA, (27)

Sµν = 〈µ|ν〉. (28)

We note that in Eq. (27), the i-summation runs over all
occupied orbitals (both core and valence orbitals), while the
A-summation runs only over the set of important virtual CIS-
NTOs defined by Eq. (23). The PAOs in Eq. (25) are thus a
redundant and nonorthogonal set of local orbitals that spans the
part of the virtual space, which is orthogonal to the Z important
virtual CIS-NTOs. Note that the PAOs defined by Eq. (25) are
different from conventional PAOs29 due to the second term in
Eq. (27).

We now construct a reduced set of PAOs by considering
only PAOs spatially local to the important CIS-NTOs, i.e., if
atomic orbital µ does not belong to the ACD, then PAO µ̃ is
discarded. All the remaining PAOs are then orthonormalized
and redunancies are removed, i.e., we diagonalize the PAO
overlap matrix,

ṼT S̃Ṽ = η, (29)

S̃µ̃ν̃ = 〈µ̃| ν̃〉, ηµ̃ν̃ = δµ̃ν̃ηµ̃µ̃, (30)

and generate orthogonalized PAOs (OPAOs) using the Ṽ
transformation matrix. OPAOs with small eigenvalues (η̃µ̃µ̃
< 10−3) are removed from the set, and the remaining
non-redundant OPAOs are normalized. Furthermore, from
Eq. (22a), we note that large diagonal virtual Fock matrix ele-
ments will generally lead to small doubles excitation vector
elements. We therefore propose to reduce the set of OPAOs
further by considering only the OPAOs for which the diagonal
Fock matrix elements are above a certain threshold τF , which
we set to 50 eV. To summarize, the Z important CIS-NTOs
and the reduced set of OPAOs define the VCD {A′}, which
is an orthonormal set of virtual orbitals of dimension V ′ with
Z ≤ V ′ ≤ V . The generation of the VCD is illustrated in Fig. 3.

Using the occupied {I ′} and virtual {A′} correlation
domains defined above, we may now approximate the doubles
excitation vectors in Eq. (22) in the following manner:

MCIS(D′)
ij =

∑
a

RCIS
ai RCIS

aj

+
∑
A′B′k

(
1 + δA′i,B′k

2

) 1
2

RCIS(D′)
A′iB′k

(
1 + δA′j,B′k

2

)1
2

RCIS(D′)
A′jB′k ,

(31a)

NCIS(D′)
ab =

∑
i

RCIS
ai RCIS

bi

+
∑
I′J′c

(
1 + δaI′,cJ′

2

) 1
2

RCIS(D′)
aI′cJ′

(
1 + δbI′,cJ′

2

) 1
2

RCIS(D′)
bI′cJ′ ,

(31b)

where the prime denotes the occupied and virtual correlation
domains of reduced dimensions O′ and V ′, while the summa-
tions in the canonical basis run over the full set of orbitals. We
refer to MCIS(D′) and NCIS(D′) as the CIS(D′) hole and parti-
cle density matrices. In analogy with Eq. (10), the CIS(D′)-
NTOs may then be obtained by diagonalizing MCIS(D′) and
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NCIS(D′). We note that while the primed indices are generally
reduced compared to the full dimensions, MCIS(D′) and NCIS(D′)

always have full molecular dimensions, and the diagonaliza-
tion procedure therefore leads to O occupied and V virtual
CIS(D′)-NTOs with a priori nonzero eigenvalues. This may
be seen explicitly by considering the ranks of the CIS(D′)
density matrices, which—in analogy with Eq. (13)—obey the
following equations:

rank(MCIS(D′)) ≤ min(O, V + O(V ′)2) = O, (32a)

rank(NCIS(D′)) ≤ min(V , O + (O′)2V ) = V . (32b)

It is seen that all the CIS(D′)-NTOs generally have nonzero
eigenvalues, which can be used to quantify the physical sig-
nificance of each orbital for describing the targeted transition.

The generation of CC2-NTOs and CIS(D)-NTOs is an
iterative and a non-iterative O(N5) process, respectively.
An algorithm for generating CIS(D′)-NTOs is given in the
Appendix where it is shown that the generation of CIS(D′)-
NTOs has a formalO(N3) scaling behaviour (assuming that the
reduced dimensions O′ and V ′ are independent of the system
size for a given type of electronic transition). CIS(D′)-NTOs
can thus be calculated for much larger molecular systems than
CC2-NTOs or CIS(D)-NTOs.

We emphasize that even though the generation of CIS(D′)-
NTOs described in this section and the Appendix is a bit
technical, the end result is a set of prioritized orthogonal MOs
that span the full molecular orbital space. A subset of CIS(D′)-
NTOs can thus be chosen based on their eigenvalues. Further-
more, we may transform such a subset to a pseudo-canonical
basis by diagonalizing the corresponding occupied-occupied
and virtual-virtual blocks of the Fock matrix. These pseudo-
canonical orbitals can be straightforwardly used in a standard
CC code to calculate CC excitation energies. The main com-
plexity compared to a conventional CC implementation thus
occurs during the orbital generation rather than in the actual
CC calculation.

E. Comparison of NTOs

In this section, we compare the different sets of NTOs
introduced above. We consider dodecylbenzene and 11-cis-
retinal protonated Schiff base (CRPSB), which are depicted
in Figs. 4 and 5, respectively, together with the dominant
pair of CIS-NTOs for the lowest electronic transition. All the

FIG. 4. Illustration of the lowest electronic transition in dodecylbenzene in
terms of the dominant occupied (red, bottom) and virtual (blue, top) CIS-NTOs
(aug-cc-pVDZ′ basis). The contour plot value was set to 0.02 a.u.59

FIG. 5. Illustration of the lowest electronic transition in the 11-cis-retinal
protonated Schiff base in terms of the dominant occupied (red, bottom) and
virtual (blue, top) CIS-NTOs (aug-cc-pVDZ′ basis). The contour plot value
was set to 0.02 a.u.59

calculations were performed using augmented basis sets of
double-ζ quality as described in Sec. IV. For dodecylbenzene,
it is clear that the transition is localized in a relatively small
region of the molecule, while the transition in CRPSB involves
almost the entire molecule. The dodecylbenzene and CRPSB
cases are thus typical examples of a localized transition and a
delocalized transition, respectively.

For the CC2-, CIS(D)-, or CIS(D′)-NTOs (collectively
referred to as correlated NTOs), we may list the orbitals in
order of descending NTO eigenvalues. We then select a given
number of orbitals from this list to generate an excitation
orbital space (XOS), in which the CC2 ground state ampli-
tude equation and CC2 eigenvalue equation are solved to
yield an approximate CC2 excitation energy. In Figs. 6 and 7,
we present the lowest CC2 excitation energies and associ-
ated errors for the dodecylbenzene and CRPSB molecules as
a function of the number of MOs included in the XOS for the
correlated NTOs. For comparison, we also give results for the
mixed CIS-NTO/LMO space, which was defined in Refs. 49
and 60.

For a given XOS, errors compared to the full CC2 calcu-
lation arise since (i) the ground state amplitude equations and
(ii) the CC2 eigenvalue problem in Eq. (9) are solved in the
restricted XOS. We note that the errors of type (i) affect the
errors of type (ii) indirectly, since the Jacobian matrix A in
Eq. (9) is determined from ground state amplitudes.56 All in
all, the complex interplay of these two error sources ultimately
leads to the errors observed in Figs. 6 and 7.

The CIS-NTO/LMO space behaves markedly different
for the two molecules. For dodecylbenzene, the excitation
energy error is below 0.1 eV when about 150 orbitals have
been included in the XOS [see Fig. 6 (bottom)], while almost
500 orbitals are required to achieve the same accuracy for
CRPSB [see Fig. 7 (bottom)]. This difference can be ratio-
nalized as follows. For the local transition in dodecylbenzene
(Fig. 4), the use of LMOs leads to a significant reduction of
the XOS, since a large region of the molecule is unaffected
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FIG. 6. Lowest CC2/aug-cc-pVDZ′ excitation energy (top) and error (bot-
tom) as a function of the size of the excitation orbital space (XOS) for
dodecylbenzene using different choices of orbital spaces.

by the transition. On the other hand, for the delocalized tran-
sition in CRPSB (Fig. 5), the transition induces changes in
the electronic structure throughout the molecular system, and
the use of LMOs offers very modest reductions of the XOS.
These two examples clearly show the strength and weakness
of the CIS-NTO/LMO approach introduced in Ref. 49, i.e.,
significant computational savings are possible for local tran-
sitions, while a delocalized transition essentially requires the
full molecular CC calculation to be carried out.

For the local transition in Fig. 6, the use of any of the
correlated NTOs leads to much smaller errors than the CIS-
NTO/LMO mixed space for a given number of XOS orbitals.
The correlated NTOs thus allow for a more compact represen-
tation of correlation effects than the LMOs. Even more striking
is the behavior of the correlated NTOs for the delocalized
transition in Fig. 7, where errors below 0.1 eV are observed
with only around 100 orbitals, which is in stark contrast to the
CIS-NTO/LMO curve. Thus, using correlated NTOs, it seems
possible to obtain a compact representation of the orbital space
for both localized and delocalized transitions.

The results in Figs. 6 and 7 obtained using the differ-
ent correlated NTOs are very similar, indicating that all three
sets of NTOs contain the basic information about correlation
effects. This is a very important result, since the CIS(D′)-
NTOs are much cheaper to generate than the CIS(D)- and
CC2-NTOs (Sec. II D and the Appendix). The curves for
CIS(D)- and CIS(D′)-NTOs are almost identical, and the
approximations introduced in Sec. II D thus appear to be
negligible for practical purposes. Both negative and positive
errors occur for the correlated NTOs, and it is notable that

FIG. 7. Lowest CC2/aug-cc-pVDZ′ excitation energy (top) and error (bot-
tom) as a function of the size of the excitation orbital space (XOS) for the
11-cis-retinal protonated Schiff base using different choices of orbital spaces.

the CIS(D′)- and CIS(D)-NTOs often yield smaller absolute
errors than the CC2-NTOs even though the excitation energy
is calculated at the CC2 level. This can happen due to error
cancellations between the error sources (i) and (ii) mentioned
above.

In summary, the dodecylbenzene and CRPSB results pre-
sented here indicate that the CIS(D′)-NTOs can be used to
generate a reduced orbital space that may significantly lower
the computational cost of CC2 calculations for both localized
and delocalized transitions.

III. COUPLED CLUSTER EXCITATION ENERGIES
USING CorNFLEx

In this section, we introduce a general framework for cal-
culating CC excitation energies at a reduced computational
cost using the concept of CIS(D′)-NTOs. We consider excita-
tion energies calculated using the CC2 model introduced by
Christiansen et al.,56 where the resolution-of-the-identity (RI)
approximation is used for the two-electron repulsion integrals,
as introduced by Hättig and Weigend.58 We refer to Refs. 56
and 58 for a detailed description of the CC2 model.

The main algorithm is presented in Sec. III A, while the
treatment of multiple excitation energies is detailed in Sec.
III B. In Sec. III C, we describe how the number of auxiliary
functions in the XOS may be reduced.

A. The main CorNFLEx algorithm

The results in Sec. II E indicate that the CIS(D′)-NTOs
provide a compact representation of electronic transitions at
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the CC level. After solving the CIS eigenvalue problem for
the full molecule, we thus propose the following procedure
to reduce the computational cost of CC excitation energy
calculations:

1. Perform an SVD of the CIS eigenvectors to determine
the CIS-NTOs according to Eqs. (3).

2. Calculate CIS(D′) density matrices from Eqs. (31) as
detailed in Sec. II D.

3. Diagonalize the CIS(D′) density matrices to determine
the UCIS(D′) and VCIS(D′) transformation matrices that
define the occupied and virtual CIS(D′)-NTOs,

MCIS(D′)UCIS(D′) = λCIS(D′)UCIS(D′), (33a)

NCIS(D′)VCIS(D′) = λ̃
CIS(D′)

VCIS(D′). (33b)

4. List the CIS(D′)-NTO eigenvalues in descending order
and scale them such that they add up to one (equivalent
to normalizing the CIS(D′) excitation vectors),∑

p

λ
CIS(D′)
p =

∑
p

λ̃
CIS(D′)
p = 1. (34)

5. Choose a subset of occupied and virtual CIS(D′)-NTOs
based on the τCIS(D′) threshold,

min
Zo

( Zo∑
p=1

λ
CIS(D′)
p

)
> 1 − τCIS(D′), (35a)

min
Zv

( Zv∑
p=1

λ̃
CIS(D′)
p

)
> 1 − τCIS(D′). (35b)

This subset of orbitals containing Zo occupied CIS(D′)-
NTOs and Zv virtual CIS(D′)-NTOs is denoted the
excitation orbital space (XOS).

6. For the chosen CC model (CC2 in this work), solve the
ground state amplitude equation and the Jacobian eigen-
value equation within the XOS to obtain the CC excitation
energy corresponding to the CIS excitation vector used
to generate the XOS.

We denote the approach defined by these six steps as
the Correlated Natural transition orbital Framework for Low-
scaling Excitation energy calculations (CorNFLEx). We stress
that τCIS(D′) is our main threshold which controls the accu-
racy of the CorNFLEx calculation, e.g., in the limit where
τCIS(D′) → 0 all orbitals are included and the full CC result
is reproduced. The CorNFLEx procedure should be applied
to each electronic transition of interest, and additional techni-
cal details related to the determination of multiple excitation
energies are discussed in Sec. III B.

The use of CIS(D′)-NTOs implies that only single-
replacement dominated electronic transitions that are
described at the CIS level of theory can be addressed with
CorNFLEx. However, many transitions of interest in typical
organic and biological molecules are of this type. Furthermore,
for the CC2 model, which is the target model in the present
study, single-replacement dominated transitions are correct
through second order in the fluctuation potential, while double-
replacement dominated transitions are correct only to zeroth
order.61 The CC2 model thus provides accurate results only
for transitions dominated by single-electron replacements. The

fact that our CIS(D′)-NTOs can be generated only for such
transitions is therefore not a limitation from a practical point
of view.

B. Multiple excitation energies

When several excitation energies are requested, the CorN-
FLEx algorithm defined by the six steps in Sec. III A is
applied to each CIS excitation vector of interest, starting with
the lowest CIS excitation energy. For example, if the three
lowest CIS vectors are determined {RCIS(k), k = 1, 2, 3}, we
may calculate the corresponding three CC2 vectors, {RCC2(k),
k = 1, 2, 3}, which, of course, do not necessarily correspond
to the three lowest excitation energies at the CC2 level of the-
ory. In CorNFLEx, it is thus implicitly assumed that there is a
one-to-one correspondence between each CIS vector and the
determined CC2 vector and care must be exercised if the CIS
vectors mix considerably at the CC2 level of theory. For this
reason, we consider the overlap, S(k)

CIS/CC2, between the CIS

target vector, RCIS(k), and the final CC2 singles vector, RCC2(k)
1 ,

as a measure of the reliability of the results,

S(k)
CIS/CC2 = |(R

CIS(k))TRCC2(k)
1 |2. (36)

If RCIS(k) and RCC2(k)
1 are both normalized in the singles space,

then 0 ≤ S(k)
CIS/CC2 ≤ 1. Thus, if S(k)

CIS/CC2 is much smaller than
one, we recommend to reduce τCIS(D′) (increase the XOS) and
repeat the calculation to check the validity of the calculated
CC2 excitation energy. We return to this issue in Sec. IV and
now turn our attention to some technical details regarding the
determination of several excitation energies.

First, it is necessary to ensure that the solution of each
CC2 eigenvalue equation (step 6 in Sec. III A) converges to
the CC2 vector that has the largest overlap with the CIS target
vector. A root homing procedure62 is therefore applied to track
the CIS vector of interest when the CC2 eigenvalue problem is
solved using Davidson techniques.63–65 Thus, in the Davidson
procedure, we calculate the overlap (S(k)

CIS/CC2) between the CIS
target vector and each of the optimal CC2 vectors generated in
the current iteration. The optimal CC2 vector with the largest
overlap is then used to calculate the residual vector and to
extend the Davidson subspace with a new direction if the norm
of the residual vector is above a convergence threshold.

Second, as an additional precaution, we project out the
k � 1 previously determined CC2 vectors from the CIS target
vector k, i.e., we transform RCIS(k) in the following manner:

RCIS(k) ← (1 −Q)RCIS(k), (37a)

Q =
k−1∑
j=1

k−1∑
l=1

RCC2(j)
1 [Y−1]jl(R

CC2(l)
1 )T, (37b)

Yjl = (RCC2(j)
1 )TRCC2(l)

1 . (37c)

This projection strategy is important when two or more CIS
vectors mix considerably at the CC level of theory. For such
cases, the use of Eq. (37) effectively ensures that any given
CC2 vector is only determined once.

All in all, the root homing and projection strategies
described in this section provide a way to calculate several
excitation energies within independent XOSs.
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C. Natural auxiliary functions

In Sec. III A, we have detailed a procedure to construct a
reduced space of orthogonal occupied and virtual orbitals (the
XOS). The MOs in the XOS are in principle expressed as a
linear combination of all AOs which puts severe limitations
on the performance of the method. However, as detailed in
Appendix B of Ref. 66, the number of AOs in the XOS can
be reduced by removing molecular orbital tails using a least
squares fitting procedure. Similarly, for the RI approximation,
we consider only the subset of auxiliary functions that are
assigned to the subset of atoms defined by the AOs in the XOS
(see Ref. 67 for details).

Once the XOS has been defined and the atomic and aux-
iliary functions have been reduced, a standard CC calculation
is performed in that space. Our implementation of the CC2
model for excitation energies closely follows the RI specific
algorithm described in Ref. 58 with the exception that the
required tensors of dimension NΓOV are kept in the core mem-
ory instead of a disk (where NΓ denotes the number of auxiliary
functions). It is thus very important to reduce the auxiliary
dimension as much as possible. For that purpose, we invoke
the use of natural auxiliary functions (NAFs) as introduced by
Kállay in Ref. 68.

Using the RI approximation, the two-electron integrals
involved in the CC2 algorithm can be written as follows:

(pq|rs) =
∑
ΓΥ

(pq|Γ)(Γ |Υ)−1(Υ|rs) =
∑
ΓΥ

IΓpqIΥrs , (38)

IΓpq =
∑
Υ

(Γ |Υ)−1/2(Υ|rs), (39)

where Γ and Υ denote the auxiliary basis functions. In our
implementation, we calculate NAFs by diagonalizing the
following symmetric matrix:

WΓΥ =
∑
pq

IΓpqIΥpq, (40)

where the summation runs over all possible pairs of MO indices
(ai, ia, ab, ij). In Ref. 68, NAFs were obtained in a similar way
but using IΓai or IΓαβ (depending on the targeted model) instead

of IΓpq. In a standard CC2 calculation, it might be more appro-
priate to use the IΓαβ tensor instead of IΓpq since it avoids the

contraction of the integrals with the MO coefficients. However,
in the context of CorNFLEx, the number of MOs in the XOS
is significantly smaller than the number of AOs, and using IΓpq
enables a larger reduction of the number of auxiliary functions.
In our CC2 implementation, the integrals are thus stored in the
form

I Γ̃pq =
∑
Γ

(pq|Γ)XΓΓ̃, (41)

where the coefficients XΓΓ̃—which transform a standard auxil-
iary function (Γ) to the corresponding NAF (Γ̃)—are obtained
as described in Ref. 68. The number of NAFs is significantly
reduced compared to the number of auxiliary functions by con-
sidering only those functions that correspond to an eigenvalue
of W larger than a truncation threshold, τNAF. For the calcula-
tion of CC2 excitation energies, our test calculations indicate
that a truncation threshold of τNAF = 10−2 can be used without
affecting the results (see Sec. IV A). This is particularly useful
in the context of CorNFLEx where the number of NAFs and
the memory requirements can be greatly reduced.

IV. RESULTS

In this section, we present numerical results and applica-
tions of the CorNFLEx procedure to real-life compounds and
assess the performance and accuracy of the method when tar-
geting CC2 excitation energies. As a test set, we consider the
five lowest CIS transitions and the corresponding CC2 excita-
tion energies of the following ten molecules, which are shown
in Fig. 8:

• The molecules XLI, XLIV, XLIX, LI, LV, LVI, LVIII,
and LX from the test set presented in Ref. 69.

• Dodecylbenzene optimized at the MP2/cc-pVDZ level
using the ORCA program70 (Cartesian coordinates are
available in the supplementary material).

• 11-cis-retinal protonated Schiff base (CRPSB) using
the geometry from Ref. 43.

The CorNFLEx CC2 excitation energies and timings
for those systems are compared to full CC2 calculations in
Sec. IV A. All calculations have been performed with a local
version of the LSDalton program,71,72 using the frozen core

FIG. 8. Molecules contained in the test
set used in Sec. IV A.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013722
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approximation. The correlation consistent aug-cc-pVDZ′ and
aug-cc-pVTZ′ basis sets73,74 were used with the corresponding
auxiliary basis sets aug-cc-pVDZ-RI′ and aug-cc-pVTZ-RI′

for the RI approximation.75 The prime in the basis set notation
indicates that diffuse functions have been removed from the
hydrogen atoms.

Finally, in order to demonstrate the potential of CorN-
FLEx, we also consider molecular clusters of solvated form-
amide containing up to 144 water molecules in Sec. IV B.
The structures were obtained by the modification of a sin-
gle snapshot taken from Ref. 76 and are available in the
supplementary material.

A. Performance of CorNFLEx for the test set

In this section, we consider the five lowest excited states
for the test set in Fig. 8 to compare the accuracy and compu-
tational cost of the CorNFLEx procedure described in Sec. III
with full (canonical) CC2 calculations. In total, we thus con-
sider 50 singlet electronic transitions using both augmented
double- and triple-ζ quality basis sets.

In order to evaluate the convergence of the excitation ener-
gies with the size of the XOS, we have performed calculations
using τCIS(D′) = 10−3, 10−4, and 10�5. In the supplementary
material (Tables SI-SX), we report the individual errors in the
excitation energies, ∆i = ω

CorNFLEx
i − ωref

i , while we present
the mean absolute error,

∆̄abs =
1
n

n∑
i=1

|∆i |, (42)

the maximum absolute error,

∆max = max
i
|∆i |, (43)

the mean error,

∆̄ =
1
n

n∑
i=1

∆i, (44)

and the standard deviation,

∆std =

√√
1

n − 1

n∑
i=1

(∆i − ∆̄)2, (45)

for the aug-cc-pVDZ′ and aug-cc-pVTZ′ basis sets in Tables
I and II, respectively. Here, n = 50 is the number of excitation
energies calculated from the 10 molecules in the test set.

In general, we observe that the excitation energy errors
decrease systematically with decreasing τCIS(D′) values for
both basis sets. For example, the mean absolute errors are
0.11 eV, 0.05 eV, and 0.01 eV for τCIS(D′) = 10−3, 10−4, and
10�5 when the aug-cc-pVTZ′ basis set is used. The mean abso-
lute errors are small compared to typical CC2 errors, which are
typically of the order of 0.2 eV.58,77–79

The maximum absolute errors reveal that there are some
outliers. For example, using τCIS(D′) = 10−4 and the aug-cc-
pVTZ′ basis set, the maximum absolute error is 0.40 eV. This
error is associated with the third state of the XLIV molecule
(Table SII in the supplementary material). As discussed in
Sec. III B, the CorNFLEx procedure can only be expected
to yield very accurate results when the CC2 singles vector
is dominated by a single CIS vector. This is the case if the

TABLE I. Statistical analysis of CC2 excitation energies for the test set using
the aug-cc-pVDZ′ basis set. The mean absolute error (∆̄abs), the maximum
absolute error (∆max), the mean error (∆̄), and the standard deviation (∆std)
are reported. We also consider the same measures for the subset of CC2 states
with S(k)

CIS/CC2 > 0.5 (see text for details). All measures are given in eV.

All errors τCIS(D′) = 10−3 τCIS(D′) = 10−4 τCIS(D′) = 10−5

∆̄abs 0.07 0.02 0.00
∆max 0.37 0.22 0.02
∆̄ �0.01 �0.01 0.00
∆std 0.10 0.04 0.01

Errors (S(k)
CIS/CC2 > 0.5) τCIS(D′) = 10−3 τCIS(D′) = 10−4 τCIS(D′) = 10−5

∆̄abs 0.06 0.01 0.00
∆max 0.22 0.08 0.02
∆̄ 0.00 �0.01 0.00
∆std 0.08 0.02 0.01

S(k)
CIS/CC2 measure in Eq. (36) is larger than 0.5. For the third

state of XLIV molecule in the aug-cc-pVTZ′ basis set, we
find that S(3)

CIS/CC2 = 0.42. It is therefore not surprising that
the associated error is rather large. However, by decreasing
τCIS(D′) from 10�4 to 10�5, the error for the considered state is
effectively removed. In the lower parts of Tables I and II, we
present the different error measures calculated from a subset
of the 50 excitation energies where states with S(k)

CIS/CC2 ≤ 0.5
(k = 1, 2, 3, 4, 5) have been removed. This corresponds to
removing between 2 and 4 states (out of the 50 states) and
reduces most of the maximum errors quite dramatically, e.g.,
from 0.40 eV to 0.16 eV using τCIS(D′) = 10−4 and the aug-cc-
pVTZ′ basis set.

All in all, we conclude that the CorNFLEx procedure
allows us to calculate excitation energies of CC2 quality. One
should, however, check the S(k)

CIS/CC2 diagnostics when ana-

lyzing the results. If S(k)
CIS/CC2 < 0.5 for a given state k, it is

recommended to decrease τCIS(D′) for that state to validate the
calculated excitation energy. The exact CC2 result is obtained
by reducing the τCIS(D′) threshold, and we will refer to the
τCIS(D′) values of 10�3, 10�4, and 10�5 as loose, standard, and
tight, respectively.

TABLE II. Statistical analysis of CC2 excitation energies for the test set using
the aug-cc-pVTZ′ basis set. The mean absolute error (∆̄abs), the maximum
absolute error (∆max), the mean error (∆̄), and the standard deviation (∆std)
are reported. We also consider the same measures for the subset of CC2 states
with S(k)

CIS/CC2 > 0.5 (see text for details). All measures are given in eV.

All errors τCIS(D′) = 10−3 τCIS(D′) = 10−4 τCIS(D′) = 10−5

∆̄abs 0.11 0.05 0.01
∆max 0.43 0.40 0.05
∆̄ �0.04 �0.05 �0.01
∆std 0.16 0.08 0.01

Errors (S(k)
CIS/CC2 > 0.5) τCIS(D′) = 10−3 τCIS(D′) = 10−4 τCIS(D′) = 10−5

∆̄abs 0.11 0.04 0.01
∆max 0.43 0.16 0.05
∆̄ �0.04 �0.04 �0.01
∆std 0.15 0.05 0.01

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013722
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013722
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013722
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013722
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In order to evaluate the computational cost of the CorN-
FLEx scheme, we consider the mean, maximum, and mini-
mum speed-ups compared to a state-specific full calculation
calculated as

speed-up =
Tfull

TCorNFLEx
. (46)

For each of the 10 molecules, Tfull is the time for the corre-
lated part of the CC2 calculation, i.e., the determination of
the CC2 ground state amplitudes and solution of the Jacobian
eigenvalue problems for the five excited states in the complete
canonical basis using the root homing procedure.62 TCorNFLEx

includes both the time spent in the generation of the CIS(D′)-
NTOs and the time spent in the CC2 calculation within the
restricted XOS determined by τCIS(D′).

The timing results obtained using the aug-cc-pVDZ′ and
aug-cc-pVTZ′ basis sets are given in Table III. It is seen
that computational savings are obtained with all of the tested
thresholds although the speed-ups of course decrease with
decreasing τCIS(D′). The largest speed-ups are observed for
dodecylbenzene where the XOS is very small compared to
the full orbital space, since the transitions are localized on the
benzene ring (see Fig. 4 for an illustration of the lowest transi-
tion). However, significant speed-ups are also obtained for the
delocalized transitions. The CorNFLEx procedure thus cures
the main flaw of our recently proposed LoFEx scheme where
speed-ups were only obtained for localized transitions. In sum-
mary, CorNFLEx generally yields excitation energies of CC2
quality at a reduced computational cost for both localized and
delocalized transitions.

Finally, we note that the CorNFLEx results in Tables I
and II used the NAF approximation described in Sec. III C
with τNAF = 10−2. In Tables SXI and SXII in the supple-
mentary material, we present errors introduced by the NAF
approximation in CorNFLEx calculations for CRPSB and
dodecylbenzene. We note that the NAF errors are generally
at least an order of magnitude smaller than the correspond-
ing CorNFLEx errors (Tables SIX and SX in the supplemen-
tary material). We thus conclude that the main threshold
τCIS(D′) controls the accuracy of a CorNFLEx calculation,
while the NAF error is negligible. Finally, from Tables SXIII
and SXIV in the supplementary material, we see that the use
of NAFs reduces the number of auxiliary functions in the
CorNFLEx CC2 calculations considerably compared to a full
calculation.

TABLE III. Relative speed-ups of CorNFLEx calculations compared to
canonical CC2 calculations for the test set using the aug-cc-pVDZ′ and
aug-cc-pVTZ′ basis sets.

Basis Measure Loose Standard Tight

aug-cc-pVDZ′ Mean 5.9 3.3 1.8
Max 19.0 11.3 5.0
Min 1.9 1.5 1.1

aug-cc-pVTZ′ Mean 7.5 4.4 2.5
Max 26.4 13.8 7.6
Min 2.9 2.1 1.4

B. Solvated formamide

In order to investigate the potential of CorNFLEx for
large molecular systems, we now consider the lowest exci-
tation energy in a series of solvated formamide clusters with
an increasing number of water molecules. All the calculations
have been performed using the aug-cc-pVDZ′ basis set, and
the CorNFLEx strategy has been applied with the loose, stan-
dard, and tight thresholds for clusters including up to 144
water molecules (4836 basis functions). Reference calcula-
tions using a conventional CC2 implementation have also been
performed for clusters containing up to 63 water molecules
(2163 basis functions).

In Fig. 9, we have plotted the convergence of the excita-
tion energy as a function of the number of water molecules
included in the cluster using the loose, standard, and tight
CorNFLEx thresholds (explicit values are given in the sup-
plementary material). The excitation energies obtained with
conventional CIS and CC2 algorithms are also reported.
Figure 9 shows that the solvation effects result in a blueshift
of '0.8 eV at the CIS level, while the blueshift is lowered to
around 0.5 eV at the CC2 level. Most of the solvation effects
are already included with only 15 water molecules, and adding
more waters results in small oscillations of around 0.03 eV. We
note that the observed solvatochromatic shift is consistent with
Ref. 76 but that a conformational sampling is required to obtain
reliable results.

The excitation energies calculated using CorNFLEx are
effectively of CC2 quality, even with the loose threshold. A
closer look at the (absolute) errors for the different structures
shows that they are at most 0.06 eV, 0.04 eV, and 0.02 eV
for the loose, standard, and tight thresholds (see Table SXIII
in the supplementary material). This is in accordance with
the errors observed for the test set in Sec. IV A. The main
correlation effect (i.e., a lowering of the blueshift compared
to the CIS result) is thus well described with all of the tested
thresholds.

In order to analyze the performance of the CorNFLEx
strategy compared to a conventional algorithm, we report tim-
ings for the CIS calculation and for the correlated parts of the
CC2 calculations in Fig. 10. For CorNFLEx, the time plotted
includes the generation of the CIS(D′)-NTOs and the solution
of the CC2 equations in the restricted XOS, while only the time

FIG. 9. Lowest excitation energy of a series of solvated formamide with an
increasing number of water molecules using the aug-cc-pVDZ′ basis set.
CC2-CorNFLEx results are reported using the loose, standard, and tight
thresholds. For comparison, the CIS and full CC2 results are also reported.
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FIG. 10. Time spent in the calculation of the lowest excitation energy of
a series of formamide-water clusters of increasing size using the aug-cc-
pVDZ′ basis set. CIS: time spent in the HF ground state and CIS excita-
tion energy calculations (prior to the CorNFLEx or full CC2 calculation).
Loose/standard/tight: time spent in the CorNFLEx algorithm (generation of
the CIS(D′)-NTOs and solution of the CC2 equations in the XOS). Full: solu-
tion of the CC2 equations in the full canonical basis. All calculations were
performed on a single Lenovo nx360 M5 node with 28 cores @ 2.4 GHz and
256 GB memory.

for the solution of the CC2 equations is considered for the full
calculation. Figure 10 shows that the CorNFLEx calculations
(with all three thresholds) are systematically faster than the
conventional CC2 calculations, and the speed-up grows rapidly
as a function of the molecular cluster size. For example, for
the cluster with 63 water molecules, the CorNFLEx calculation
with the standard threshold is 111 times faster than the con-
ventional CC2 calculation. The largest presented CorNFLEx
calculations correspond to a molecular cluster containing 4836
basis functions, which is out of reach using our conventional
CC2 implementation. It is also notable that the CorNFLEx cal-
culation constitutes only a small fraction of the CIS time for
the larger clusters.

V. CONCLUSION

In this work, we have introduced a new method for the cal-
culation of CC excitation energies on large molecules denoted
CorNFLEx. It relies on the generalization of the concept of
NTOs to include correlation effects. The resulting CIS(D′)-
NTOs are obtained based on an approximation to the CIS(D)
model, and their generation formally scales cubically with the
system size. Once the CIS(D′)-NTOs have been generated,
a reduced orbital space can be determined by discarding a
subset of occupied and virtual CIS(D′)-NTOs with low eigen-
values, and a conventional CC excitation energy calculation
can then be performed in that reduced space. We have defined
the reduced orbital space in terms of the loose, standard,
and tight thresholds, which ultimately define the precision
of a CorNFLEx calculation compared to a conventional CC2
calculation.

The CorNFLEx algorithm has been tested for the calcula-
tion of CC2 excitation energies on a set of 50 singlet electronic
transitions resulting in mean absolute errors of 0.11 eV, 0.05
eV, and 0.01 eV (triple-ζ basis) with the loose, standard, and
tight thresholds, respectively. Even though some of the consid-
ered molecules were of limited size and many of the transitions
were nonlocal, significant computational savings were sys-
tematically obtained. We have also applied CorNFLEx to a

series of solvated formamide clusters of increasing size (up to
4836 basis functions). The results indicate that our new scheme
allows CC2 excitation energies to be determined at the cost of a
CIS calculation and thus further extends the application range
of the CC2 model.

The use of CIS(D′)-NTOs implies that only electronic
transitions that are described at the CIS level of theory can be
addressed (single-replacement dominated transitions). How-
ever, these include most transitions of interest in typical
organic and biological molecules. We also note that the pre-
sented developments are not specific to the CC2 model as such,
and more accurate CC models might also benefit from using the
CorNFLEx scheme. Finally, we note that while our previously
proposed LoFEx scheme only allows for computational reduc-
tions when the transitions of interest are local, the CorNFLEx
procedure yields computational savings for both localized and
delocalized transitions.

SUPPLEMENTARY MATERIAL

See supplementary material for the excitation energies
of the test set and formamide clusters, the NAF results, and
the Cartesian coordinates of dodecylbenzene and solvated
formamide clusters.
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APPENDIX: ALGORITHM FOR GENERATING CIS(D′)
DENSITY MATRICES

In this appendix, we present an algorithm for calculat-
ing the CIS(D′) density matrices in Eqs. (31). First, we note
from Eq. (22) that the doubles excitation vectors occurring in
Eq. (31) are given by

RCIS(D′)
A′iB′j =

1
(1 + δA′i,B′j)

(A′i |̄B′j)CIS

ε i − FA′A′ + ε j − FB′B′ + ωCIS
, (A1a)

RCIS(D′)
aI′bJ′ =

1
(1 + δaI′,bJ′)

(aI ′ |̄bJ ′)CIS

FI′I′ − εa + FJ′J′ − εb + ωCIS
, (A1b)

where the two-electron integrals can be written as

(A′i |̄B′j)CIS = (Ā′i|B′j) + (A′ī|B′j) + (A′i|B̄′j) + (A′i|B′j̄),

(A2a)

(aI ′ |̄bJ ′)CIS = (āI ′ |bJ ′) + (aĪ ′ |bJ ′) + (aI ′ |b̄J ′) + (aI ′ |bJ̄ ′).

(A2b)

The lowercase indices refer to MOs in the full canonical basis,
the primed capital indices denote the reduced CIS-NTO/local
basis (OCD and VCD), and the barred indices are transformed
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with the Λ̄
CIS

matrices in Eqs. (20), e.g.,

(Ā′i|B′j) =
∑
αβγδ

Λ̄
CIS
αA′CβiCγB′Cδj(αβ |γδ). (A3)

As mentioned in Sec. III C, we employ the RI approximation
to reduce the cost of the generation of the four-center integrals.
For example, the integral in Eq. (A3) may be written as

(Ā′i|B′j) =
∑
Γ

IΓ
Ā′i

IΓB′j. (A4)

We note that NAFs are not used in the generation of the
CIS(D′)-NTOs, and the set of auxiliary basis functions is
therefore not reduced.

Using Eqs. (A2) and (A4), the doubles excitation vectors
in Eq. (A1) may be written as

RCIS(D′)
A′iB′j =

1
(1 + δA′i,B′j)

∑
Γ PA′B′

ij

[
IΓ
Ā′i

IΓB′j + IΓ
A′ ī

IΓB′j
]

ε i − FA′A′ + ε j − FB′B′ + ωCIS
, (A5a)

RCIS(D′)
aI′bJ′ =

1
(1 + δaI′,bJ′)

∑
Γ Pab

I′J′
[
IΓāI′I

Γ
bJ′ + IΓ

aĪ′
IΓbJ′

]
FI′I′ − εa + FJ′J′ − εb + ωCIS

, (A5b)

where the action of the permutation operator is defined in
Eq. (16). From Eq. (A5), we see that the following integrals
are required to evaluate the doubles contributions to the hole
density matrix in Eq. (31a):

• IΓA′i, IΓ
Ā′i

, and IΓ
A′ ī

,

while the particle density matrix in Eq. (31b) can be determined
from the following integrals:

• IΓaI′ , IΓāI′ , and IΓ
aĪ′

.

We recall that the primed indices denote reduced sets of occu-
pied and virtual orbitals of dimensions O′ and V ′, respec-
tively. The size-intensivity of excitation energies implies that
O′ and V ′ are independent of the system size for a given
type of electronic transition. This will be assumed in the
following.

In our current implementation, we first calculate the six
integrals listed above and store them in memory. The construc-
tion of the integrals is detailed in Table IV. The first step is the
construction of the (Γ |αβ) integrals, which formally scales as
O(NΓN2

α) where Nα and NΓ denote the number of atomic and
auxiliary basis functions, respectively. However, this scaling
is effectively only quadratic with the system size if efficient
integral screening techniques are employed. In step 2, one of
the AO indices is transformed to a reduced MO index. These
steps scale as O(NΓN2

α) with pre-factors O′ or V ′. In steps 3
and 4, the second AO index is transformed to an occupied
and a virtual index, respectively, leading to formal scalings
of O(NΓNαO) and O(NΓNαV ). Finally, in steps 5 and 6, the
auxiliary index is transformed with the (Γ |Υ)−1/2 matrix to
provide the desired three-center integrals listed above. These
last steps scale as O(N2

Γ
O) or O(N2

Γ
V ) depending on the type

of integrals. In summary, since the reduced dimensions O′ or
V ′ are independent of the system size for a given type of elec-
tronic transition, all steps involved in the generation of the
integrals in Table IV scale cubically with the system size.

Once the integrals have been generated from Table IV,
the doubles excitation vectors are calculated according to

TABLE IV. Generation of two-electron RI integrals required for construct-
ing CIS(D′) hole and particle density matrices. Batching of integrals and
reordering of tensors have been omitted for clarity.

Step Operation Prefactor Scaling

1 Calculate integrals (Υ |αβ) O(NΓN2
α)

2

(Υ |A′β)←
∑
α CαA′ (Υ |αβ) V ′

O(NΓN2
α)(Υ |Ā′β)←

∑
α Λ̄

CIS
αA′ (Υ |αβ) V ′

(Υ |αI′)←
∑
β CβI′ (Υ |αβ) O′

(Υ |αĪ′)←
∑
β Λ̄

CIS
βI′ (Υ |αβ) O′

3
(Υ |A′i)←

∑
β Cβi(Υ |A′β)

V ′ O(NΓNαO)(Υ |A′ī)←
∑
β Λ̄

CIS
βi (Υ |A′β)

(Υ |Ā′i)←
∑
β Cβi(Υ |Ā′β)

4
(Υ |aI′)←

∑
α Cαa(Υ |αI′)

O′ O(NΓNαV )(Υ |āI′)←
∑
α Λ̄

CIS
αa (Υ |αI′)

(Υ |aĪ′)←
∑
α Cαa(Υ |αĪ′)

5

IΓA′i ←
∑
Υ (Γ |Υ)−1/2(Υ |A′i)

V ′ O(N2
Γ

O)IΓ
A′ ī
←

∑
Υ (Γ |Υ)−1/2(Υ |A′ī)

IΓ
Ā′i
←

∑
Υ (Γ |Υ)−1/2(Υ |Ā′i)

6

IΓaI′ ←
∑
Υ (Γ |Υ)−1/2(Υ |aI′)

O′ O(N2
Γ

V )IΓāI′ ←
∑
Υ (Γ |Υ)−1/2(Υ |āI′)

IΓ
aĪ′
←

∑
Υ (Γ |Υ)−1/2(Υ |aĪ′)

Eq. (A5). It is seen that the determinations of RCIS(D′)
A′iB′j and

RCIS(D′)
aI′bJ′ scale as O2NΓ and V2NΓ with pre-factors (V ′)2 and

(O′)2, respectively. Finally, the density matrices are evaluated
according to Eq. (31) where the evaluation of MCIS(D′) and
NCIS(D′) scales as O3 and V3 with pre-factors (V ′)2 and (O′)2,
respectively. In order to reduce the memory requirements, one
may calculate the doubles excitation vectors in batches and
contract them on the fly. Specifically, we batch over the k-index
in Eq. (31a) and the c-index in Eq. (31b).

All in all, we conclude that the generation of the hole and
particle density matrices scales cubically with the size of the
molecular system for a given type of electronic transition. The
pre-factor depends on the dimensions of the OCD and VCD
(O′ and V ′), which depend on the type of electronic transition
under consideration.
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