Skip to main content
. 2017 Jun 7;7:2959. doi: 10.1038/s41598-017-03011-5

Table 1.

Performance of hyperSMURF with different selection strategies for negatives.

Neg. selection imb.ratio n.folds AUPRC AUROC
Mendelian data
±100 Kb 1:302 116 0.7071 0.9805
±500 Kb 1:1432 116 0.6279 0.9802
±1000 Kb 1:2765 111 0.6161 0.9786
TAD 1:1406 125 0.6123 0.9803
GWAS data
±100 Kb 1:80 1402 0.6488 0.9840
±500 Kb 1:277 723 0.4796 0.9841
±1000 Kb 1:409 413 0.4213 0.9851
TAD 1:269 1196 0.4792 0.9838

The first column represents the size of the “genomic window” used to select negatives around each positive or the “TAD-based” negative selection strategy; the second column reports the imbalance between positive and negative examples; the third the number of folds of the “topologically-aware” cross-validation, while the last two columns show the estimated AUPRC and AUROC.