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CT-Based Local Distribution Metric 
Improves Characterization of COPD
Benjamin A. Hoff1, Esther Pompe2, Stefanie Galbán1, Dirkje S. Postma3, Jan-Willem 
J. Lammers2, Nick H. T. ten Hacken3, Leo Koenderman2, Timothy D. Johnson4, Stijn E. 
Verleden5, Pim A. de Jong6, Firdaus A. A. Mohamed Hoesein6, Maarten van den Berge3, Brian 
D. Ross1 & Craig J. Galbán1

Parametric response mapping (PRM) of paired CT lung images has been shown to improve the 
phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous 
air trapping component, referred to as functional small airways disease (fSAD). Although promising, 
large variability in the standard method for analyzing PRMfSAD has been observed. We postulate that 
representing the 3D PRMfSAD data as a single scalar quantity (relative volume of PRMfSAD) oversimplifies 
the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying 
subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, 
we generate 3D maps of local topological features from 3D PRMfSAD classification maps. We found 
that the surface area of fSAD (SfSAD) was the most robust and significant independent indicator of 
clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that 
structural differences are associated with unique SfSAD patterns, and demonstrated longitudinal feature 
alterations occurred with worsening pulmonary function independent of an increase in disease extent. 
These findings suggest that our technique captures additional COPD characteristics, which may provide 
important opportunities for improved diagnosis of COPD patients.

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and healthcare cost 
worldwide with an estimated global prevalence of approximately 12% of adults aged ≥30 years in 2010 and rising 
with the aging population1, 2. Recent reports found that COPD etiology varies among populations, including 
risk factors such as tobacco smoke, cooking fuels, environmental pollution and family genetics2. This has led 
to the current understanding that COPD covers a wide spectrum of pathophysiologies3, 4. Clinical presentation 
and monitoring of COPD have been described primarily through spirometry as pulmonary function measure-
ments. Although highly reproducible, these measures, such as forced expiratory volume in one second (FEV1), 
assess the lungs as a whole and are unable to differentiate two key components of COPD: emphysema and small 
airways disease. In addition, spirometry does not provide spatial context for regional heterogeneity of these com-
ponents. X-ray computed tomography (CT) has addressed some of these limitations by allowing clinicians to 
verify emphysema in patients exhibiting loss of pulmonary function. Even with these techniques, COPD is often 
undiagnosed in early stages, impeding proper treatment with the disease progressing to permanent lung damage 
(i.e. emphysema). Although COPD phenotyping has been prolifically reported in the literature5–7, lack of accurate 
diagnostic tools that identify these unique COPD subtypes have hampered the development of effective thera-
pies. Nevertheless, significant advances in technologies are providing physicians opportunities to shift towards 
“precision medicine”.

Various strategies have been undertaken to identify metrics that more accurately assess COPD subtypes, such 
as genetic, molecular and cellular markers as well as medical imaging devices and methodologies. Although 
advances in biological phenotyping have shown promise in identifying disease heterogeneity in patients4, 8, 
these approaches are generally either global measures or highly invasive. In contrast, medical imaging provides 
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clinicians with a relatively non-invasive and reproducible approach that provides functional information that is 
spatially defined. Although various instruments (e.g. PET, SPECT and MRI) are heavily investigated as surrogates 
of pulmonary function and clinical outcome9, CT, with its high resolution and lung contrast, continues to be 
the most widely used medical imaging device in the clinic. As such, advances in this technology would have an 
immediate impact on patient care.

CT is inherently a quantitative map, where x-ray attenuation is linearly proportional to lung tissue density10, 11. 
Extensive research in CT image post-processing has generated an array of potentially diagnostic and prognostic 
measures. Filter-based techniques and airway wall measurements have been extensively explored12–14. Not only 
have these methodologies advanced our understanding of COPD, they are also becoming more prevalent in clinic 
decision-making. In fact, the quantification of discrete phenotypes of emphysema using CT has had an impact 
on patient care. At present three emphysema patterns (i.e., centrilobular, panlobular, and paraseptal emphysema) 
have been identified, each of which are strongly associated with a range of respiratory physiologies and func-
tional measures15, 16. The understanding that unique spatial patterns of emphysema serve as indicators of COPD 
subtypes has spawned progress in lobe segmentation algorithms17, 18 as well as the need to evaluate CT-based 
features19. Although our understanding related to the clinical implications of the spatial patterns of emphysema is 
emerging20, little is understood about the non-emphysematous component of COPD, commonly associated with 
small airways disease.

Small airway disease, a major component of COPD, is generally characterized by the presence of inflamma-
tion, fibrosis, and mucous plugging, all of which contribute to airflow obstruction. At less than 2 mm in diameter, 
these airways are essentially invisible to clinical imaging scanners, hindering accurate COPD phenotyping by CT 
especially when emphysema is radiographically identified. The Parametric Response Mapping (PRM) technique21 
addressed this limitation. Through the spatial alignment of paired inspiration and expiration CT scans, PRM of 
CT data delineates and quantifies non-emphysematous air trapping, an indirect measure of small airways disease 
(SAD), even in the presence of emphysema21, 22. The extent of fSAD, as measured by PRM as the relative volume 
(%PRM) in the lungs, has been reported to be an independent indicator of pulmonary function decline as well as 
other clinically relevant measures, re-affirming previous histological studies22–24. In addition, McDonough and 
colleagues have shown pathologically in human core lung specimens imaged by micro-CT that small airways dis-
ease may in fact serve as a precursor to emphysema25. This highlights the potential importance of the independent 
and non-invasive evaluation of fSAD through PRM26. Although the spatial information of fSAD is retained as a 
3D PRM classification binary map, studies have primarily focused on the use of a whole-lung measure of fSAD, 
presented as a relative lung volume, which serves as the extent of this COPD component within the patient. As 
observed with emphysema, the spatial distribution of fSAD may aid treating physicians by providing them unique 
diagnostics that serve as a surrogate of clinically meaningful outcomes.

The present study demonstrates an extension of the PRM approach that extracts local topological features 
from PRM-derived disease classifications maps (Fig. 1). Using CT scans from COPD patients assessed as GOLD 
stage 1–4 accrued as part of a well-controlled multi-center clinical trial27, we found that disease pattern (i.e. top-
ological features) is correlated with COPD severity independent of disease extent (i.e. relative volume). Through 
micro-CT analysis of explanted lung cores from a lung transplant recipient with bronchiolitis obliterans syn-
drome, an obstructive lung disease‚ and longitudinal CT data acquired from a COPD subject, we provide anecdo-
tal evidence that PRM-derived topological features are associated with structural differences and may also reveal 
trends in progressing obstructive disease. This work demonstrates for the first time that spatial features extracted 
from PRMfSAD maps, specifically the surface area (SfSAD), provide independent predictors of clinical outcome 
measures, as well as provide illustrative examples that these features are associated with unique airway and paren-
chyma structures and disease progression.

Results
Topological Features.  The topological features of the PRM classification binary maps of fSAD and emphy-
sema, defined throughout as PRMfSAD and PRMEmph, were determined using the Minkowski Functionals: sur-
face area (Si), mean curvature length (Bi), the Euler-Poincare characteristic (χi), and a condensed descriptor of 
clustering (αi), where i is an index for fSAD or Emph determined by PRM. These measures were determined 
locally, referred to as “Local”, over sub-volumes of the lung using a moving window approach resulting in a 3D 
parameter map for each metric, or globally, referred to as “Global”, over the entire lung volume resulting in a 
single parameter scalar quantity for each metric. For statistical analysis Local values represent the full lung mean 
value. Four Local and four Global topological metrics were generated from each binary PRM classification map. 
We first sought to determine the robustness of each parameter by performing a linear regression of the mean 
of Local parameters to their Global parameters when applied to PRMfSAD, all voxels classified as fSAD by PRM, 
and PRMEmph, all voxels classified as emphysema by PRM, binary maps. We observed for the surface area (S) of 
PRMfSAD and PRMEmph near perfect agreement between Local and Global calculations (Supplemental Fig. 3). 
Linear regression of Local and Global Si generated R2 of >0.999. Increasing complexity of the topology metric 
was found to demonstrate less correlation between Local and Global calculations with α demonstrating clear dis-
agreement between measures (R2 < 0.3; Supplemental Fig. 3). Based on these results, the focus of this study will 
be on the Local surface area (Local Si) as it was found to be robust while retaining spatial information throughout 
the lungs. This topology metric provides an indication of the number of adjacent like-neighbors within a local 
volume. A local volume with sparsely distributed like-neighbors (dispersed) would result in an elevated S, while 
co-localization of like-neighbors (cluster) would result in diminished S for the same relative volume. It must also 
be considered that, at high and low extremes of relative volume, the possible range in S would intrinsically be 
reduced by limitations in the number of possible interactions between like-neighbors, which is why topological 
features presented in this study are always considered in the context of their respective relative volumes. More 
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detailed descriptions of all Minkowski Functionals are provided within the supplement. For completeness, anal-
yses of Local and Global Bi, χi and αi, as well as Global Si, are presented in the supplement.

Patterns of Disease.  Recent studies have demonstrated a strong correlation of total lung relative volume 
of PRMfSAD to relevant clinical measures21, 22. Nevertheless, the relative volume of PRMfSAD, extent of fSAD, has 
shown wide variability in recent studies resulting in attenuation of its sensitivity to clinical measures. As COPD 
is a progressive disease, the severity of SAD will vary over time which may explain the large variability observed 
in the relative volume of PRMfSAD from cross-sectional studies. The strength of our approach is the ability to 
delineate disease pattern that resides within our PRM classification maps, allowing for further phenotyping of 
individual patients. We postulate that the topological pattern (i.e. feature) of PRMfSAD may be a correlative con-
tributing factor to the observed variability in the relative volume of PRMfSAD as it relates to clinically meaningful 
metrics and thus may in fact be diagnostically important. Here we provide two GOLD 2 cases to illustrate unique 
spatial patterns, i.e. Local Si, with similar relative volumes in PRMfSAD (Fig. 2): Subject I (Male, age 73) with dis-
persed PRMfSAD and Subject II (Male, age 59) with clustered PRMfSAD distributions. Pulmonary function meas-
urements were near identical with FEV1% predicted and FEV1/FVC values of 51.4% and 0.487 for Subject I and 
50.1% and 0.497 for Subject II. Both subjects had substantial PRMfSAD (I: 38% and II: 34%; Fig. 2) with negligible 

Figure 1.  A schematic of the workflow is displayed for generating PRM topological maps. (A) CT images 
are acquired at expiration and inspiration. (B) PRM analysis is performed by first segmenting the lungs from 
the thoracic cavity. Then the CT images are filtered and spatially aligned to the expiration geometric frame. 
Individual voxels are then classified as normal (PRMNorm, green), functional small airways disease (PRMfSAD, 
yellow), or emphysema (PRMEmph, red). (C) Topological feature extraction is performed on each PRM 
classification binary map to determine topology metrics. Presented are surface area (S) maps for PRMfSAD (left) 
and PRMEmph (right).
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PRMEmph (I: 1.4% and II: 1.6%). Local SfSAD maps for these two subjects (Fig. 2) revealed differing patterns within 
the lungs with mean local values of 0.593 and 0.467 for Subject I and II, respectively. Additional metrics also 
showed differences in the PRMfSAD topology between Subject I and Subject II (Supplemental Fig. 4). Through our 
approach we were able to extract pattern information that was represented as an easily interpreted scalar quan-
tity with dispersed disease demonstrating higher values in Local SfSAD. We next evaluated our parameters using 

Figure 2.  Two cases are presented with varying topological PRM features. Both cases have near-identical 
spirometry readouts and PRMfSAD relative volumes yet display differing fSAD topological features: dispersed 
disease (I, left column) and clustered disease (II, right column). A representative slice is shown for each case for 
the respective (top to bottom) inspiratory CT, expiratory CT, PRMfSAD map, and Local SfSAD map (multiplied 
by Local VfSAD in order to emphasize regions of substantial disease). PRMfSAD relative volumes and Local SfSAD 
values are displayed for comparison.
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well-controlled CT and clinical data to determine Local Si as independent indicators of clinically meaningful 
metrics even when considering PRM relative volumes as measures of extent of fSAD and emphysema.

GOLD Comparison.  We evaluated the relationship between Local Si and relative volume of PRMi (Fig. 3) as 
well as GOLD status over the entire subject population (Fig. 3 and Supplemental Figs 5 and 6). Negligible differ-
ences were observed in age, BMI and pack-years between GOLD groups (Supplemental Table 1). The relationship 
between the relative volumes of PRMEmph and PRMfSAD with increasing GOLD status was consistent with previous 
reports using COPDGene and SPIROMICS trial data21, 22 (Fig. 3A, Supplemental Table 1). For a relative volume 
of PRMEmph < 10%, a near-linear trend was observed with Local SEmph (Fig. 3B). Subjects with severe to very 
severe COPD showed a diminished relationship between Local SEmph and relative volume of PRMEmph, suggesting 
increased variability in the emphysema pattern. In contrast to Local SEmph, Local SfSAD demonstrated extensive 
variability for a given relative volume of PRMfSAD, even within GOLD status (Fig. 3C). This suggests wide var-
iability in fSAD pattern within this study cohort. Similar results were observed for Global SfSAD measurements 
(Supplemental Fig. 5). Each of the Local topological metrics exhibited unique trends with increasing GOLD status 
(Supplemental Fig. 6 and Supplemental Table 2). Nevertheless, the observed variation within GOLD status for our 
feature patterns may be indicative of COPD subtypes independent of the extent of disease (i.e. relative volume of 
PRMfSAD).

Clinical Outcomes.  Based on our regression analysis, Local SfSAD was found to be a significant model param-
eter of all clinical outcomes, independently of the relative volume of PRMfSAD (Table 1). Similarly, Local SEmph was 
a significant parameter for all clinical metrics except for the St. George’s Respiratory Questionnaire (SGRQ) total 
score and 6-minute walking distance, where the relative volume of PRMEmph was the dominant parameter in the 
regression models (Table 1). As expected, Global Si generated near identical results to the Local Si (Supplemental 
Table 3). The remaining Local metrics were found to be weak parameters with little to no contribution to many of 
the regression models (Supplemental Table 3). This trend substantially changed when the entire PRMfSAD classifi-
cation map, i.e. Global assessment, was used to calculate a single scalar quantity of χ and α but only when applied 
to the PRMfSAD classification map (Supplemental Table 3). This discrepancy between Local and Global calcula-
tions of the more complex topology was most likely attributed to the scope of data being analyzed, with the small 
window size not able to capture the same features as the global analysis. Nevertheless, we have demonstrated for 
the first time that the pattern of PRMfSAD, using our technique for extraction of spatial topology, is strongly corre-
lated with clinical readouts even when considering the overall extent of the disease (i.e. relative volume of PRMi).

Case Study 1: MicroCT Analysis of Tissue Explant in BOS.  Here we provide a case that demonstrates 
our topological metrics reflect the microenvironment of lung tissue with bronchiolitis obliterans syndrome (BOS) 
as determined by microCT. BOS, a chronic lung allograft dysfunction in lung transplant recipients, is character-
ized by a spirometric decline, obliterative bronchiolitis (OB) on histopathologic examination and air trapping 
and mosaic attenuation on CT. The following case is from a 64-year-old male diagnosed with BOS 6 months 
subsequent to initial transplantation for COPD. Subject underwent re-transplantation 2.5 years later for end-stage 
BOS. Prior to the later resection of the lung, PRM analysis showed elevated PRMfSAD (56% of the lung volume) in 
the BOS lung. Although a high volume fraction of fSAD was observed in the analyzed explant section, topolog-
ical analysis of PRMfSAD revealed varying feature types in different regions that could not easily be identified on 
the PRM map or CT images alone (Fig. 4). Cored samples (A and B in Fig. 4) were analyzed from two regions of 
the lung section and found to have varying values in Local SfSAD and χfSAD (Supplemental Table 4). Observable 
differences in microenvironment were ascertained by microCT of two core samples from the same explanted lung 

Figure 3.  Observable trends between PRM and topological PRM features. Scatter plots are presented for (A) 
%PRMEmph vs. %PRMfSAD, (B) %PRMEmph vs. Local SEmph and (C) %PRMfSAD vs. Local SfSAD. Markers are color-
coded for GOLD 1 through 4 (see legend). Comparison between %PRMEmph and %PRMfSAD showed trends 
with increasing disease severity that has been observed in previously published work21, 22. Local Si values and 
respective %PRMi values reveals a strong correlation at low volume fractions showing greater spread with 
increasing volume fractions.
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section. Core A was found to have more severe disease with two obliterative bronchioles, whereas no obliteration 
was observed in Core B. These results confirm that the Local SfSAD and χfSAD may be sensitive to the degree of 
obliteration, and possibly severity of small airway disease.

Case Study 2: Monitoring 5 Year Progression of COPD.  Next we provide a longitudinal case demon-
strating the potential of our PRM topological feature technique to capture disease progression as assessed by 
spirometry with negligible changes in the relative volume of PRMfSAD. The subject was a 66-year-old male accrued 
as part of the COPDGene 5-year trial. Upon enrollment, this subject was diagnosed with GOLD 2 COPD (FEV1% 
predicted of 56.1%). At the 5-year follow-up, the subject demonstrated spirometric decline (FEV1% predicted of 
40.6%) subsequently diagnosed with GOLD 3 COPD. No substantial increase in the relative volume of fSAD as 
measured by PRM was observed, yet the Local SfSAD was found to decrease over the 5-year period (0.62 to 0.41) 
suggesting clustering of disease (Fig. 5). Here we demonstrate that our PRM topological metric is sensitive to 
progressive disease that manifests as a local coalescing of obstruction brought about by small airway disease.

Discussion
We have introduced a unique CT-based methodology for classifying COPD phenotypes by their topological 
properties. Utilizing PRM-derived component classification maps, disease patterns were extracted and quantified 
to generate imaging surrogates of relevant clinical outcome measures. Although recent studies have evaluated 
PRM as a quantitative index of disease type (i.e. fSAD and emphysema) and extent (i.e. relative lung volume), 
the spatial context inherent to this technique is currently underutilized. Evaluation of the spatial distribution and 
pattern of PRM-derived COPD components may lead to better-informed clinical care through better insight into 
the heterogeneous clinical subtypes of COPD, with broad application to other obstructive pulmonary diseases 
(e.g. BOS)25, 28, 29.

Different methods have been proposed for quantifying spatial patterns and texture, including fractal analysis30,  
variograms31, lacunarity analysis19 and Minkowski functionals (MF)32–34, of which many have been used to inves-
tigate lung diseases. In this study, we have elected to use the Minkowski functionals as open source algorithms 
are readily available, easily implemented and may be applied to an entire object or computed locally to retain 
spatial information31, 33. As a sensitive measure of dispersed versus clustered disease, we executed these func-
tions (i.e. S, B, χ and α) on PRM classification maps, revealing unique spatial patterns of emphysematous and 
non-emphysematous air trapping, an indirect measure of small airways disease, as indicators of meaningful clin-
ical measures. By incorporating phenotypic information obtained by PRM with topological analyses, we are able 
to more fully evaluate information within paired CT data.

The focus in this study was placed on Si due to its high correlation with clinical measures and its stability 
between Local and Global evaluations. This measure is indicative of texture, with higher values indicating a more 
dispersed disease and lower values indicating a patchy pattern. Simulated values of S for random distributions 
(Supplemental Fig. 2) reveal symmetry around a volume fraction of 0.5, intuitive as a positive contrast vs. nega-
tive contrast image. This could obfuscate results that span the entire range of volume fractions, which is clearly 
possible for local analysis on inspection of subject II in Fig. 2. As performed in our two cases, the Local volume 
density (Vi) of the PRM classification map was always considered when interpreting values of Local Si (Figs 4, 5, 
Supplemental Table 4). Although an in-depth evaluation of this effect is warranted, our results clearly show the 
potential of this technique at extracting meaningful information from the PRM classification maps (Table 1 and 
Supplemental Table 3).

% PRMi Local Si

fSAD

FEV1 (% predicted) — <0.0001d

FEV1/FVC 0.0114 0.0131d

SGRQ total score — 0.0006

6-min walk distance 0.0091 <0.0001

MMRC dyspnea scale scorea — <0.0001

BODE scorea — <0.0001

Emph

FEV1 (% predicted) — <0.0001b

FEV1/FVC — <0.0001

SGRQ total score <0.0001 —d

6-min walk distance <0.0001 —c,d

MMRC dyspnea scale scorea — <0.0001

BODE scorea — <0.0001

Table 1.  Multivariate regression results. Note: Presented are the P values generated from stepwise regression 
models including the topological index S, respective PRM relative volume, age, gender, and body mass index 
(BMI). FEV1 = forced expiratory volume in one second (% predicted); FVC = forced vital capacity; SGRQ = St. 
George’s Respiratory Questionnaire; MMRC = Modified Medical Research Council; BODE = body mass 
index, degree of airflow obstruction, dyspnea, and exercise capacity. adenotes use of a logistic instead of linear 
regression, bdenotes age was significant, cdenotes gender was significant, and ddenotes BMI was significant. 
Parameters not included in the model due to lack of significant effects are marked with a dash.
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Extensive work has been performed for stratification of disease phenotypes through analysis of emphysema 
patterns. Many of these studies have concluded that dispersed emphysema patterns are indicative of an accel-
erated decline in lung function4, 34–36. Because identification of the non-emphysematous component has only 
recently been attainable, little is known about the correlation of its topological features to clinical outcomes. Wide 
variations in PRM-derived fSAD distributions are known to exist from qualitative observations, and our results 
show that fSAD topology, through Local SfSAD, is significantly correlated with all clinical measures assessed in 
this study and may provide complementary insight into the disease than what is attainable through disease extent 
alone (i.e. % PRMfSAD). In fact, based on our findings we postulate that the metric Local Si is capturing varying 
states of SAD during progression (see Fig. 3). At the early onset of SAD, local parenchyma in the vicinity of 
affected terminal airways will demonstrate a drop in tissue density (HU on CT scans) from air trapping. This will 
result in a dispersed pattern in PRMfSAD near the diseased region. As the local disease progresses it may spread 
throughout the lungs resulting in spirometric decline. Yet within the vicinity of the original onset, the disease may 
also progress from a dispersed pattern to one that is more concentrated (i.e. clustered, see Fig. 5). It is this critical 
point that may indicate the onset of emphysema, which would be considered a local end-stage disease.

An important feature of our approach is the retention of spatial information from the original PRM classi-
fication maps, which is only attainable through the Local topological analysis. This method is not trivial as it is 
computationally heavy, requiring long processing times. To reduce our computation times while maintaining 
sufficient spatial information, local determination of topologic indices was performed using a gridded analysis 
where our moving window overlaps the subsequent window. Our motivation is to provide each window with 
sufficient local image information to adequately describe the local metric behavior. However, results are affected 
by the choice of such parameters as grid spacing and kernel size and shape (Supplemental Methods). Clearly 
the sensitivity of each topological parameter varies to the process of Local analysis. Regression analyses of Local 
and Global S to clinical outcomes provided similar findings irrespective of PRM phenotype, i.e. emphysema and 
fSAD (Table 1 and Supplemental Table 3). In stark contrast, measures χ and α demonstrated mixed results for 
Local and Global analyses of PRMfSAD classification map, where weak and strong correlations were observed for 
Local and Global analysis, respectively. Only through local analysis of the topological features were we able to 
select ex vivo core samples based on topological features. From a single case, microCT analysis of these cores 
allowed us to confirm the extent of disease (i.e. relative volume of PRMfSAD) in these regions as well as relate fSAD 
patterns (i.e. topology of PRMfSAD) with physical tissue properties (Fig. 4 and Supplemental Table 4). In addition, 
we demonstrate the application of our local topological feature metric to monitor local disease coalescence in 
progressive COPD (Fig. 5). The results presented here provide rationale for further validation studies necessary 
to statistically correlate in vivo PRM topological features to physical phenomena and longitudinal assessment of 
disease progression.

The following study has limitations that require additional attention. The current study evaluated a meth-
odology that extracted feature patterns from PRM classification maps generated from high-resolution CT data. 
Our study was fortunate to have access to CT data from a well-controlled multi-center observation COPD trial. 
Nevertheless, different reconstruction kernels and scanner systems are known to result in variations in HU values. 
These variations affect the PRM classification maps and resulting topology calculations37. Consistent use of recon-
struction kernels and scanner is therefore preferred for any prospective analysis of this type. In addition, image 
resolution is critical for topological comparisons, as lower resolution will intrinsically appear more clustered, 
biasing the feature patterns in the CT image. Minimal variation in image resolution was found between data sets 
for this study. Nevertheless, care was taken in accounting for image noise, as well as registration errors, while 

Figure 4.  Confirmation of topological features altered by tissue microenvironment. An explanted lung from 
a single subject diagnosed with bronchiolitis obliterans syndrome was analyzed by microCT. Presented are the 
explanted lung section, expiratory CT scan, PRMfSAD, Local VfSAD and Local SfSAD. All CT derived images were 
spatially aligned to the lung section, allowing identification of core regions (A,B) on PRM and topological maps.
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assessing our metrics37. Image noise on typical CT images acquired for this study had a magnitude on the order 
of 100HU, which could easily translate to the misclassification of voxels and may affect our topological measures 
by altering the PRM classification maps. Greater noise in the image would be expected to artificially increase 
dispersion within the PRM classification maps. In the presented analysis, a median filter was applied to each CT 
image to mitigate this noise effect. The existence of image registration error and its effect on PRM has been the 
topic of much debate since its original conception, and parameters sensitive to the geometrical distribution of 
registered data may be particularly biased. A full evaluation of the sensitivity and specificity of our PRM topolog-
ical approach was not possible. The relatively small number of subjects used in our study limited the power of our 
statistical analyses. However, it is important to note that these errors would be expected to obfuscate trends rather 
than create them as seen in our population analysis. Also, many of these concerns are not unique to PRM or our 
proposed approach, but are a concern to all quantitative CT-based techniques.

Figure 5.  A subject with COPD staged at baseline with GOLD-2 (first column) with 5-year follow-up (second 
column) revealing a progression to GOLD-3. No substantial change in %PRMfSAD was detected (first row), 
however a striking drop in Local SfSAD was found (second row). This demonstrates a potential pattern of 
progression, with diffuse disease coalescing into more focal distribution.



www.nature.com/scientificreports/

9Scientific Reports | 7: 2999  | DOI:10.1038/s41598-017-02871-1

We also wish to address the use of individual cases as illustrative examples in order to demonstrate the poten-
tial of our new PRM approach. The topological feature indices presented in this study are highly abstract and not 
easily interpreted. Inclusion of the BOS case (Fig. 4) provides physiological meaning to SfSAD as related to struc-
tural differences of the airway and lung parenchyma confirmed by microCT of explanted human lung specimen. 
Although mechanistically different from COPD, SAD in BOS also is radiographically identified on expiration 
CT scans as regions of air trapping (low-attenuation regions). In addition, BOS is a SAD-dependent disease 
allowing us to evaluate our metrics without confounding characteristics, such as emphysema in COPD28, 38.  
Observations from the BOS case study and the 5-yr interval case study (Fig. 5) provide key illustrative exam-
ples for physical interpretation of our results. In addition, the finding in our BOS case study, an example of a 
SAD-dominant disease, provides an important link to our 5-yr interval COPD case finding, in that SfSAD is sen-
sitive to locally-varying structural changes that may indicate a worsening disease state. To confirm these results 
more extensive studies are required to pathologically validate SfSAD as a measure of SAD and as an indicator of 
SAD progression. Nevertheless, the findings reported in this study support the assertion that our new PRM ana-
lytical approach is able to capture subtle changes in disease progression while maintaining spatial context, which 
is unattainable using the original PRM concept.

Given the high prevalence and clinical cost of COPD, there is a critical need for further advancements to ena-
ble more accurate COPD phenotyping. Beyond COPD, small airway obstruction is a primary manifestation in 
various other lung diseases, including asthma39, obliterative bronchiolitis40, and cystic fibrosis41. Venegas et al.42 
have recently explored the importance of disease heterogeneity and local interaction between neighboring struc-
tures using model simulations of asthma. They have shown that small heterogeneity in ventilation potential pro-
duces an imbalance in the system leading to large patched effects, termed self-organized clustering. The ability of 
the presented method to retain spatial context of local topology could focus clinicians on specific disease-driving 
lung regions that may be suspect for the onset of emphysema. Our technique may also aid in the targeting of high 
risk lung regions for more-invasive interventions such as airway brushing, lavage, and biopsy, thus reducing sam-
pling error. Additional work is still required to identify sources of error, test the sensitivity of the technique using 
large multi-center clinical data, evaluate longitudinal changes in disease pattern and validation using techniques 
such micro-CT. We introduced in this study an approach for extracting topological readouts from PRM classi-
fication maps for characterization of COPD phenotypes. Our method, which has revealed that fSAD pattern, as 
measured by SfSAD, is a key characteristic for assessing disease severity and is a promising next step in providing 
physicians with actionable data.

Methods
Patients.  All methods were carried out in accordance with each participating center’s guidelines and regu-
lations. Informed consent was obtained from all participating subjects. Imaging and clinical data were acquired 
as part of a multicenter (University Medical Center Utrecht (UMCU) and University Medical Center Groningen 
(UMCG), registered at clinicaltrial.gov, number NCT00807469 and NCT00850863) cross-sectional study of acute 
and chronic inflammatory responses by smoking27. The University Medical Center Utrecht institutional review 
board and University Medical Center Groningen institutional review board approved all experimental proto-
cols. COPD patients (GOLD stages 1 to 4) were extensively characterized based on pulmonary function tests 
(post-bronchodilator FEV1 and FEV1/FVC), diffusion capacity tests, body mass index (BMI), six minute walking 
distance (6MWD), exacerbation frequency, the number of prednisolone or antibiotic courses in the past year, the 
Modified Medical Research Council (MMRC) breathlessness scale, BODE index (BMI, degree of airflow obstruc-
tion, dyspnea, and exercise capacity), the St. George’s Respiratory Questionnaire (SGRQ) and low-dose chest 
CT scanning. Of the 95 COPD participants in the study, 3 did not undergo CT acquisitions and 4 could not be 
evaluated due to image quality issues, resulting in 88 subjects for evaluation (65 male, 23 female) (Supplemental 
Table 1).

CT Image Acquisition and Processing.  Whole lung volumetric multi-detector CT acquisition was per-
formed at full inspiration and normal expiration using a standard protocol27. Briefly, low-dose CT scans at full 
inspiration (30 mAs at: 90 kVp for patients weighing less than 50 kg, 120 kVp for patients weighing between 50 
and 80 kg, and 140 kVp for those weighing more than 80 kg without dose modulation) and expiration (20 mAs at: 
90 kVp for patients weighing less than 80 kg and 120 kVp for body mass greater than 80 kg) were acquired. Data 
was processed using a filtered back projection reconstruction with B30f kernel. High-resolution CT data were 
presented in Hounsfield Units (HU) with approximately isotropic voxel spacing of 0.7 mm. Stability of CT meas-
urements for each scanner was monitored monthly using a phantom.

Lung parenchyma and airways were segmented from the thoracic cavity to restrict image registration and 
analysis to lung parenchyma. The inspiratory CT image was spatially aligned to the expiratory CT image. 
Segmentation and registration of paired CT data were performed using Lung Density Analysis software currently 
FDA-approved as a medical imaging device (Imbio, LLC, Minneapolis, MN).

Parametric Response Maps.  Prior to image analysis, both inspiratory and expiratory images were filtered 
using a 2D median filter on each axial slice with a moving window of 32 voxels in order to mitigate the effect of 
noise on resulting spatial maps. PRM analysis of inspiratory/expiratory lung CT images was performed as previ-
ously described21. Briefly, registered image voxels (3D discrete image unit consisting of inspiratory and expiratory 
attenuation values (i.e. HU)) within the segmented lung volume were classified into one of three classifications by 
imposing two thresholds: (i) −950 HU on inspiratory CT and (ii) −856 HU on expiratory CT. The classifications 
have been previously reported to identify healthy lung parenchyma (PRMNormal, green; >−950 HU on inspiration 
and >−856 HU on expiration), functional small airways disease (PRMfSAD, yellow; >−950 HU on inspiration 
and ≤−856 HU on expiration), and emphysema (PRMEmph, red; ≤−950 HU on inspiration and ≤−856 HU on 
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expiration). Whole-lung measures from PRM analysis are reported as the relative lung volume for each classifica-
tion (%PRMi, where i is an index for fSAD or Emph determined by PRM). In order to minimize the contribution 
of blood vessels and airways in the analysis, all voxels with HU values >−500 HU in either scan were omitted.

Topological Analysis.  Topological properties of each PRM classification map were explored as independ-
ent indicators of clinical outcome (Fig. 1). These topological properties were defined in this study through the 
Minkowski measures (local estimates of the Minkowski functionals) associated with 3D distributions: Volume 
(V, in mm3), Surface Area (S, in mm2), Mean Breadth (B, in mm), and the Euler-Poincaré statistic (χ)33. 
Additional processing with use of the χ statistic produced a condensed descriptor of clustering, α (Supplemental 
Methods). A detailed description of these parameters is provided in the supplement (Supplemental Methods 
and Supplemental Fig. 1). Maps of Minkowski measures (i.e. V, S, B, χ and α) were computed using a moving 
window of size 213 evaluated on a grid of every 5th voxel. Local values from each parameter were normalized to 
produce parametric densities, with V, S, and B normalized by the masked local window volume and χ and α were 
normalized by the masked window voxel count. Minkowski measures were quantified per subject as the mean 
local normalized value over the entire lung volume for group comparisons and regression. For display purposes 
(Figs 1 and 2 and Supplemental Fig. 4), we multiplied Minkowski measures (S, B, χ and α) by the local density, 
V, to highlight regions of substantial disease. Final displayed representations of spatially resolved indices have 
been linearly interpolated back to original dimensions. In addition, global values for V, S, B, χ and α were calcu-
lated for each PRM classification over the entire lung volume (Supplemental Methods). The expected behavior 
of each metric was evaluated using simulations of random distributions at each relative volume (Supplemental 
Methods and Supplemental Fig. 2). Parameter V is analogous to relative volumes of PRM classification. As such, 
this parameter was not included in the study analyses. All image processing were performed using in-house algo-
rithms developed in a technical computing language (MATLAB, The MathWorks Inc., Natick, MA).

Statistical Analysis.  Differences in metrics between GOLD were assessed by ANOVA using a Bonferroni 
post-hoc test to account for multiple comparisons. Topology (i.e. Si, Bi, χi and αi) and extent (%PRMi) of disease 
were evaluated as independent indicators of various clinical outcomes by multivariate linear or logistic regression 
analysis with stepwise entry. Regression analysis included age, gender, and body mass index (BMI) to account 
for known clinical correlations. All statistical computations were performed using a statistical software package 
(SPSS Software Products). Results were considered statistically significant at the two-sided 5% comparison-wise 
significance level (P < 0.05).

Case Study: Bronchiolitis Obliterans Syndrome (BOS).  The local hospital’s ethical committee 
approved the use of this data (S57752). The case used for this analysis was a double lung transplant recipient 
diagnosed with BOS as part of a single site retrospective clinical study and has been used in a prior study29. The 
subject received azithromycin treatment for BOS but was found to be non-responsive and received a subsequent 
whole lung transplant surgery allowing for ex vivo analysis of the resected lung tissue.

Whole-lung serial paired CT scans were acquired prior to final transplantation. CT scans were obtained at 
full inspiration (TLC) and relaxed expiration (functional residual capacity) on Siemens Somatom scanner and 
reconstructed using a b60 or b70 reconstruction kernel. Slices were reconstructed to a thickness of 1.25 mm 
and acquired volumetrically over the thoracic cavity. Following transplantation, the lung explant was cannu-
lated, inflated near TLC (30 cm of water pressure) and frozen solid in the fumes of liquid nitrogen at −10 cm 
water pressure and kept at −80 °C. Subsequently, the lungs were cut in frozen condition in 2 cm slices and cores 
of 1.4 cm diameter were extracted using a cork bore. Frozen cores were subsequently scanned in frozen state 
using a Skyscan 1172 microCT scanner at a resolution of 10 µm (40 kV, 226 mA) (Skyscan 1172, Brüker microCT, 
Kontich, Belgium). Reconstruction of scans was done using Nrecon software. Measurements of tissue fraction, 
surface density, number of obliterations, core volume, and the number of terminal bronchioles were extracted 
from each frozen core micro-CT in order to correlate with in vivo results. To evaluate lung regions with differ-
ent topographical features, pre-transplant paired CT scans were spatially aligned to photographic images of the 
uncored and cored explant sections. Detailed methodology of the topological PRM analysis of individual cores is 
provided in the Supplemental Methods.

Case Study: COPD Subject with 5-yr Follow-Up.  The subject used for this case study was accrued 
as part of the NIH-funded COPDGene trial. The University of Michigan Institutional Review Board approved 
the COPDGene research protocol, where all participants provided written informed consent. As part of the 
COPDGene accrual, individuals had no history of any active lung disease other than COPD as defined by the 
Global Initiative for Chronic Obstructive Lung Disease criteria. Spirometry was performed using the EasyOneTM 
spirometry system (ndd Medical Technologies Inc., Zurich, Switzerland) before and after the administration of a 
short-acting bronchodilator (albuterol). All spirometry tests underwent quality control using both an automated 
system and manual review. Whole-lung volumetric multidetector CT acquisition was performed at full inspira-
tion and normal expiration using standardized previously published protocol43.
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