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Summary

An important goal of censored quantile regression is to provide reliable predictions of survival 

quantiles, which are often reported in practice to offer robust and comprehensive biomedical 

summaries. However, formal methods for evaluating and comparing working quantile regression 

models in terms of their performance in predicting survival quantiles have been lacking, especially 

when the working models are subject to model mis-specification. In this paper, we proposes a 

sensible and rigorous framework to fill in this gap. We introduce and justify a predictive 

performance measure defined based on the check loss function. We derive estimators of the 

proposed predictive performance measure and study their distributional properties and the 

corresponding inference procedures. More importantly, we develop model comparison procedures 

that enable thorough evaluations of model predictive performance among nested or non-nested 

models. Our proposals properly accommodate random censoring to the survival outcome and the 

realistic complication of model mis-specification, and thus are generally applicable. Extensive 

simulations and a real data example demonstrate satisfactory performances of the proposed 

methods in real life settings.
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1. INTRODUCTION

Quantile regression (Koenker and Bassett, 1978) has emerged as a useful approach to 

analyzing survival data. It permits comprehensive explorations of covariate effects across 

different segments of an event time distribution. Moreover, it serves as a major tool for 

predicting survival quantiles. Quantiles of a survival time have been frequently reported in 

biomedical studies; they have many appealing features including straightforward 

interpretations and invariance to monotone transformations. Moreover, while the mean of a 

survival time is often not identifiable when censoring presents, the quantiles of a survival 

time can still be estimated at a range of quantile levels. Accurate predictions of survival 
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quantiles can provide valuable biomedical insights, and constitute a fundamental goal of 

applying quantile regression to survival data.

Most of research efforts on quantile regression with survival data have been oriented to 

developing estimation and inference procedures for models assumed to perfectly conform to 

the underlying data mechanism (Ying et al. 1995; Portnoy 2003; Zhou 2006; Peng and 

Huang 2008; Wang and Wang 2009; Huang 2010; among others). However, very limited 

attention was paid to the evaluation of quantile regression models as well as the comparison 

among a set of candidate models.

Existing methods for assessing quantile regression models are generally focused on models’ 

goodness-of-fit or lack-of-fit. For example, Koenker and Machado (1999) proposed a 

goodness-of-fit criterion based on the check loss function ρτ (u) = u{τ − I(u ≤ 0)}, which is 

analogous to the R2 statistic in classical least squares regression. He and Zhu (2003) 

proposed an omnibus lack-of-fit test for linear or nonlinear quantile regression models. 

Wang (2008) studied a nonparametric test for checking the lack-of-fit of censored quantile 

regression. All these methods assess models based on their fit to existing data.

The perspective we take in this paper is to evaluate or compare quantile regression models 

based on their capacity in predicting quantiles of future outcomes. Further, we do not 

assume that we know the form of the true model that explains the underlying relationship 

between covariates and response. This means, we view any adopted quantile regression 

model as a working model. Similar model evaluation frameworks have been studied in other 

settings, where the quantities to predict do not relate to quantiles. For example, Tian et al. 

(2007) used absolute prediction error to assess the predictive performance of working linear 

transformation models for an uncensored continuous response. With survival data, Uno et al. 

(2007) developed a framework for evaluating a model’s predictive performance for t-year 

survival status. Tian et al. (2014) considered evaluating the prediction performance for the 

restricted mean event time (RMET), where the RMET can be estimated either semi-

parametrically or non-parametrically. Such works shed useful insight for our proposals in 

this paper, which target the prediction of quantiles.

To assess the prediction of quantiles, an intuitive idea is to evaluate the squared or absolute 

difference between true and predicted conditional quantiles. However true conditional 

quantiles are not directly observable. This adds subtlety to the assessment of the predictive 

performance of quantile regression models. Moreover, to evaluate quantile prediction with 

survival data, censoring is an important feature that needs to be appropriately handled, like 

in the model estimation setting. Noh et al. (2013) made a precursor effort for the uncensored 

setting by studying the properties of Koenker and Machado (1999)’s model adequacy 

measures in the presence of model mis-specification. Their work provided an approach to 

comparing two nested linear quantile models regardless of whether the linear specification 

of the conditional quantile functions is correct or not. It is tempting to develop a formal 

framework for assessing quantile prediction that is suitable for censored responses and 

allows for more general types of quantile predictions and model specification.
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In this paper, we fill in this gap by developing model evaluation and comparison procedures 

regarding the predictive performances of censored quantile regression models. We only 

consider models with a finite number of covariates, which can be models obtained after an 

appropriate variable selection procedure is applied. The thrust of this work is to adapt and 

generalize the available model evaluation/validation framework to censored quantile 

regression, which is a major tool for predicting survival quantiles in practice. To this end, the 

foremost step is to construct and justify a sensible predictive performance measure. Given 

the flexibility of quantile regression in modeling a spectrum of quantiles simultaneously, we 

will also investigate the proposed predictive performance measure as a function of quantile 

index. Our methods provide valid statistical evidences to compare the predictive capacity of 

working censored quantile regression models through an easily implementable procedure.

In Section 2, we outline the proposed framework for evaluating a quantile regression model 

regarding its performance in predicting quantiles. In particular, we introduce predictive 

performance measures and illustrate their interpretations. In Section 3, we propose the 

estimation and inference procedures for our predictive performance measures, which 

appropriately account for censoring without assuming a correct model specification. In 

Section 4, we focus on model comparisons based on the predictive performance measures 

presented in Section 2. Our proposals are not limited to comparing nested models and can 

also handle comparisons among non-nested models. Numerical studies are presented in 

Sections 5–6.

2. THE PROPOSED FRAMEWORK

2.1 Expected check loss for quantifying the prediction loss

To illustrate our methods, we first consider assessing quantile prediction for uncensored 

data. Let T be a continuous outcome, and Z̄ ≡ (1, Z1, …, Zp) be a 1 × (p + 1) covariate 

vector that includes all covariates collected from a subject, where p is a finite integer. To 

develop a predictor for QT (τ|Z̄) = inf{t : Pr(T ≤ t|Z̄) ≥ τ}, τ ∈ (0, 1), suppose that one 

applies a working model, such as a quantile regression model, to a dataset m that includes 

m i.i.d. representative observations of (T, Z̄) from the study population of interest. Let Z 
denote the vector of covariates in the working model, which can be a subset of Z̄, or Z̄ itself. 

After one fits a working model to m, the estimated model parameters can be used to 

construct a quantile predictor, denoted by ξ̂τ(Z). It maps a covariate vector Z to a predicted 

τth quantile. Note that ξ̂τ(Z) is fixed given m, Z and the working model.

To ascertain the performance of ξ̂τ(Z), we consider the check loss function ρτ{T0 − ξτ̂(Z0)}. 

It is important to note that here T0 and Z0 denote T and Z of a new subject from the same 

study population and thus are independent of data m where ξτ̂(·) is derived. This represents 

a crucial distinction between using the check function as a loss function for evaluating 

model predictive performance versus using the check function as a model goodness-of-fit 

criterion.

The expected check loss, Eρτ{T0 − ξ̂τ(Z0)| m}, can be justified as a sensible measure for 

assessing the discrepancy between predicted quantiles and true quantiles. To see this, let 
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 denote the true conditional quantile of T0 of the new subject. Following the 

arguments in Koenker (2005) (Section 2.9) and Angrist et al. (2006) and temporarily 

suppressing ξ̂τ(Z0) to ξτ̂, we can show that

(1)

where F(·|Z̄0) is the conditional distribution function of T0 given Z̄0. Let 

, which is always non-negative. Let f(·|Z0̄) be the 

conditional density function of T0 given Z̄0. When f(·|Z̄0) is bounded, 

. Let EZ̄0 denote expectation taken over Z̄0, 

we see that

and approximates , which may be viewed as a weighted 

squared difference between the predicted quantile ξ̂τ and the true quantile  with weight 

. Note that the true quantile  and so  are generally unknown in 

practice but are fixed. Hence assessing E{ρτ (T0 − ξ̂τ)| m} allows us to evaluate how well 

ξ̂τ predicts  relatively to predictors from other models.

The ultimate goal here is to assess the capacity of a working model in predicting the true 

quantiles. To this end, we propose to take a further step by considering limm→∞ Eρτ{T0 − 

ξ̂τ(Z0)| m}. For a working model to serve as a reliable prediction tool, it is desirable that the 

estimated parameters in the model converge in probability to deterministic values when m 
increases, even under potential model mis-specification. As a result, the predictor ξτ̂(·) will 

also converge in probability to a deterministic function ξ̃(·) uniformly in Z0, and thus 

limm→∞ Eρτ{T0 − ξ̂τ(Z0)| m} = Eρτ{T0 − ξ̃τ(Z0)}. This quantity essentially captures the 

predictive capacity of a working model at the τth quantile.

2.2 Quantile prediction loss with censored outcomes

We now consider right-censored survival data. Let T represent the log survival time and C be 

the log censoring time. In the presence of censoring, the identifiability of Eρτ{T0 − ξτ (Z0)} 

is often of concern. This is particularly true when the upper bound of the censoring support 

is less than that of T’s support in the observed data. It is natural to consider a modified check 

loss measure for censored data as E [ρτ{T0u − ξτ(Z0)}], where T0u = T0 Λ u and u is a 

prespecified deterministic constant that is less than the upper bound of C’s support. For 

example, in many clinical studies, u can be chosen to be slightly smaller than the planned 

follow-up time in the study protocol. Similar truncation techniques have been adopted in 

many other survival settings, for example, studying restricted mean (Zucker, 1998; Chen and 
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Tsiatis, 2001; Goldberg and Kosorok, 2012) and evaluating predictive performance (Tian et 

al., 2014; Lawless and Yuan, 2010). When τ = 0.5, L(τ, β) = 0.5|T0u − ξτ(Z0)| and is quite 

similar to the absolute prediction loss in Tian et al. (2014) for the RMET.

Write Y = T Λ C and δ = I(T ≤ C). Suppose that ξ̂τ (·) is an estimated quantile predictor for 

QT(τ|Z̄), derived under a working model using dataset . In this work, we 

consider linear quantile regression models as the working models to obtain ξ̂τ(·). Standard 

survival models, including the Cox proportional hazards model, can also serve as reasonable 

working models. For example, under a Cox proportional hazards model, ξτ̂(Z) can be 

defined as log [inf {t : exp{−Ĥ0(t) exp(Zb̂)} ≤ 1 − τ}], where Ĥ0(t) and b̂ are the estimated 

baseline cumulative hazard function and the Cox regression coefficient respectively. 

Methods we propose below can be easily adapted to situations with such choices of ξ̂τ(·).

A common linear quantile regression model takes the form,

(2)

where Z is a subvector of Z̄ or Z̄ itself, including 1 as the first component, and 0 < τL ≤ τU < 

1. Using the dataset m well representing the study population of interest, one may 

implement an existing quantile regression procedure to obtain an estimator of β0(τ), denoted 

by β̂(τ). For a new subject from the same population with Z̄ = Z0̄, based on model (2), a 

prediction of the τth quantile of the potential log survival time T0 is given by ξ̂τ(Z0) = 

Z0β̂(τ). In this work, we shall focus on the log survival times, but the methods can also 

handle the original survival times with minor modifications.

Under model (2), the quantile prediction loss becomes L(τ, β̂), where

(3)

is a continuous function of β(τ) at a fixed τ. When sample size increases, a desirable β̂(τ) is 

expected to converge in probability to a deterministic function of τ, denoted by β̃(τ). 

Consequently, L(τ, β̂) will also converge in probability to its limiting value L(τ) ≡ L(τ, β̃), 

which may be more precisely expressed as L(τ, β̃) = E [ρτ{T0u − Z0β̃(τ)}]. In addition, we 

hope that the the selected β̂(τ) can lead to an L(τ, β̃) with meaningful interpretations. That 

is, the resulting L(τ, β̃) can capture the capacity of the working model in predicting 

conditional quantiles. As such, L(τ, β̃) provides a sensible approach to evaluating and 

comparing models. Based on the arguments in Section 2.1 on 

, one should interpret L(τ, β̃) in a relative scale, for example, 

through comparisons between different working models.

In this work we particularly investigate the case with β̂(τ) chosen as Zhou (2006)’s estimator 

of β0(τ) for a working model of form (2), which minimizes
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(4)

where , and Ĝ(t|Z) is a 

consistent estimator for Pr(C > t|Z). The validity of (4) requires C⊥T given Z, where ⊥ 
stands for statistical independence. In addition, it only relies on the conditional quantile 

modeling at the single quantile level τ, not all quantile levels in [τL, τU]. When it is 

reasonable to assume the independence between C and Z, Ĝ(·|Z) can reduce to Ĝ(·), the 

Kaplan-Meier estimator of the unconditional survival function of C. When C and Z are 

dependent, one may obtain Ĝ(·|Z) after imposing a proper regression model for C given Z, 

such as the Cox proportional hazards model. It is worth noting that the validity of the 

proposed estimation procedure requires a correct specification of the assumed regression 

model for C. Adopting an inadequate regression model for C may lead to biased Ĝ(·|Z) and 

consequently biased estimation of L(τ, β̃). For presentation simplicity, we assume that C⊥
(T, Z) in the sequel.

As we discuss in Supplemental Material A.1, this β̂(τ) can be shown to converge in 

probability to a deterministic value β̃(τ) even under model mis-specification, where β̃(τ) 

coincides with the minimizer of E{ρτ(T − Zb)} regarding b. Thus, Zβ̃ (τ) can be viewed as 

the theoretically best predictor under the working model (2). In the rest of the paper, we 

focus on the utility of the L(τ, β̃) discussed above as a predictive performance measure.

2.3 Summary measure of prediction performance

Let L(τ) be the shorthand notation for L(τ, β̃), which captures the prediction loss locally at 

the τth quantile. If we have multiple working models, a comparison of the resulting L(τ)’s 

can reveal the relative prediction loss of these models at the τth quantile. One caveat with 

L(τ) is that its magnitude generally depends on τ, making it difficult to compare L(τ)’s over 

different τ’s. To address this limitation, we propose coefficient of determinant measure, 

R1(τ), for censored data. The measure is analogous to the R2 coefficient for least squares 

regression, and has been studied for uncensored data (Koenker and Machado, 1999; Noh et 

al., 2013). With censored data, we propose to use

(5)

where ζτ denotes the true unconditional τth quantile of T0, and L0(τ) ≡ Eρτ(T0u − ζτ). It is 

worth noting that this measure is different from existing goodness-of-fit measures, because 

T0 and Z0 denote data from a new subject. Unlike L(τ), the scale of R1(τ) ≡ R1(τ, β̃) does 

not vary across τ and R1(τ) always lies between 0 and 1. An illustrative example of L(τ) and 

R1(τ) is provided in Figure 1 of Section 5. Note that R1(τ) quantifies the extent to which 

model (2) improves quantile prediction at the τth quantile, when compared to a degenerated 

model with only the intercept term. Therefore, R1(τ) can serve as a sensible measure of the 
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performance in predicting the τ-th quantile. We also propose a summary measure as 

, which represents the overall prediction performances of a 

model across τ ∈ [τL, τU].

3. ESTIMATION AND INFERENCE

3.1 The proposed estimators of L(τ, β̃) and R1(τ, β̃)

In this section, we study the estimation of L(τ, β̃) and R1(τ, β̃), which are justified as 

appropriate predictive performance measures in Section 2. We first consider a plug-in type 

estimator for L(τ) ≡ L(τ, β̃). Suppose that the observed data consist of n i.i.d. observations 

, which contain the data m used to derive β̂. The plug-in estimator is

(6)

where β̃(τ) is the estimator in Zhou (2006) using all observed data. The remarks about the 

censoring mechanism and Ĝ(·) in Section 2.2 also apply to the Ĝ(·) here. In the following, 

we adopt the Kaplan-Meier estimator Ĝ(·) under the C⊥(T, Z) assumption for the purpose of 

illustration. The plug-in estimator for R1(τ) is , where ζ̂τ 
represents Zhou (2006)’s estimator in an intercept-only model.

Assume that (T0, Z̄
0) in the definition of L(τ, β̃) comes from the same population. In 

Supplementary Materials A.1, we use empirical process techniques to show that L ̂
n(τ, β̂) and 

 are uniformly consistent to L(τ) and R1(τ) respectively. The simpler notation L(τ) 

and R1(τ) are adopted for L(τ, β̃) and R1(τ, β̃) unless confusions occur. The results are 

formally stated in Theorem 1, where ‖x‖ denotes the Euclidean norm of a vector x.

Theorem 1—Under regularity conditions C1–C4 in Supplementary Materials A, we have 

, where β̃(τ) is the solution to E[Z′{Pr(T ≤ Zb|Z) − τ}] = 0. 

Furthermore,

(7)

To estimate L(τ, β̃), the plug-in estimator L̂
n(τ, β̂) uses the entire observed dataset twice; the 

first use is to use it as m for estimating β̃(τ) via (4) and the second use is for approximating 

the check loss function in (6). The downward bias caused by using the same data twice can 

be shown to be of order Op(n−1), which is not of concern with a reasonably large n such as n 
= 400. With a small n, a bias correction procedure can be implemented. More details and 

justifications for the bias correction is provided at the end of Section 4.1.
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Alternatively, we consider a cross validation (CV) type estimator, where different subsets of 

the data are utilized for estimating β̃(τ) and L(τ, β̃). Specifically, one may split the observed 

data randomly into K disjoint subsets, with approximately equal sample sizes close to n/K. 

Here, K is a small fixed integer that does not grow with n. In practice, we suggest using K = 

10 or K = 5. Let Vi ∈ {1, 2, …, K} denote the subset membership of the ith observation. For 

each subset k, let β̂(−k)(τ) represent the estimator of β0(τ) based on all observations except 

those in the kth subset. We define

This loss function averages across the check loss among subjects in the kth subset, where the 

predicted quantile is obtained via β̂(−k). Finally, the proposed the CV-type estimator of L(τ, 

β̃) can be calculated as , and a corresponding estimator 

for R1(τ) is . Similar to the plug-in estimators, L̂
CV(τ, 

β̂) and  provides uniformly consistent estimations for L(τ) and R1(τ). The proof is 

provided in Supplementary Material A.3.

3.2 Distributional properties of the proposed estimators

It is also important to examine the distributional properties of the estimators, so as to enable 

statistical inferences on the predictive capacity measures. We derived the following theorem:

Theorem 2—Under conditions C1–C4 in Supplementary Materials A, we have

(8)

where  stands for a function of τ converging to 0 in probability uniformly in τ ∈ [τL, 

τU]. Furthermore,  converges weakly to a zero-mean Gaussian 
process.

The detailed proof of Theorem 2 and the form of the influence function πi(τ, β̃) are deferred 

to Supplementary Materials A.2. We further establish in Supplementary Materials A.3 that 

the distribution of  is asymptotically equivalent to that of 

. As a result,  and  are 

also asymptotically equivalent and converge weakly to a zero-mean Gaussian process. Their 

influence functions are provided in Supplementary Materials A.2.

For covariance and interval estimation, we also develop a perturbation resampling scheme 

similar to those in Jin et al. (2001). We consider a perturbed objective function, defined as
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where  are i.i.d. unit exponential random variates. Here G*(t) is a perturbed version 

of the Kaplan-Meier estimator using the same set of weights. That is, G*(t) = s∈[0,t]{1 − 

dN*(t)/Y*(t)}, where  and 

, and  is the product-integral operator. Define β̂*(τ) as the 

minimizer of  with respect to b. In Supplementary Materials A.4, we show that the 

unconditional distribution of  is asymptotically the same as the 

conditional distribution of . In practice, one may generate B 

perturbed samples of  for a large number B, denoted by . The 

standard error estimates for the proposed estimators of L(τ) and the confidence intervals for 

L(τ) can be obtained from the empirical standard deviations and the empirical percentiles of 

.

4. THE PROPOSED MODEL COMPARISON PROCEDURES

In practice, there are often more than one candidate models under consideration. Based on 

the arguments in Section 2, we can formally compare the predictive performance between 

two working models by comparing their respective L(τ)’s. Let ZA and ZB be two subvectors 

of Z̄ and both of them include 1 as the first element. The working model (2) with Z = ZA and 

the working model (2) with Z = ZB are referred to as model A and model B, respectively. 

Their corresponding prediction loss L(τ)’s are denoted by LA(τ) and LB(τ). Likewise, in the 

sequel, subscripts, such as A and B, will be used to differentiate quantities for different 

working models. From the arguments in Section 2, LA(τ) − LB(τ) can be used to capture the 

relative prediction loss of two working models at the τth quantile level. This motivates us to 

compare the predictive capacity of two candidate models based on their difference in L(τ).

4.1 Model comparisons at a fixed τ

When the interest lies in a single quantile at level τ, we formulate the predictive capacity 

comparison as a hypothesis testing problem regarding LA(τ) − LB(τ), which, by Theorem 1, 

can be consistently estimated by AB(τ) ≡ L̂
nA(τ, β̂A) − L̂

nB(τ, β̂B). However, a notable 

complication is that the limiting distribution of AB(τ) under the null, H0 : LA(τ) = LB(τ), 

is different under the nested model scenario and the non-nested model scenario. Thus, the 

hypothesis testing method needs to be designed differently for these two scenarios.

When the two models are non-nested, in the sense that ZA contains covariates not contained 

in ZB and vice versa, we consider the following two-sided hypothesis testing problem:

(9)
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where H0 corresponds to the scenario when models A and B have equivalent predictive 

capacity for the τth quantile. Naturally, we adopt AB(τ) as the test statistics. Based on 

Theorem 1, we have

(10)

From the definition of πi․(τ, β̃) in Supplementary Materials A.2., we see that πiA(τ, β̃A) − 

πiB(τ, β̃B) is not degenerate provided ZAβ̃A(τ) ≢ ZBβ̃B(τ), which is a reasonable assumption 

for the non-nested case. When this holds, we can show that AB(τ) is of order Op(n−1/2) 

under H0, and that  converges to a zero-mean Normal distribution. We employ a 

resampling procedure to approximate the limit distribution of AB(τ) under H0. Let

where nn stands for non-nested. By the arguments in Supplementary Materials A.4, we see 

that the conditional distribution of  given the observed data is asymptotically 

equivalent to the unconditional distribution of  under H0. Therefore, one may obtain 

distribution cut-off values for AB(τ) based on its perturbed samples, , and 

reject H0 when | AB(τ)| is greater than the cut-off value.

We next consider the more complicated scenario that involves two nested models. Suppose 

ZA is a subvector of ZB and thus LB(τ) ≤ LA(τ). We assume that the elements in ZB are 

linearly independent with each other, in the sense that there does not exist a non-zero vector 

α satisfying ZBα ≡ 0. We formulate a one-sided hypothesis test,

(11)

Rejecting H0 would imply a significant improvement by adopting model B (versus model A) 

in predicting the τth-quantile, which may lead to a decision of adopting model B instead of 

model A in constructing the quantile predictor. In the nested case, H0 corresponds to the 

situation when ZAβÃ ≡ ZBβ̃B. Note that the asymptotic representation in (10) is not useful, 

because πiA(τ, β̃A) − πiB(τ, β̃B) ≡ 0. As a result, AB(τ) is no longer of order Op(n−1/2) 

under H0 but has a faster convergence rate to 0. The faster convergence to 0 was also noted 

in Demler et al. (2012) for comparing area under curve between nested models.

To address this difficulty, we develop a different perturbation scheme by extending the 

method in Chen et al. (2008). Specifically, we propose the following perturbed test statistics,
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where n stands for nested. Note that  differs from  by including 

and  as the second and fourth term, in place of L̂
nA(τ, β̂nA) and L̂

nB(τ, β̂nB). This 

minor modification allows us to achieve a fine enough approximations to AB(τ), which is 

of order Op(n−1) under H0. Specifically, Theorem 3 provides the crucial result for justifying 

the use of . Our proof for this theorem in Supplementary Materials B.1. follows the 

lines of Rao and Zhao (1992)(see Lemma 2.2) and Chen et al. (2008).

Theorem 3—Define . Under conditions C1–C4,

(12)

Similarly, for the perturbed counterpart of the loss function, we have

(13)

It is worth noting that the J(τ) matrix equals E[Z⊗2f{Zβ̃(τ)|Z}]. Due to the unknown 

conditional density f, it is rather hard to directly estimate matrix J(τ) in practice. Based on 

Theorem 3, we derived the asymptotic distribution of n AB(τ) and the limit conditional 

distribution of  given the observed data; see Supplementary Materials B.2. Our 

results justify the use of  for approximating the distribution of .

Remark—Theorem 3 also allows us to correct for the small bias in L̂
n(τ, β̂). From (12), we 

see that the bias in L̂
n(τ, β̃) due to using the entire observed dataset twice is asymptotically 

, which is non-positive and of order Op(n−1). 

According to (13), we propose to use

where B is the total number of perturbations. The adjustment to L̂
n(τ, β̂) is of order Op(n−1); 

thus the influence functions for L̂
n(τ, β̂), πi(τ, β̃), still apply to L̂

adj(τ, β̂). This adjustment 

can also be implemented in the test statistics AB(τ) when testing non-nested models, but 

not in the comparison of nested models.

4.2 Model comparisons across a range of τ

In practice, it is often desirable to compare two models by accounting for a range of 

quantiles, so as to identify an optimal model for predicting a range of quantiles 

simultaneously. A model comparison procedure that addresses a range of quantiles 

simultaneously can be achieved through the R1 measure introduced in Section 2.3. 
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Specifically, we propose to compare two candidate models, namely model A and B, by 

testing the hypotheses,  when model A and model B are non-

nested, and the hypothesis  in the nested case where ZA is a 

subvector of ZB.

Next, we notice that . This motivates us to define

(14)

Essentially, ℛAB is a weighted average of AB across τ. The distribution of ℛAB under H0 

can be approximated through the empirical distribution of 

 in the nested case, and through 

 in the non-nested case.

5. SIMULATIONS

5.1 Estimation of the prediction performance measures

Simulations were conducted to assess the finite-sample performances of the proposed 

methods. The first part of our simulations illustrates the proposed measures, L(τ) and R1(τ), 

under various working prediction models, and furthermore examines whether they can be 

consistently estimated by the proposed estimators. We generated the survival times as

where Z10 follows a truncated normal distribution with mean 0, standard deviation 0.5, and 

truncation points ±1.5. The variable Z2 follows a Bernoulli distribution with expectation 0.5, 

and Z3 ~ Uniform(−0.5, 0.5). The ε1, ε2, and ε3 are mutually independent and follow 

Normal(0, 12), Normal(0, 0.22) and Normal(0, 0.252) respectively. Therefore, we have

(15)

The coefficient of Z2 is a monotone function of τ that crosses 0 at τ = 0.5. The censoring 

time C* = exp(C), where C = ζC × runif(−1.2, 2.5) + (1−ζC) × 2.5 and ζC ~ Bernoulli(0.8). 

The censoring rate is 28%, and we set u = 2.49.

Our goal is to assess the predictive capacity of several working models, namely (A) Z10 + Z2 

+ Z3, (B) Z1 + Z2 + Z3, (C) Z10 + Z3, (D) Z1 + Z3, and (E) Z10 + Z2 + Z3 + Z4 + Z5 + Z6. 

Here, each working model is represented by an addition sentence, the terms of which 

indicate the covariates included in Z. Each model can facilitate a quantile predictor ξ̂τ (·). 
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The covariate Z1 = Z10 + ε4, where ε4 ~ Uniform(−0.25, 0.25). Thus Z1 represents a mis-

measured version of Z10. Also, Z4 ~ Uniform(−1, 1), , and Z6 ~ 2 × 

Beta(2, 2). Therefore, Model (A) represents the data generation model in (15). Model (B) 

corresponds to the situation where one covariate in the true model is subject to mis-

measurement. In Model (C), one leaves out a covariate that explains the heteroscedasticity of 

the error terms. Model (D) is another mis-specified model that includes Z1 instead of Z10 

and excludes Z2. Finally, model (E) includes several redundant covariates. It exemplifies a 

working prediction model that is over-fitted and has the problem of collinearity.

To visualize the corresponding prediction loss and performance measures L(τ) and R1(τ) 

under (A)–(E), we plot their theoretical values, which were obtained via large-sample 

approximations based on 10, 000 simulated uncensored data points. We observe in Figure 1 

that the two measures effectively describe the predictive capacity of the working models. For 

example, we observe from the left panel of Figure 1 that model (A) and (E) always render 

the smallest L(τ). Model (B) leads to larger prediction loss, by including a mis-measured 

covariate Z1 instead of the true Z10. Model (C) yields the same prediction loss as (A) and (E) 

when τ = 0.5, for which the conditional quantile does not depend on Z2. However, the 

quantile prediction is generally worse at other quantile levels. Model (D) is worse than (B) 

and (C) by deviating further away from the true model. In addition, we observe from the 

right panel of Figure 1 that R1(τ) transforms the prediction loss into a predictive 

performance measure of unified scales, thereby facilitating comparisons across a range of τ.

We examined whether the proposed methods can provide adequate estimation and inference 

for the prediction loss/performance measures. For each working model, we conducted 2, 000 

simulations under sample sizes n = 200, 400 and 600. We present the simulation results 

under model (A) and (B) in Table 1 for τ = 0.1, 0.3, 0.5 and 0.6. The results under other 

working models are similar and thus are not reported. The reported summary statistics 

include the empirical bias (EB), the empirical standard error (ESE), the average of influence 

function based standard error (ASE), and empirical coverage probabilities of 95% Wald-type 

confidence intervals (C95). To build a confidence interval for L(τ), we used a log 

transformation and the Delta method. The log{− log(x)} transformation was used to build a 

confidence interval for R1(τ). The performance of the bias-adjusted estimators in Section 4.1 

is also summarized. Table 1 suggests that L(τ) and R1(τ) are estimated accurately by the 

proposed plug-in estimators L̂
n(τ,β̂) and . The standard errors are generally small. 

The coverage rates of the confidence intervals for L(τ) are slightly low when n = 200 but get 

closer to the nominal level for larger n’s. The bias-adjusted methods show some 

improvement when n = 200, but the improvement become negligible when n ≥ 400. The 

performances of the CV-estimators are similar and deferred to Supplementary Materials C, 

Table C.1.

We also conducted sensitivity studies by setting C = log{2.05ϖ*exp(0.25 × Z2 + 0.25 × 

Z3)}, where ϖ follow exponential distribution with rate 0.5. The censoring time exp(C) thus 

follows a Cox proportional hazards model, and the censoring rate remains 28%. We 

implemented the proposed methods with Ĝ(·) adopted, pretending C is still independent of 

Z. Under such a mis-specification of the censoring distribution, we observe from Table C.2 
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in supplemental material C that the bias of  are still very small. The empirical 

coverage rates may be slightly lower than the nominal level but are still reasonable.

5.2 Inferences on predictive capacity

In the second part of our simulations, we examine the utility of the proposed hypothesis 

testing method for comparing the quantile predictive performance between candidate 

prediction models, with the true predictive performance measures displayed in Figure 1. We 

considered five scenarios: (i) A vs. B, (ii) A vs. C, (iii) E vs. A, (iv) B vs. C, and (v) B vs. D. 

The one-sided hypothesis was adopted for evaluating (ii), (iii) and (v), while two-sided 

hypothesis was adopted for (i) and (iv). We considered two significance levels, α = 0.05 and 

α = 0.1, and set re-sampling sample size B = 1, 999. The results were summarized in Table 

2. We observe that the empirical sizes are generally close to the nominal levels, no matter 

whether the working models under comparison are correctly specified or not. Furthermore, 

the empirical powers appear satisfactory. The influence functions we derive also facilitate 

Wald-type confidence intervals for the difference in R1(τ) between two non-nested models. 

Some simulation results were provided in Table C.3 of Supplemental Material C.

We next conducted model comparisons for τ ∈ [0.1, 0.6] based on ℛAB, the overall test 

statistic. Taking all quantiles into consideration, each pair of compared models do not have 

the same predictive performance except under scenario (iii), E vs. A. The results in Table C.

4 of Supplementary Material C suggest that the hypothesis testing procedures maintained the 

sizes well when H0 is true. The empirical power increases with the sample size as well as the 

expected model discrepancy. We also conducted sensitivity analysis to evaluate the 

hypothesis testing procedure under the aforementioned covariate-dependent censoring 

scenario, where Ĝ(·) is obtained using the Kaplan-Meier estimator. From Table C.5 of 

Supplementary Material C, we observe that the hypothesis testing procedure still performs 

adequately under moderate violations of the covariate-independent censoring assumption.

6. DATA ANALYSIS

We applied the proposed methods to a renal disease study, which examined dialysis 

mortality in a cohort of incident dialysis patients aged 20 years and older (Kutner et al., 

2002). The primary endpoint was time to death since study enrollment, and the mean follow-

up time was approximately 3 years. The mean age at baseline was 56 years. Covariates 

include severity of restless syndrome (LEGS), age in years (AGE), BMI, dialysis mordality 

(HDPD), hematocrit (HCT), mental health score (MH), ferritin level (FER), albumin level 

(ALB), primary diagnosis of diabetes at study start (PRIDIAB), presence of cardiovascular 

comorbidity (NEWCAR), higher education level (HIEDU), male sex (MALE), fish 

consumption (FISHH), and black race (BLACK) (Peng and Huang, 2008; Peng et al., 2014). 

The survival endpoint may be censored by renal transplantation or end of study follow-up, 

leading to an overall censoring rate of 35%. There were 191 observations with complete data 

in this dataset.

Our goal here is to evaluate and compare the predictive capacity of different working 
quantile regression models. Our preliminary results based on the proposed methods 
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suggested two potential candidates, namely Model A: {AGE, BLACK, FISHH, HCT, 

LEGS}, and Model B: {AGE, BLACK, FISHH, HCT}. To have a more comprehensive 

illustration, we also considered several alternative models here, some of which have been 

studied in literature (Peng et al., 2014). See Table 3 for details. Specifically, Models B–F are 

sub-models of model A that includes one less covariate. In model G, AGEB is a binary 

variable that indicates whether the patient was greater than or equal to 60 years of age. This 

is to illustrate whether the common practice of stratefying age makes any difference in this 

data analysis. Model H denotes the model selected by the adaptive-LASSO method under 

the accelerated failure time (AFT) model (Wang and Leng, 2007). Finally, Model I includes 

two additional covariates besides those in Model A. The overall prediction performance 

measure  for [τL, τU) = [0.05, 0.65) was also provided in Table 

3. We plotted the pointwise  for τ ∈ [0.05, 0.65) in Figure 2. Table 4 displays the 

results of the formal hypothesis tests, either overall or at specific τ ’s.

The left panel of Figure 2 and the top section of Table 4 compare model A to its several sub-

models, models B–F. These results reveal the relative importance of each covariate. For 

example, we observe that dropping AGE from Model A resulted in the biggest decline in 

R1(τ), suggesting that AGE is crucial for quantile prediction across τ. This is confirmed by 

the hypothesis testing results, where the p-values for comparing Model A vs. D were almost 

always < .001. By comparison, the decline in R1(τ) by dropping LEGS from model A 

appears larger for smaller τ ’s but diminishes when τ increases. Coupled with the p-values 

for comparing Model A vs. B, this result may suggest that LEGS is non-negligible for lower 

quantiles but may be less important for upper quantiles. This finding is consistent with 

previous analysis of this dataset (Peng and Huang, 2008). Thus, one may prefer Model B 

when research interest lies only in the higher quantiles but may favor Model A when the 

lower quantiles, corresponding to the higher risks patients, are also of interest.

In the right panel of Figure 2 and the bottom session of Table 4, we illustrate more scenarios 

of model comparisons. When comparing Model A with Model G, we observe that the 

continuous AGE covariate served significantly better as a predictor, as compared to its 

dichotomized counterpart. Note that the proposed methods allow us to evaluate the influence 

of covariate transformations on quantile prediction. Next, we observe that the  of 

Model A generally lie above that of Model H, the model selected by the adaptive Lasso 

method under AFT model. Although the difference between Models A and H are not 

statistically significant, Model A may be preferred by rendering higher  with the 

same number of covariates. Finally, we observe that adding additional predictors, HDPD and 

HIEDU, into Model A does not lead to significant improvement in prediction performances. 

This bigger model, Model I, did outperformed Model B at lower quantiles, possibly by 

including LEGS.

Through these visual and formal comparisons, we conclude that Model A may be adopted if 

one wishes to achieve good quantile prediction for both the lower quantiles and the higher 

quantiles. Alternatively, Model B may be preferred in terms of overall prediction 

performance. The regression coefficient estimates under Model A are presented in 
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Supplemental Material C. Using this data example, we demonstrate that the proposed 

methods allow us to evaluate the quantile prediction performance of various working 

models. It also facilitates comprehensive and rigorous comparisons in predictive capacity 

between various candidate models.

7. DISCUSSION

In this work, we have proposed a rigorous framework for evaluating the predictive capacity 

of working quantile regression models in predicting the quantiles of a survival outcome. The 

proposed framework allows for not only quantification of either local or global predictive 

performances, but also formal comparisons between two models that are either nested or 

non-nested. By its robustness to model mis-specification and straightforward interpretation, 

we believe that the proposed framework features high practical utility in biomedical studies.

The proposed framework bears a fundamental difference from the existing goodness-of-fit 

methods by targeting the performance in predicting the underlying survival quantiles of new 
patients. In contrast, goodness-of-fit methods typically evaluate how the observed existing 
data match the data expected under an assumed model. The key distinction is well reflected 

by the construction of the proposed prediction loss function, E[ρτ{T0−ξτ (Z0)}], which takes 

expectation over the data obtained from a new subject, (T0, Z0), rather than the data where 

the quantile prediction rule ξτ is derived from. Our proposals in Section 4 demonstrate a 

useful application of the proposed framework. That is, they provide formal inference 

procedures for conducting model comparison/selection based on the criterion formulated 

according to the proposed predictive performance measure.

The proposed framework is general and allows one to adopt other forms of quantile 

predictors. Employing a different ξ̂τ (·) would only require moderate modifications to the 

inference procedures. One may need to adapt the components involving the variability of ξτ̂ 
(·) in the derivation of the influence function πi(τ). The asymptotic null distribution for the 

test of nested models would take a different form but can be derived by similar lines.

The proposed L(τ) is constructed based on log-transformed survival time T. Given the 

equivariance property of quantiles, which implies QT(τ|Z̄) = log{Qexp(T)(τ|Z̄)}, L(τ) can be 

interpreted as a measure capturing the discrepancy in log survival quantiles. Note that 

censored quantile regression typically models a log-transformed survival time, and the 

resulting quantile predictions often present a skewed distribution across subjects. Assessing 

quantile prediction performance in the log-time scale can protect against such skewness.

In Section 2.1, one may want to rescale the summands of Ln (τ,β̂) by the inverse of the 

conditional density . However, direct estimation of  typically involves 

smoothing and can be unstable with small to moderate sample size. In practice, we 

recommend using , a scaled alternative to Ln (τ,β̂) which is also easy to interpret.

The proposed procedures assume that p is finite. When the number of covariates in a real 

dataset is large, one may first apply existing variable selection procedures for quantile 

regression models (Wu and Liu 2009; Li and Zhu 2008; Zou and Yuan 2008; Peng et al. 
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2014; among others) to reduce the model dimensionality. Our proposals in this work can 

provide an objective analytical tool to validate and compare the models resulted from 

various different selection procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Values of L(τ) and R1(τ) under different working models.
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Figure 2. 

Analysis of the dialysis data:  under Models A–I.
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Table 3

Analysis of the dialysis data: list of models and the corresponding R̂1’s.

Covariates R̂1

Model A AGE, BLACK, FISHH, HCT, LEGS 0.345

Model B AGE, BLACK, FISHH, HCT 0.327

Model C AGE, FISHH, HCT, LEGS 0.289

Model D BLACK, FISHH, HCT, LEGS 0.206

Model E AGE, BLACK, HCT, LEGS 0.324

Model F AGE, BLACK, FISHH, LEGS 0.328

Model G AGEB, BLACK, FISHH, HCT, LEGS 0.290

Model H AGE, BLACK, FISHH, HDPD, NEWCAR 0.326

Model I AGE, BLACK, FISHH, HCT, LEGS, HDPD, HIEDU 0.362
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