Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Sep;87(17):6823–6827. doi: 10.1073/pnas.87.17.6823

Sensitization of bleached rod photoreceptors by 11-cis-locked analogues of retinal.

D W Corson 1, M C Cornwall 1, E F MacNichol 1, J Jin 1, R Johnson 1, F Derguini 1, R K Crouch 1, K Nakanishi 1
PMCID: PMC54630  PMID: 2395874

Abstract

Photoactivation of rhodopsin initiates both excitation and adaptation in vertebrate rod photoreceptors. Bleaching of rhodopsin to free opsin and all-trans-retinal in isolated rods produces a stable desensitization (bleaching adaptation) that is much larger than expected from pigment depletion alone. In our experiments, a 93% bleach produced a 500-fold increase in the light intensity required for saturation of the light response. This component of adaptation was 32-fold larger than the 16-fold increase expected from pigment depletion alone. 11-cis-Retinal, when delivered to isolated rods from liposomes, combines with free opsin to form a bleachable photopigment that fully restores sensitivity. 11-cis-Locked analogues of retinal combine with opsin to form unbleachable pigments in isolated bleached rods from the tiger salamander. They restore sensitivity to a substantial (16- to 25-fold) but incomplete extent. The analogues apparently relieve a stable component of adaptation when they interact with opsin. Because these analogues do not detectably excite rods, the structural requirements of both retinal and opsin for the relief of adaptation are different from those of excitation. The biochemical basis of light adaptation resulting from pigment bleaching and the minimum structural requirements of retinal for its relief remain to be determined.

Full text

PDF
6823

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow H. B. Dark-adaptation: a new hypothesis. Vision Res. 1964 May;4(1):47–58. doi: 10.1016/0042-6989(64)90031-8. [DOI] [PubMed] [Google Scholar]
  2. Baylor D. A., Lamb T. D., Yau K. W. The membrane current of single rod outer segments. J Physiol. 1979 Mar;288:589–611. [PMC free article] [PubMed] [Google Scholar]
  3. Birge R. R., Murray L. P., Pierce B. M., Akita H., Balogh-Nair V., Findsen L. A., Nakanishi K. Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4117–4121. doi: 10.1073/pnas.82.12.4117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brin K. P., Ripps H. Rhodopsin photoproducts and rod sensitivity in the skate retina. J Gen Physiol. 1977 Jan;69(1):97–120. doi: 10.1085/jgp.69.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bäckström A. C., Hemilä S. O. Dark-adaptation in frog rods: changes in the stimulus-response function. J Physiol. 1979 Feb;287:107–125. doi: 10.1113/jphysiol.1979.sp012649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Catt M., Ernst W., Kemp C. M., O'Bryan P. M. Rhodopsin bleaching and rod adaptation. Biochem Soc Trans. 1983 Dec;11(6):676–678. doi: 10.1042/bst0110676. [DOI] [PubMed] [Google Scholar]
  7. Catt M., Ernst W., Kemp C. M. The links between rhodopsin bleaching and visual adaptation. Biochem Soc Trans. 1982 Oct;10(5):343–345. doi: 10.1042/bst0100343. [DOI] [PubMed] [Google Scholar]
  8. Cocozza J. D., Ostroy S. E. Factors affecting the regeneration of rhodopsin in the isolated amphibian retina. Vision Res. 1987;27(7):1085–1091. doi: 10.1016/0042-6989(87)90023-x. [DOI] [PubMed] [Google Scholar]
  9. Cornwall M. C., Fein A., MacNichol E. F., Jr Spatial localization of bleaching adaptation in isolated vertebrate rod photoreceptors. Proc Natl Acad Sci U S A. 1983 May;80(9):2785–2788. doi: 10.1073/pnas.80.9.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cornwall M. C., MacNichol E. F., Jr, Fein A. Absorptance and spectral sensitivity measurements of rod photoreceptors of the tiger salamander, Ambystoma tigrinum. Vision Res. 1984;24(11):1651–1659. doi: 10.1016/0042-6989(84)90323-7. [DOI] [PubMed] [Google Scholar]
  11. Crouch R., Nodes B. R., Perlman J. I., Pepperberg D. R., Akita H., Nakanishi K. Cycloheptatrienylidene analog of 11-cis retinal. Formation of pigment in photoreceptor membranes. Invest Ophthalmol Vis Sci. 1984 Apr;25(4):419–428. [PubMed] [Google Scholar]
  12. DOWLING J. E. Chemistry of visual adaptation in the rat. Nature. 1960 Oct 8;188:114–118. doi: 10.1038/188114a0. [DOI] [PubMed] [Google Scholar]
  13. Foster K. W., Saranak J., Derguini F., Zarrilli G. R., Johnson R., Okabe M., Nakanishi K. Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal. Biochemistry. 1989 Jan 24;28(2):819–824. doi: 10.1021/bi00428a061. [DOI] [PubMed] [Google Scholar]
  14. Granit R., Munsterhjelm A., Zewi M. The relation between concentration of visual purple and retinal sensitivity to light during dark adaptation. J Physiol. 1939 Jun 14;96(1):31–44. doi: 10.1113/jphysiol.1939.sp003755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hemilä S. The stimulus-response functions of visual systems. Vision Res. 1987;27(8):1253–1261. doi: 10.1016/0042-6989(87)90201-x. [DOI] [PubMed] [Google Scholar]
  16. Huddleston S. K., Williams T. P. Physiological activity of isorhodopsin in rat rods. Vision Res. 1977;17(6):711–714. doi: 10.1016/s0042-6989(77)80007-2. [DOI] [PubMed] [Google Scholar]
  17. Hárosi F. I. Absorption spectra and linear dichroism of some amphibian photoreceptors. J Gen Physiol. 1975 Sep;66(3):357–382. doi: 10.1085/jgp.66.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones G. J., Crouch R. K., Wiggert B., Cornwall M. C., Chader G. J. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9606–9610. doi: 10.1073/pnas.86.23.9606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kandori H., Matuoka S., Shichida Y., Yoshizawa T., Ito M., Tsukida K., Balogh-Nair V., Nakanishi K. Mechanism of isomerization of rhodopsin studied by use of 11-cis-locked rhodopsin analogues excited with a picosecond laser pulse. Biochemistry. 1989 Jul 25;28(15):6460–6467. doi: 10.1021/bi00441a045. [DOI] [PubMed] [Google Scholar]
  20. Lamb T. D. Sources of noise in photoreceptor transduction. J Opt Soc Am A. 1987 Dec;4(12):2295–2300. doi: 10.1364/josaa.4.002295. [DOI] [PubMed] [Google Scholar]
  21. Lisman J. The role of metarhodopsin in the generation of spontaneous quantum bumps in ultraviolet receptors of Limulus median eye. Evidence for reverse reactions into an active state. J Gen Physiol. 1985 Feb;85(2):171–187. doi: 10.1085/jgp.85.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mao B., Tsuda M., Ebrey T. G., Akita H., Balogh-Nair V., Nakanishi K. Flash photolysis and low temperature photochemistry of bovine rhodopsin with a fixed 11-ene. Biophys J. 1981 Aug;35(2):543–546. doi: 10.1016/S0006-3495(81)84809-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Minke B. Bleaching adaptation in photoreceptors. Isr J Med Sci. 1987 Jan-Feb;23(1-2):61–68. [PubMed] [Google Scholar]
  24. Okada D., Nakai T., Ikai A. Transducin activation by molecular species of rhodopsin other than metarhodopsin II. Photochem Photobiol. 1989 Feb;49(2):197–203. doi: 10.1111/j.1751-1097.1989.tb04096.x. [DOI] [PubMed] [Google Scholar]
  25. Pepperberg D. R., Brown P. K., Lurie M., Dowling J. E. Visual pigment and photoreceptor sensitivity in the isolated skate retina. J Gen Physiol. 1978 Apr;71(4):369–396. doi: 10.1085/jgp.71.4.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pepperberg D. R., Lurie M., Brown P. K., Dowling J. E. Visual adaptation: effects of externally applied retinal on the light-adapted, isolated skate retina. Science. 1976 Jan 30;191(4225):394–396. doi: 10.1126/science.1246621. [DOI] [PubMed] [Google Scholar]
  27. Pepperberg D. R. Rhodopsin and visual adaptation: analysis of photoreceptor thresholds in the isolated skate retina. Vision Res. 1984;24(4):357–366. doi: 10.1016/0042-6989(84)90061-0. [DOI] [PubMed] [Google Scholar]
  28. Perlman J. I., Nodes B. R., Pepperberg D. R. Utilization of retinoids in the bullfrog retina. J Gen Physiol. 1982 Dec;80(6):885–913. doi: 10.1085/jgp.80.6.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pugh E. N. Rushton's paradox: rod dark adaptation after flash photolysis. J Physiol. 1975 Jun;248(2):413–431. doi: 10.1113/jphysiol.1975.sp010982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. RUSHTON W. A. EFFECT OF INSTANTANEOUS FLASHES ON ADAPTATION OF THE EYE. DARK ADAPTATION AFTER EXPOSING THE EYE TO AN INSTANTANEOUS FLASH. Nature. 1963 Sep 7;199:971–972. doi: 10.1038/199971a0. [DOI] [PubMed] [Google Scholar]
  31. RUSHTON W. A. Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J Physiol. 1961 Apr;156:193–205. doi: 10.1113/jphysiol.1961.sp006668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ripps H., Pepperberg D. R. Photoreceptor processes in visual adaptation. Neurosci Res Suppl. 1987;6:S87–105. doi: 10.1016/0921-8696(87)90010-7. [DOI] [PubMed] [Google Scholar]
  33. Sather W. A., Detwiler P. B. Intracellular biochemical manipulation of phototransduction in detached rod outer segments. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9290–9294. doi: 10.1073/pnas.84.24.9290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Uoshikami S., Nöll G. N. Isolated retinas synthesize visual pigments from tetinol congeners delivered by liposomes. Science. 1978 Jun 23;200(4348):1393–1395. doi: 10.1126/science.307275. [DOI] [PubMed] [Google Scholar]
  35. Weinstein G. W., Hobson R. R., Dowling J. E. Light and dark adaptation in the isolated rat retina. Nature. 1967 Jul 8;215(5097):134–138. doi: 10.1038/215134a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES