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We propose a novel method based on sparse representation for breast ultrasound image classification under the framework of
multi-instance learning (MIL). After image enhancement and segmentation, concentric circle is used to extract the global and local
features for improving the accuracy in diagnosis and prediction. The classification problem of ultrasound image is converted to
sparse representation based MIL problem. Each instance of a bag is represented as a sparse linear combination of all basis vectors
in the dictionary, and then the bag is represented by one feature vector which is obtained via sparse representations of all instances
within the bag. The sparse and MIL problem is further converted to a conventional learning problem that is solved by relevance
vector machine (RVM). Results of single classifiers are combined to be used for classification. Experimental results on the breast
cancer datasets demonstrate the superiority of the proposed method in terms of classification accuracy as compared with state-of-
the-art MIL methods.

1. Introduction

Breast cancer is currently one of the highest incidence dis-
eases in women and it has serious implications for the health
of women. Medical ultrasound imaging plays an important
role in diagnosis and treatment of breast cancer, and it has
some characteristics, such as being noninvasive, economic,
effective, safe, and convenient. It has become the preferred
method for early detection of superficial organ diseases [1,
2]. However, ultrasonography is operator-dependent, and
reading breast ultrasound (BUS) images requires well-trained
radiologists. Even experts may have observer variation. In
recent years, computer-aided diagnosis (CAD) technology
has become a hot issue in the medical domain [3]. CAD
can provide objective, quantification, and decision-making
information about superficial organs such as tumors. It is
helpful to eliminate misdiagnosis in clinical practice due to
subjective factors. At present, there are two problems in the
CAD system for ultrasound images [3, 4]. One is the fact that
it is quite difficult to position tumors precisely due to the
image quality, the error of which can affect feature extraction

and classification performance. The other is the lack of study
for classification method under the inaccurate condition. A
number of effective feature extraction and classifier designing
methods have been proposed to try to solve the above
problems [5–7].

For breast ultrasound CAD systems, the tumor region is
located as a Region of Interest (ROI), and the features are
extracted from the ROI [7, 8]. Finally, the tumor is classified
as benign or malignant. There are some problems in BUS
images such as attenuation, speckle, shadows, and signal
dropout [7, 8]. These characteristics make computer-aided
segmentation of BUS images very difficult and cause large
difference between the autosegmented result and real ROI
[7]. Such difference will directly affect the final classification
accuracy because the features such as shape and margin are
dependent mainly on correctly located ROIs. Fractal dimen-
sion [9], cooccurrence matrix [10], and wavelet coefficients
[11] have been widely utilized to derive discriminant features.
To raise the accuracy of segmentation, image enhancement
preprocessing which includes neighbor tissue suppression,
background correction, Gamma transforming, and Gaussian
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smoothing are used to deal with ROI. Then, after segmenta-
tion by wavelet coefficients and prior medical knowledge, a
mass feature extraction method based on concentric circles
is used [23], which divides the image with different scales of
concentric circles and also gets the topic features of masses.

Traditional learning methods are not available when
facing the stage of classifying. In learning period, we only
know the label of ROI, while the labels of the subregions in
ROI are unknown. For solving this problem, ROI region can
be viewed as a bag and its subregions can be regarded as the
instances of the bag.Then, the problem is turned into amulti-
instance learning (MIL) problem [12]. MIL was introduced
by Dietterich et al. [12], which is originally proposed to solve
learning problems with incomplete information of the labels
of the samples.ManyMILmethods have beenwidely used for
applications, such as drug activity prediction, stock market
prediction, natural scene classification, and content-based
image retrieval [13–16]. For traditional learning, each training
example is represented by a fixed-length vector of the features
with known label, while in MIL, each sample is regarded as a
bag (with labels) and consists of instances (without labels),
and the number of instances in each bag can be different [7].
The object of MIL is to learn a model to classify new bags
[13, 14]. In BUS images, we cannot simply consider that the
points (instances) in a benignmass (bag) are all negative; and
if only one point (instance) is positive, then the mass (bag) is
malignant. In order to solve this specific problem, in [17], the
generalized multi-instance learning (GMIL) was adopted. It
considered that a number of instances could determine the
corresponding bag’s label. In this paper, a method based on
sparse representation [18, 19] is used to convert this specific
MIL problem to a single-instance learning problem. In order
to improve classification performance, every single classifier
is constructed with dictionaries of different sizes, and then
the classifying results of single classifiers are combined.

The paper presents a novel method for automatic classifi-
cation of BUS images of benign and malignant breast tumors
based on sparse representation under the framework of MIL.
The remainder of the paper is organized as follows. Sections
2–4 detail the proposed method. Experimental results are
reported in Section 5. Finally, we conclude this paper in
Section 6.

2. Image Enhancement

To make the segmentation more accurate and reduce the
impact of normal tissue to tumor segmentation, enhanced
processing is needed. Four procedures, neighbor tissue sup-
pression, background correction, Gamma transforming, and
Gaussian smoothing, are used [21, 22].

Neighbor tissue suppression is to solve oversegmentation
andundersegmentation problems caused by shading problem
due to some objective factors. We calculate suspected mass
of the extracted ROI area and estimate radius 𝑟. Retain ROI
unchanged and suppress pixels located outside the ROI area.
The suppression amplitude is proportional to the distance to
the center of the ROI:

𝐿 (𝑥, 𝑦) = 𝑅 (𝑥, 𝑦, 𝜎, 𝑟) ∗ 𝐼 (𝑥, 𝑦) , (1)

where 𝐿 is the processed ROI image after neighboring tissue
suppression, 𝑥 and 𝑦 represent the horizontal and vertical
coordinates of the center inROI, respectively,𝑅 is suppressing
amplitude, calculated by formula (2), and 𝐼 is the original
image of ROI:

𝑅 (𝑥, 𝑦, 𝜎, 𝑟) = {{
{
𝑒(𝑟2−(𝑥2+𝑦2))/2𝜎2 , if 𝑥2 + 𝑦2 > 𝑟2
1, else, (2)

where 𝜎 is a constant for adjusting 𝑅 that directly affects the
degree of ROI segmentation. Select an appropriate 𝜎 to avoid
undersegmentation or oversegmentation. When 𝜎 is equal to
the difference between the side length of ROI and radius 𝑟, we
can obtain ideal segmentation result.

Ideally, a suspected mass lies in the center of ROI,
with high gray value in center and low gray value around.
We regard ROI as a curved space, with each pixel of ROI
represented by (𝑥, 𝑦, 𝐺(𝑥, 𝑦)), where 𝑥 and 𝑦 represent the
location of current pixel; 𝐺(𝑥, 𝑦) represents the gray value
of the current pixel. The ROI is shaped into hills but often
shows uneven background when located in the chest wall,
skin lines, or nearby dense glandular tissue, making the hill
region of the surface in ROI image not obvious and hard to
segment [21]. Therefore, background correction needs to be
introduced. Firstly, the least square fitting method is used to
obtain a fitting plane that is equal to the initial size of ROI,
and then calculate the difference between initial ROI and the
fitting plane, and make linear transformation for gray value
of each pixel in image.This method can keep high-frequency
information of suspected mass in ROI, achieving relatively
flat background, which is beneficial for the segmentation of
ROI.

After neighbor tissue suppression and background cor-
rection, the impact from the chest wall, skin lines, dense
glandular tissue, and other backgrounds is reduced, but
some tissue background still connects to the suspected mass
region, concentrated in a certain gray range. In order to solve
adhesions problem of background tissue to the suspected
tumors, we use Gamma transforming of nonlinear gray
transform, the basic idea ofwhich is to use the power function
as correction function, transforming the narrower portion of
grayscale range to a wider range so as to improve the image
contrast:

𝐺 = 𝑐X𝑟, (3)

where X is input gray value. 𝑟 < 1 indicates wider range
transform for low grayscale area; 𝑟 > 1 indicates wider
range transform for high grayscale area. Suspected tumors
and surrounded background tissue regions both locate in
the high grayscale region of ROI; therefore we can take 𝑟 >
1 in order to separate the gray distribution between them.
Gamma transform can enhance contrast degree so as tomake
suspected tumor and background tissue enjoy different gray
ranges.

As a linear smoothing filter, Gaussian filter is based
on Gaussian function to select weights, having an effective
elimination of high-frequency noise and maintaining image
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details [22]. Equation (4) shows the process of Gaussian
smoothing:

𝐿 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦, 𝜎) ∗ 𝐼 (𝑥, 𝑦) , (4)

where 𝐿(𝑥, 𝑦) represents ROI image denoised by Gaussian
smoothing and 𝜎 is standard deviation; 𝑥, 𝑦 represent pixel
position of input image, 𝐼(𝑥, 𝑦) is the processed image
by the above-mentioned neighboring tissue suppression,
background correction, and Gamma transform, ∗ is the
convolution operator, and𝐺(𝑥, 𝑦, 𝜎) is theGaussian template,
shown as the following formula:

𝐺 (𝑥, 𝑦, 𝜎) = 1
2𝜋𝜎2 𝑒

−(𝑥+𝑦)2/2𝜎2 . (5)

3. Feature Extraction Based on Concentric
Circle Method

For breast ultrasound CAD systems, the most remarkable
features of a benign mass image are oval or round shape,
circumscribed margins, and homogeneous internal echoes.
The most remarkable features of a malignant mass image
are speculated margins, irregular shape, ill-defined margins,
and heterogeneous internal echoes [7, 23, 24]. The global
features of tumors such as shape andmargin can be extracted
from segmented results. The local texture features are also
effective in differentiating benign and malignant tumors.
Spatial Pyramid Matching (SPM) model [25] is an algorithm
performing imagematching, identification, and classification
based on Bag-of-Words (BoW) model and space pyramid
[26]. In order to combine mammograms global features
and local features to improve classification accuracy, feature
extraction for breast masses based on concentric circle
method is used. This method, which is based on SPM, can
divide the image of similar characteristics into concentric
circles, as is shown in Figure 1. Internal smooth mass can
be divided into middle area, and the edge of tumors will
be divided into the ring areas. Therefore, we can take full
advantage of rounded features of breast tumors and separate
feature points of the scale-invariant feature transform (SIFT)
whose feature vectors are close to each other but belong to
different areas.

In the experiment, firstly, size of mass image is adjusted
so that the maximum length of the image is 1000 pixels; then
the division of the subblock image is to divide the adjacent
feature to the same area. Concentric circle dividing method
is used to obtain the image diagonal line, dividing diagonal
flat into 𝑛 equal portions. Regard each length of n diagonal
as radius and center of the image as center of circle to obtain
middle circular region and outer annular region. We extract
BoW characteristics of each block to obtain BoW features of
𝑛 + 1 dimension:

𝐹 =
𝑛

∑
𝑖=0

𝜆𝑖𝐹𝑖, (6)

where 𝐹0 represents nonblocked BoW features, 𝐹𝑖 represents
BoW characteristics of the 𝑖th block, and 𝜆𝑖 indicates weight
coefficient. We set the weight parameter as 1. Suppose

Figure 1: Concentric circle division.

that 𝑀 is feature dimension of each image; the image has
been divided into 𝑁 concentric zones, and the final vector
dimension can be obtained by 𝑀 × (𝑁 + 1) dimensions.
Suppose that BoW feature dimension of each image is 200;
we use concentric circles of four layers for division, and the
dimension vector is 1000.

In order to reduce dimension, this work refers to SPM-
LDAmethod and combines latent Dirichlet allocation (LDA)
[27] to obtain global and local features by full use of space
information. LDA model was developed on the basis of
pLSA (Probabilistic Latent Semantic Analysis), which can
overcome the drawbacks such as the fact that the topic
cannot be extended and the fact that parameters grow linearly
with data size of pLSA. By using probability knowledge,
we can extract latent topics linked between words. We
select a topic by Dirichlet prior distribution. Since it has
conjugate relationship with polynomial distribution, it can
greatly reduce the computation and estimate parameters by a
variety of methods. Probability density function of Dirichlet
distribution is [26, 27]

Dir (𝜃 | 𝛼) = Γ (𝛼0)
Γ (𝛼0) ⋅ ⋅ ⋅ Γ (𝛼𝑘−1)

𝐾

∏
𝑘=1

𝜃𝑘𝛼𝑘−1 , (7)

where 𝜃 represents probability of latent topic in an image,
𝛼 represents Dirichlet parameter, and Γ function is called
Gamma function in the following form:

Γ (𝑧) = ∫
∞

0

𝑡𝑧 − 1
𝑒𝑡 𝑑𝑡. (8)

We use LDAmodel combinedwith BoWmodel to extract
the underlying topic features of the image, where an image
can be seen as an article and visual words or SIFT feature
points can be considered as the article word. Parameters
control can ensure that images are organized according to a
certain topic to give the image a certain topic distribution.

4. Sparse Representation Based
Multi-Instance Learning

4.1. Multi-Instance Learning. Let 𝜒 represent the bag
space and let 𝛾 be the set of class labels. In traditional
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Figure 2: Comparison of the classification procedure and characteristics of the RVM and SRC.

supervised learning, the training data consist of samples
{(𝑈1, V1), (𝑈2, V2), . . . , (𝑈𝑚, V𝑚)}, where 𝑈𝑖 ∈ 𝜒 is a bag
and V𝑖 ∈ 𝛾 is the label of 𝑈𝑖. A model representing
the function 𝑓 : 𝜒 → 𝛾 is determined. On testing
period, the object is to predict label 𝑦 for new bag 𝑈.
In MIL problem, the training data consist of bags and
bag labels {(B1, 𝑦1), (B2, 𝑦2), . . . , (B𝑚, 𝑦𝑚)}, where B𝑖 ∈ 𝜒
is a bag having a set of instances {𝑥(𝑖)1 , 𝑥(𝑖)2 , . . . , 𝑥(𝑖)𝑛𝑖 },
𝑥(𝑖)𝑗 ∈ B𝑖, (𝑗 = 1, . . . , 𝑛𝑖), 𝑛𝑖 is the number of instances of the
bag B𝑖, and 𝑦𝑖 ∈ {1, 2, . . . , 𝐶}, with 𝐶 denoting the number of
classes [12, 13]. Every instance 𝑥(𝑖)𝑗 ∈ R𝑘 is a 𝑘-dimensional
feature vector. Different bags contain different numbers of
instances; hence, 𝑛𝑖 may vary for different bags.

In our study, when a ROI is obtained and the features
of subregions are extracted, the classification task can be
converted into an MIL task. The subregions of ROI can be
viewed as the instances and the ROI can be considered as a
bag. The traditional MIL assumes that the positive bag has
at least one positive instance and the negative bag has no
positive instance. However, such thought is not available for

classifying breast cancers. A malignant tumor is a group of
cancer cells that may grow into surrounding tissues or spread
to distant areas of the body. The tumor not only contains
tumor cells but also contains other kind of tissues [7].

4.2. Sparse Representation. Recently, sparse representation
with a learned dictionary has been successfully applied to
many practical problems [20, 28, 29]. In order to solve the
above specific problem, a method based on sparse repre-
sentation is used to convert this specific MIL problem to a
single-instance learning problem that can be solved directly
by single-instance learning methods. Each instance of a bag
is represented by a sparse linear combination of all basis
instances in the dictionary, and then the bag is represented
by one feature vector which is obtained via sparse representa-
tions of all instances within the bag. After repeated dictionary
learning, the sparse andMIL problem is converted to a single-
instance learning problem that is solved by relevance vector
machine (RVM) classifier. Comparison of the classification
procedure and characteristics of the traditional RVM and
sparse representation classification (SRC) is in Figure 2.
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Figure 3: Flowchart of the proposed method.

We denote data matrix 𝑋 = {x1, x2, . . . , x𝑚} ∈ R𝑘×𝑚,
where x𝑖 represents instance and 𝑚 = ∑𝑛𝑖=1 𝑛𝑖. Denote
D=[d1, d2, . . . , d𝑠] ∈ R𝑘×𝑠 as the dictionary matrix, where
each column represents a basis vector of the dictionary and
𝑠 is the dictionary size. Denote 𝛼=[𝛼1,𝛼2, . . . ,𝛼𝑚] ∈ R𝑠×𝑚

as the coefficient matrix, where each column is a sparse
representation for a data sample. The target is to represent
x𝑒 (𝑒 = 1, 2, . . . , 𝑚) as a sparse linear combination of vectors
in the dictionaryD [18, 29]:

min
D,𝛼

𝑚

∑
𝑒=1

(󵄩󵄩󵄩󵄩x𝑒 −D𝛼𝑒󵄩󵄩󵄩󵄩22 + 𝛾 󵄩󵄩󵄩󵄩𝛼𝑒󵄩󵄩󵄩󵄩𝑝) , (9)

where 𝑝 = 1. 𝛾 > 0 is a regularization parameter. Usually,
the higher the noise power is, the larger 𝛾 is. We solve the
dictionary D via K-SVD dictionary learning method [20].
Once we get the dictionary D, we may solve the sparse
representation 𝛼𝑗 ∈ R𝑠 for each instance x𝑗 of a bag B =
{x1, x2, . . . , x𝐽} [20].

We denote 𝛼̃ = [𝛼1,𝛼2, . . . ,𝛼𝐽] ∈ R𝑠×𝐽, where 𝛼𝑗 is
the sparse coefficient of instance x𝑗 ∈ {x1, x2, . . . , x𝐽}. We
adopt max pooling function bℎ = avr{|𝛼1ℎ|, |𝛼2ℎ|, . . . , |𝛼𝐽ℎ|}
as bag features, where bℎ is the ℎth element of b and 𝛼𝑗

ℎ
is

the matrix element at ℎth row and 𝑗th column of 𝛼̃. Thus,
every bag (ROI) is represented by an 𝑠-dimensional feature
vector.Therefore, theMIL problem is converted into a single-
instance problem.

In order to obtain higher classification accuracy and
generalization performance, we combine multiple classifiers
by different dimensional bags with different dimensional
sparse representations based on different size of dictionaries
[19, 30].

4.3. Algorithm. The flowchart of the proposed approach is
presented in Figure 3.

Finally, the procedure of our proposed method can be
summarized in Procedure 1.

5. Experimental Results

In this paper, we use two widely used databases to verify
our proposed method. One is the Wisconsin Breast Can-
cer Dataset (WBCD) [31] taken from the UCI Machine
Learning Repository. It consists of 699 records. We gain
a wholesome dataset with 239 malignant and 444 benign
instances. Features are computed from a digitized image of
a fine-needle aspirate (FNA) of a breast mass. The attribute
information ofWBCD is presented inTable 1.Theother one is
the Digital Database for Screening Mammography (DDSM)
[32] by the mammographic image analysis research com-
munity. The database contains approximately 2500 studies.
Each study includes two images of each breast, along with
some associated patient information (age at time of study,
ACR breast density rating, subtlety rating for abnormalities,
and ACR keyword description of abnormalities) and image
information.

5.1. Result and Analysis for Feature Extraction. The images
presented here will be subsampled by 8 × 8 pixel size, that
is, to improve the pixel size from the original 50 × 50 𝜇m up
to 400 × 400 𝜇m. Figure 4 shows experiment results of image
enhancement for classical ROI. The image is left breast with
the number code 3001 from DDSM database. In Figure 4, (b)
is the image in (a) processed by neighbor and background
correction, (c) is the image in (b) processed by Gamma
transform, and (d) is the image in (c) processed by Gaussian
smoothing.

We study and compare experimental results of different
concentric layered approaches. Results of the experiments
are in Table 2. Divide the concentric circle into 4 layers, 8
layers, and 16 layers, respectively, and extract BoW features.
The use of LDA will reduce the features to 80 dimensions.
As can be seen, the basic classification accuracy rate is about
84.72%, and after four layers of concentric circles with the
original BoW feature combinations, perform LDA dimen-
sional reduction; we can obtain classification accuracy of
86.34%.This shows that the concentric method must contain
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Input. Breast ultrasonic image training samples {𝐿1, 𝐿2, . . . , 𝐿𝑛}, testing image X;
Output. Label of image 𝐿(𝑋);
Given.Ω = {(B1, 𝑦1), (B2, 𝑦2), . . . , (B𝑛, 𝑦𝑛)}: the training set consisting of 𝑛 bags.{1, 2, . . . , 𝐶}: the set of class labels.

𝑞: the number of classifiers.
𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑞}: the dictionary size set.(1) Image enhancement: neighbor tissue suppression, background correction, Gamma

transform and Gaussian smoothing.
(2) Image segmentation by wavelet coefficients and prior medical knowledge.
(3) Feature extraction by concentric circles.

ROI is considered as a bag and its subregions can be viewed as the instances of the bag.
The problem is then transformed to a MIL problem

(4) Put all the training bags together into X.
(5) Let every dictionary size be 𝑠𝑟, apply dictionary learning algorithm in [20] on

X to obtain dictionary D𝑟;
For every instance x𝑖,𝑗 of B𝑖, apply the stomp [20] on x𝑖,𝑗 andD𝑟 to obtain sparse
coefficient 𝛼𝑖,𝑗;
The ℎth element of bag features b𝑖 for the B𝑖 is b𝑖ℎ = avr{|𝛼𝑖,1ℎ |, |𝛼𝑖,2ℎ |, . . . , |𝛼𝑖,𝑛𝑖ℎ |}.(6) Create the classifier 𝐶𝑟 corresponding to the above training set.(7) On testing period, repeat the procedures (1) to (3). For a given B, we gain the classifier 𝐶𝑟,
and combine classifying result from different dimensional sparse representations.

Procedure 1: Sparse representation forbreast ultrasound image classification under the framework of MIL.

Table 1: Statistics of WBCD.

Attribute number Attribute description Minimum Maximum Mean Standard deviation
1 Clump thickness 1 10 4.442 2.821
2 Uniformity of cell size 1 10 3.151 3.065
3 Uniformity of cell shape 1 10 3.215 2.989
4 Marginal adhesion 1 10 2.830 2.865
5 Single epithelial cell size 1 10 3.234 2.223
6 Bare nuclei 1 10 3.545 3.644
7 Bland chromatin 1 10 3.445 2.450
8 Normal nucleoli 1 10 2.870 3.053
9 Mitoses 1 10 1.603 1.733

the original BoW features to make BoW feature represen-
tation that contains not only global feature but also local
feature; thereby LDAcan fully extract topic feature, so that the
final image features can obtain more robust representation.
We also acquired receiver operator characteristic (ROC)
curves shown in Figure 5. We can see that the concentric
method has global and local features with the best perfor-
mance.

5.2. Parameters Properties. In the experiments, three key
parameters including regularization parameter 𝛾, combining
size 𝑞, and dictionary size set 𝑆{𝑠1, 𝑠2, 𝑠𝑞} are considered in
order to evaluate the influence on the performance. Two
subsets randomly selected fromWDBC and DDSM are used
for testing the convergence of 𝛾 and the accuracy on these two
datasets is tested with different number of combining sizes.

The relationship between the parameter and the recog-
nition rate of our method on WDBC dataset of a single
run is shown in Figure 6, which shows that our method
obtains good performance in a large range; well-performed
recognition rates do not vary much with the change of the

value of 𝛾. Figure 7 shows the average classification results of
the single classifiers used by our method over ten randomly
generated training sets and test sets; 𝑠 varies from 10 to 500
with interval 10. Figure 8 shows the average classification
results of classifiers combining created by our method over
ten randomly generated training and test sets, 𝑞 varies from
10 to 50 with interval 10. In Figure 7, when the combining
size is 𝑞, its corresponding dictionary size set is tuned from
𝑆{10, 20, . . . , 490, 500}. As can be seen from Figures 7 and 8,
our proposed method outperforms the single classifiers in
terms of classification accuracy. The single classifier obtains
classification accuracies between 70.1% and 79.5%, while our
proposed method obtains classification accuracies between
80.5% and 86.2%. These results demonstrate that the perfor-
mance of the single classifier is relatively sensitive to the size
of dictionary, while our proposed method is rather robust
because of the considered combining thought.

5.3. Comparisons with Other MIL Methods. In our study, we
compare the proposed method with other MIL algorithms,
the Citation-KNN [13], expectation maximization methods
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Table 2: Classification accuracy (%).

Method 4 layers 8 layers 16 layers BoW + 4 layers 2 layers
Feature dimension 80 80 80 80 400
Accuracy 84.16 84.45 84.72 86.34 86.11

(a) (b)

(c) (d)

Figure 4: Image enhancement for ROI: (a) original, (b) after neighbor and background correction, (c) after Gamma transforming, and (d)
after Gaussian smoothing.

with diverse density (EM-DD) [14] algorithms, and the
method in [7]. Citation-KNN is an improved KNN algorithm
suitable for MIL. EM-DD is an improved DD algorithm [16].
It estimates the label by using EM approach, which is still
under the assumption of traditional MIL that there is at
least one positive instance in a positive bag and there are
all negative instances in a negative bag. But this assumption
is not suitable for BUS image classification. The method
in [7] is a novel MIL method for solving such task. First,
a self-organizing map is used to map the instance space
to the concept space, followed by the distribution of the
instances of each bag in the concept space to construct the
bag feature vector. Finally, a support vector machine (SVM)
is employed for classifying the tumors. The experimental

results have shown that the proposed method had much
better performance, and it would be useful for CAD systems
of BUS images.

The subject of this paper uses 900 mass images, in
which benign and malignant image tumors are 500 and 400,
respectively. The performance of the proposed classification
strategy is evaluated by the classification accuracy. In order
to verify the effectiveness of the method, in experimental
analysis, 10-fold cross validation approach is used.Thedataset
is randomly divided into ten groups. Each time, one group is
chosen for testing and the others are used for training. The
experiments are independently performed 100 times and the
average recognition rates on the test set are calculated and
reported.The performance of the proposed feature extraction
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Table 3: Performance compared with four other methods.

Method TP TN SE (%) SP (%) ACC (%)
Citation-KNN 45 68 75.98 80.77 78.55
DD 50 64 80.26 78.18 75.02
EM-DD 47 72 76.44 81.25 79.85
Method in [7] with SOM (49 neurons) 51 59 78.34 81.22 84.95
Method in [7] with 𝑘-means (49 neurons) 51 62 77.27 80.65 84.56
Proposed method 53 68 79.21 79.91 86.25
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Figure 5: ROC curve comparison.
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Figure 6: The recognition rates versus the parameter Gamma.

and classification strategy is evaluated by the classification
accuracy. Define the number of correctly and incorrectly
classified malignant tumors as true positive (TP) and false
negative (FN) and the number of correctly and wrongly
classified benign tumors as true negative (TN) and false
positive (FP), respectively. The sensitivity (SE) is defined as
follows: TP/(TP + FN). The specificity is defined as follows:
TN/(TN + FP). The classification accuracy (ACC) is defined
as follows: (TP + TN)/(TP + TN + FP + FN).

In [7], the clustering methods including self-organizing
map (SOM), 𝐾-means, and fuzzy 𝐶-means are used to
transfer the instance space to the concept space construct,
where SOM (49 neurons) and 𝑘-means (49 neurons) perform
the best compared with other parameter settings. Therefore,
we will use them in the experiment. Performance compared
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Figure 7: Classification accuracy of single classification trained
from different size of dictionaries.
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Figure 8: Classification accuracy of our method with different
combining size.

with four othermethods is shown in Table 3.The ROC curves
are also utilized to evaluate the performance of the proposed
method as shown in Figure 9.

As can be seen in Figure 9, the AUC of the proposed
method is higher than that of Citation-KNN, DD, and EM-
DD and is slightly higher than that of the method in [7].
The method in [7] concentrates on local texture features, but
our method considers global and local features. Also, the
sparse representation based MIL contains natural discrim-
inating information of instances and we combine multiple
classifiers by different dimensional sparse representations
so as to improve the classification problem, which is more
robust. The above two aspects are regarded the reasons to
obtain higher classification accuracy and generalization per-
formance. However, it has to be pointed out that the time of
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Figure 9: The ROC curves of the proposed method, the method
in [7], and the best of three other methods, with the ROC area of
0.86267, 0.85973, and 0.79962, respectively.

dictionary learning and sparse representations’ combination
is a little longer than that of the classification method in [7].

6. Conclusions

In order to combine mammograms global features and local
features and further improve classification accuracy, we use
feature extraction for breastmasses based on concentric circle
method after image enhancement and segmentation.When a
ROI is obtained and the features of subregions are extracted,
the classification task can be converted into an MIL task. In
order to adapt theMIL problem to single algorithms, a sparse
representation based method has been used to compute bag
features. The proposed method is utilized to classify tumors
into benign and malignant ones. The experimental results
show that the proposed method has better performance and
may be useful for CAD systems of clinical BUS images.
The limitations include the fact that parameters are obtained
mostly by trial and errormethods, and the time efficacy needs
to be enhanced. Further, types of tumors should be more
diversified so as to fully test the proposed method.
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