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Review of Recent Methodological Developments
in Group-Randomized Trials: Part 2—Analysis

In 2004, Murray et al. reviewed
methodological developments
in the design and analysis of
group-randomized trials (GRTs).
We have updated that review
with developments in analysis of
the past 13 years, with a com-
panion article to focus on de-
velopments in design.

We discuss developments in
the topics of the earlier review
(e.g., methods for parallel-arm
GRTs, individually randomized
group-treatment  trials, and
missing data) and in new topics,
including methods to account
for multiple-level clustering and
alternative estimation methods
(e.g., augmented generalized
estimating equations, targeted
maximum likelihood, and qua-
dratic inference functions).

In addition, we describe de-
velopments in analysis of alter-
native group designs (including
stepped-wedge GRTs, network-
randomized trials, and pseu-
docluster randomized trials),
which require clustering to be
accounted for in their design
and analysis. (Am J Public Health.
2017;107:1078-1086. doi:10.2105/
AJPH.2017.303707)

Elizabeth L. Turer, PhD, Melanie Prague, PhD, John A. Gallis, ScM, Fan Li, MSc, and

David M. Murray, PhD

In a group-randomized trial
(GRT), the unit of randomi-
zation is a group, and outcome
measurements are obtained for
members of those groups.'

Also called a cluster-randomized
trial or community trial,>”

a GRT is the best comparative
design available if the interven-
tion operates at a group level,
manipulates the physical or social
environment, or cannot be de-
livered to individual members of
the group without substantial risk
of contamination; it is also the
best available design in other
circumstances such as a desire for
herd immunity in studies of in-
fectious disease.'”

In GRTs, outcomes for
members of the same group are
likely to be more similar to each
other than to outcomes for
members from other groups.'
Such clustering must be
accounted for in the design to
avoid an underpowered study
and in the analysis to avoid
underestimated standard errors
and inflated type I error for the
intervention effect.'™ In ana-
lyses, regression modeling ap-
proaches are generally preferred
and most commonly used be-
cause of their ease of imple-
mentation.® Several textbooks
now address these and other
issues.' ™

In 2004, Murray et al.” pub-
lished a review of methodologi-
cal developments in both the
design and analysis of GRTs. In
the 13 years since, there have
been many developments in
each area. Here we focus on
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developments in analytic
methods, including those relevant
to our companion article that
focuses on developments in GRT
design.® (The glossary of terms is
available as a supplement to the
online version of this article at
http://www.ajph.org.) As a pair,
these articles update the 2004
review. In both, our goal is to
provide a broad and compre-
hensive review to guide readers in
seeking out appropriate materials
for their own circumstances.

ANALYSIS OF
PARALLEL-ARM GRTS
In GRTs, superiority trials
are more common than equiva-
lence or noninferiority trials:
a PubMed search by one of the
authors (D. M. M.) of studies
published in 2015 identified
562 superiority GRTs but only
1 equivalence GRT and 2 non-
inferiority GRTs. Similarly,
developments in the methods
literature have focused on
superiority GRTs, with de-
velopments for equivalence and

noninferiority GRTs limited to
small sections in 2 of the more
recent textbooks>” and a review
article on sample size methods.”
As a consequence, we focus here

on superiority GRTs.

Methods for Intervention
Effects

In GRTs, protocol violations
can lead to noncompliance at
either the group or member
level.® As a means of minimiz-
ing bias, intention-to-treat
principles are recommended
at both levels rather than are
“on-treatment” and “per-
protocol” analyses.>*> Al-
though group-level protocol
violations are usually easy to
identify, member-level compli-
ance may be more difficult to
ascertain in practice.” Jo et al.
demonstrated that analyses ig-
noring compliance information
may be underpowered to
detect an intention-to-treat ef-
fect, and they proposed a multi-
level model combined with
a mixture model.'’ The impli-
cations of group-level
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noncompliance can be consid-
erable in GRTs given the small
number of groups randomized in
many such trials.

Methods Based on
Randomization Scheme

Matching or stratification in
designs has been recommended
for some time as a way to
ensure baseline balance in
terms of important potential
confounders,! with constrained
randomization more recently
developed.'! Recent reports
suggest that this advice is followed
in most GRTs.%'*™"> Matching
and stratification in designs can be
ignored in analyses of in-
tervention effects without harm
to the type I error rate, and often
the saved degrees of freedom will
improve power.m’17

Recently, Donner et al. re-
ported that ignoring matching can
adversely affect other analyses,
such as analyses examining the
relationship between a risk factor
and an outcome'®; for this reason,
investigators considering pair
matching should consider small
strata instead (e.g., strata of 4). Li
et al."” compared model-based
and permutation methods in the
context of constrained randomi-
zation adjusting for group-level
covariates. They found that both
the adjusted F test and the per-
mutation test maintained the
nominal size and exhibited im-
proved power under constrained
randomization relative to simple
randomization.

Model-Based Methods
Model-based methods can
be broadly classified according to
the interpretation of the model
parameters. Conditional model
parameters, typically estimated
with mixed-effects regression
via maximum likelihood esti-
mation (MLE), are referred to
as cluster-specific effects (or as
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subject-specific effects in the
longitudinal analysis literature).
Effects are conditional on the
random effects used to account
for clustering and on other
covariates included in the anal-
ysis. Conditional models are of-
ten recommended for studies
focused on within-member
changes or on mediation
analyses.”

Parameters of marginal
models are usually estimated
via generalized estimating equa-
tions (GEE).2*2! They define the
marginal expectation of the de-
pendent variable as a function
of the independent variables
and assume that the variance is
a function of the mean; they
separately specify a working
correlation structure for obser-
vations made on members of
the same group. Marginal
models are often preferred for
analyses of population-level ef-
fects because the intervention
effect coefficient is interpreted
as a population-averaged effect.
In practice, marginal models are
less frequently used than condi-
tional models.®

Marginal and conditional in-
tervention effects are equal for
identity and log links,?* and the
distinction between them is im-
portant only for link functions
such as the logit for binary out-
comes. Although some authors
have advocated for the loginstead
of logit link for binary out-
comes,> this approach is not
widely used, possibly because
of model convergence problems
for certain types of data.>***
Alternatively, a modified Poisson
approach with log link and robust
standard errors could be used
in the GEE framework™ be-
cause it does not suffer from the
same convergence problems as
the binomial model with log
link?’; however, its use may be
less common because of the fa-
miliarity of logistic regression

among epidemiologists and
biostatisticians.

In practice, the question about
which types of effects, condi-
tional or marginal, are desired
depends on the research ques-
tion. It is essential to understand
the underlying assumptions of
each method: conditional models
rely on correct specification of
untestable aspects of the data
distribution, whereas marginal
models rely on a correct defini-
tion of the population of interest,
which can make it difficult to
generalize results to other pop-
ulations.”® We address each of the
2 approaches in more detail in the
sections to follow.

Conditional approaches. If the
mixed-effects model used to
estimate conditional eftects is
misspecified, the estimates are
difficult to interpret and, even if
regression diagnostics can help,
standard errors are not robust.
Fortunately, Murray et al.>* and
Fu! have shown that mixed
models are robust to substantial
violations of the normality as-
sumptions for member- and
group-level errors so long as
equal numbers of groups are
randomized to each arm. Pa-
rameter estimation via restricted
maximum likelihood estimation
is preferred to MLE when few
274 In the

case of binary outcomes, alter-

groups are available.

native methods for specifying test
degrees of freedom have been
examined in small-sample GRTs,
and the between—within method
is recommended.’**°

Multiple levels of clustering in
conditional models. GR'Ts may
involve multiple levels of clus-
tering as a result of repeated
measures on individuals or groups
or additional hierarchical levels
in the design. Murray' distin-
guished between mixed-eftects
models based on the number
of measurements included in
the analysis and recommended
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mixed-effects analysis of variance
(ANOVA) or covariance
(ANCOVA), or mixed-effects
repeated measures ANOVA or
ANCOVA, for analyses in-
volving 1 or 2 measurements per
person or per group; these models
can account for all sources of
random variation in such data if
they are properly specified.*

However, this is not the case
in analyses involving 3 or more
measurements per person or per
group, wherein the sources of
random variation may be differ-
ent; instead, such analyses require
a random coefficients model in
which random trends and in-
tercepts are calculated for each
member (in cohort GRT designs)
or group (in cohort and cross-
sectional GRT designs), average
trends and intercepts are calcu-
lated for each study arm, and the
intervention effect is the net
difference in the average study-
arm trends.”® Trends are often
estimated as linear slopes but can
take another form.

Variable group size in condi-
tional models. Johnson et al. fo-
cused on analysis of Gaussian
outcomes from GRTs with
variable group sizes.”” They
compared 10 model-based ap-
proaches and found that a 1-stage
mixed model with Kenward—
Roger”” degrees of freedom
and unconstrained variance
components performed well in
GRTs with 14 or more groups
per study arm. A 2-stage model
weighted by the inverse of the
estimated theoretical variance of
the group means and with un-
constrained variance components
performed well in GRTs with
6 or more groups per study arm.
A number of other models
resulted in an inflated type I error
rate when there was substantial
variability in group size.

Marginal approaches. When
the GEE approach is used to es-
timate marginal effects, unbiased
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intervention eftects can be esti-
mated even if the working cor-
relation structure is incorrect
(e.g., via robust standard errors
with the sandwich estimator),
although precision is increased if’
the working matrix is correct.
When degrees of freedom are
limited for the test of interest, as
often occurs in GRTs, standard
error estimation is frequently
biased downward and no method
corrects for this issue in all cases,
although several have been
proposed.”®**

Multiple levels of clustering in
marginal models. Multilevel
clustering is easy to account for
in mixed-effects regression, but
there is less literature for the
GEE approach. The alternating
logistic regression approach*
for binary and ordinal outcomes
can be used to account for cor-
relation attributable to repeated
measures on individuals within
groups, and this approach can be
implemented within a GEE
framework in both R (the alr
package) and SAS (PROC
GEE).* The second-order GEE
approach, which (by contrast
with regular GEE) models the
working correlation structure as
a function of covariates, can be
implemented in R (geepack in
R*).* For more general work-
ing correlation matrices, users
typically need to perform addi-
tional programming to provide
the appropriate covariance ma-
trix, and convergence may not be
achieved.

In addition, although the
intervention effect is unbiased
when the marginal model is not
correctly specified, standard
errors estimated via GEE may
be too small. A robust sandwich
estimator of the variance can be
used to correct this problem,
but such an approach leads to
loss of power.*” Because of this
accuracy—power trade-off,
mixed-effects models may be

a better option in GRTs in-
volving more than 2 levels, al-
though the effects estimated in
such models are conditional
rather than marginal effects.

Variable group size in marginal
models. Although GEE analysis
can accommodate variable group
sizes, informative group size can
negatively affect efficiency. In
this case, Williamson et al.>°
showed that GEE weighted by
group size can correct bias in
estimated intervention effects.
This approach is equivalent to
and less computationally de-
manding than within-cluster
resampling.”’

Advanced GEE approaches to
improve efficiency. For binary
outcomes, GEE is more con-
servative (i.e., the intervention
effect will be estimated closer to
the null) than mixed-effects

28,52
> Moreover, the

models.
standard error of the estimated
intervention effect is typically
larger when GEE is used, so
much recent effort has focused
on efficient estimation. GEE is
most efficient when the true
correlation structure of the data
is selected as the working cor-
relation structure. Hin et al.
compared multiple selection
criteria for the working corre-
lation matrix.>>

An alternative approach is
augmented GEE (AU-GEE),
a method developed for in-
dependent data in a causal in-
ference framework™* that has
been extended to clustered
data.”> AU-GEE uses covariate
information to improve effi-
ciency in a 2-stage approach
that specifies a model for the
potential outcomes under
the treatment not received.
AU-GEE is unbiased and ro-
bust to misspecification of the
potential outcome model, al-
though correct specification
improves efficiency. As for
analysis of all trials, only
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baseline covariates should be
included in AU-GEE for
analysis of GRT data because
adjustment for postbaseline
covariates may lead to bias.”®
Alternative methods are
available to account for
postbaseline, time-varying
confounding.®” >’

Alternatives to GEE. The
quadratic inference function
(QIF) method is an alternative
to GEE for estimation of mar-
ginal effects. Song et al.*’
demonstrated that QIF has ad-
vantages over GEE: it is more
efficient and more robust to
outliers, it includes a goodness-
of-fit test of the marginal mean
model, and it permits straight-
forward extensions to model
selection. In large samples, QIF
ismore efficient than GEE when
the working correlation struc-
ture for the data is mis-
specified.®! However, the
standard errors may be under-
estimated for small and medium
sample sizes or for variable
group sizes.*® More recent work
by Westgate®°
provements; Westgate used

4 . .
provides im-

a bias-corrected sandwich co-
variance estimate and simulta-
neously selected the QIF or
GEE while selecting the best
working correlation structure.®®
Despite the many attractive
properties of QIF, at this time
there are few applications in
public health.®*®

A second alternative estima-
tion method is targeted maxi-
mum likelihood estimation
(tMLE),*” a maximum likelihood—
based G-computation estimator
that targets the fit of the data-
generating distribution to reduce
bias in the parameter of interest. It
is based on a machine learning
approach that fluctuates an initial
estimate of the conditional mean
outcome and minimizes a loss
function to provide an estimate of’
the parameter of interest.”” The

approach has been used in public
health”"”? and shows much

promise for GRTs"*"* because it
can improve efficiency by simul-
taneously accounting for missing
data and chance baseline covariate
imbalance without committing to

a specific functional form.”

Permutation Methods

Gail et al. introduced permu-
tation analysis for GRTs.”® They
found that the permutation test
had nominal type I error rates
across a variety of settings com-
mon to GRTs when the
member-level errors were
Gaussian or binomial—and even
when very few heterogeneous
groups were randomized to
each study arm and the intraclass
correlation coefficient was large—
so longas equal numbers of groups
are randomized to each arm.
Murray et al.”” extended this
work, and their results showed
that unadjusted permutation tests
offer no more protection against
confounding than unadjusted
model-based tests, whereas the
adjusted versions of both tests
perform similarly. The permuta-
tion test was more powerful than
the model-based test when the
data were binomial and the
intraclass correlation coefficient
was 0.01 or above. Fu’' extended
the work to heavy-tailed and very
skewed distributions and reported
similar results.

Li et al. compared model-
based and permutation methods
in the context of constrained
randomization adjusting for
group-level covariates. They
found that the adjusted F test
and the permutation test main-
tained the nominal size and had
similar power but cautioned that
the randomization distribution
must be calculated within the
constrained randomization space
to prevent inflation of the type I

19
error rate.
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DEVELOPMENTS IN
THE ANALYSIS OF
ALTERNATIVES

Alternative group designs can
be used in place of a traditional
parallel-arm GRT." Four of
these alternatives involve ran-
domization and some form of
clustering that must be appropri-
ately accounted for in both their
design and analysis. Thus, they
share key features of the standard
parallel-arm GRT, yet all have
distinct and different features that
are important to understand.

Stepped-Wedge GRTs
Both between- and
within-group information is
available to estimate the in-
tervention effect from a stepped
wedge GRT (SW-GRT).””"®
However, because the control
condition is usually observed
earlier than the intervention
condition, time is a potential
confounder and should be ac-
commodated in analyses of
SW-GRTs, typically by ac-
counting for time asa predictor.m
As with parallel GRTs, clustering
by group must be taken into
account, and longitudinal mea-
sures for individuals can be ac-
commodated within either the
mixed-effects or the GEE
framework, although more easily
with mixed-effects models (see
the sections on multiple levels of
clustering). Conditional ap-
proaches are more commonly
used in practice and reported on
in the methods literature.””*"
Several authors have highlighted
other characteristics specific to
SW-GRTs, including lagged
intervention effects®' and fidelity

.79
loss over time.

Network-Randomized
GRTs

Because the network proper-
ties of a network-randomized
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GRT are primarily used at the
design stage,®? and because they
differ from regular GRTs only in
the novel way in which groups
are defined, theories regarding
analysis of parallel-arm GRTs
can be applied to parallel-arm
network-randomized GRTs.*?
For example, in a ring trial of
an Ebola vaccine® in which

a network was defined as all in-
dividuals who had regular phys-
ical contact with the incident
(index) case of Ebola and in which
all contacts received the vaccine
(placebo or active), standard
GRT methods were used.

For network-randomized
GRTs in which the intervention
is not directly administered to all
individuals and it is expected that
the intervention will spread over
the network (e.g., snowball trials
of an HIV prevention in-
tervention for drug users®* or
a microfinance intervention®),

86,87 .
are available to es-

methods
timate both the direct and in-
direct effects of the intervention.
When network information is
available and the outcome of
interest is known to be a dissem-
inated process, adjusting for
network features such as in-
formation on the location of
each individual within the net-
work (i.e., group) can improve
the efficiency as well as the power
of the analysis.*®

Pseudocluster
Randomized Trials
Teerenstra et al.*” compared
analytic methods for continuous
outcomes in pseudocluster ran-
domized trials, and Campbell
and Walters discussed principles
in their recent textbook.” Clus-
tering by the unit of randomi-
zation at the first stage (e.g.,
provider) must be taken into
account in both the design and
analysis of pseudocluster ran-
domized trials. No explicit

sample size or analytic methods
are known to be available for
noncontinuous outcomes.

Individually Randomized
Group-Treatment Trials
Baldwin et al. compared 4 an-
alytic models for individually ran-
domized group treatment trials and
3 methods for calculating degrees
of freedom.” A multilevel model
adapted to reflect clustering in only
1 study arm, combined with either
Satterthwaite”' or Kenward—
Roger”” degrees of freedom,
resulted in better type I error
control, better efficiency, and less
bias, even with heteroscedasticity at
the member level. This finding is
consistent with earlier reports by
Pals et al.”* and Roberts and
Roberts.” More recently, Roberts
and Walwyn’* and Andridge
et al.”® considered circumstances in
which members are associated with
more than 1 small group or change
agent. Both found that ignoring
membership in multiple groups
further inflates the type I error rate.
Roberts and Walwyn reported that
multiple-member multilevel
models maintained the nominal
type I error rate; they also provided
sample size and power formulas.”*

DEVELOPMENTS IN
ADDRESSING DATA
CHALLENGES

Data challenges include those
related to missing outcome data,
baseline imbalance of covariates,
and practical implementation in
software.

Missing Outcome Data

6,96 -
n-

Two recent reviews
dicate that missing outcome data
are common in GRTs, although
investigators frequently analyze
only available data without ac-

counting for the missing data

Turner et al.
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pattern. In cases in which the
covariate-dependent missingness
(CDM) assumption is plausible,
both mixed-eftects and GEE
models provide unbiased esti-
mates of the intervention effect
when the CDM covariates are
included in analyses of all available
data.”””® AU-GEE also can pro-
vide unbiased effects through in-
clusion of all CDM covariates in
the augmentation component,”
and it has the advantage that all
estimates can still be interpreted as
marginal effects. Other 2-stage
approaches such as multiple im-
putation (MI) and inverse prob-
ability weighting (IPW) can
provide unbiased intervention
effects under certain conditions
for more general missing-at-
random patterns and may provide
increased precision relative to
covariate-adjusted conditional or
marginal models for CDM.””"
Although there is less literature
on how to address missing-not-at-
random data,'” sensitivity analyses
are recommended.’”" A recent
review showed that very few
GRTs incorporated sensitivity an-
alyses for missing data assumptions.”
To avoid possible type I error,
MI should account for the
clustered data structure.'"*'"
Fixed group effects should not
be used owing to reduced
power.'"* For binary outcomes,
Ma et al.'” and Caille et al.'”
showed that the preferred MI
method depends on the number
of groups and the design effect,
and they noted that bias may
arise for some approaches (in-
cluding CDM). Using group-
specific mean imputation may be
adequate for continuous out-
comes.”® " Hossain et al.”®
showed that if the missing data
mechanism includes an in-
teraction between a covariate
predictive of the outcome and
the study arm, the imputation
strategy must account for this
interaction if it is to be unbiased.
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Whereas MI requires speci-
fying the distribution of the
missing data conditional on
covariates, IPW requires speci-
fying the probability of miss-
ingness depending on
covariates. Theoretically, both
approaches can be used for any
type of outcome and for CDM
as well as more general missing-
at-random mechanisms.””
Although IPW requires an ad-
ditional assumption of positivity
(all participants have a nonzero
probability of being observed),
it may be viewed as easier to
define, particularly in
the presence of nonintermittent
missingness. 107 Importantly,
and as with MI, if the missing
data mechanism includes an
interaction between a covariate
predictive of the outcome and
the study arm, the weights must
be generated by accounting for
this interaction if the strategy is

to be unbiased.'®

109,110
Prague et al.

developed
a doubly robust estimator in the
context of IPW that provides an
unbiased estimate of the in-
tervention effect if either the
marginal mean model or the
missing data model is correctly
specified. They demonstrated
that a doubly robust augmented
GEE approach can simulta-
neously account for both

CDM and baseline covariate
imbalance in GRTs when the
parameter of interest is a marginal
effect. Combining MIand IPW is
a promising new approach that
may be superior in performance
to IPW or MI alone when
there are missing covariates in

iy . 111
addition to missing outcomes.

Baseline Imbalance
of Covariates

Although design strategies
such as restricted randomiza-
tion® can help to achieve base-
line covariate balance, they may

notbe easy to implement (e.g., if
group characteristics are un-
known in advance), and chance
imbalance may arise regardless.
In this case, some form of
model-based covariate adjust-
ment could be used, such as
standard multivariable re-
gression for conditional models
or AU-GEE for marginal
models.>® The advantage of
AU-GEE in this case is that it is
doubly robust: the consistency
of the intervention effect esti-
mate requires correct specifica-
tion of either the marginal mean
structure or the treatment
model, and covariate adjust-
ment is separated from in-
tervention effect estimation,
thereby reducing the risk of
selecting the models that pro-

duce the most significant results.
The standard multivariable re-
gression adjustment approach
does not offer either of these
benefits.

Alternatively, Hansen and

112
Bowers

proposed a balancing
criterion and studied its ran-
domization distribution to si-
multaneously test for balance of’
multiple covariates in both
randomized controlled trials and
GRTs. Leyrat et al.'? suggested
using the c-statistic of the pro-
pensity score model to measure
covariate balance at the
individual level. Leon et al.'"*
recommended propensity score
matching to correct for baseline
imbalance; in a simulation
study, they reported a median
90% reduction in bias.

Nevertheless, the CONSORT
(Consolidated Standards for
Reporting of Trials) recom-
mendation is that the adjust-
ment covariates be specified

a priori for primary analyses so
that the sensitivity of the pri-
mary findings to adjustment for
covariates identified post hoc
can be tested in secondary

115
analyses.

Software

Table 1 presents information
on 3 software programs that
can be used to analyze data
from GRTs. The table is or-
ganized around topics consid-
ered here. None of the 3
programs can readily imple-
ment both QIF and tMLE for

TABLE 1—Summary of Known Functions and Procedures for Analyzing Group-Randomized Trials (GRTS)

via the Methods Described for Three Commonly Used Software Programs

Software
Method SAS Stata R
Outcome analysis of all available data
Mixed-effects models PROC MIXED mixed Ime4
PROC NLMIXED melogit nlme
PROC GLIMMIX mepoisson
GEE PROC GENMOD?® xtgee geepack/geeM
tMLE NA NA NAP
QIF %qif NA qifc
Permutation tests %ptest NA NA
Accounting for missing outcomes
Multiple imputation for clustered data %mmi_impute? REALCOM-IMPUTE pan
%mmi_analyze mi impute? jomo®
Inverse probability weighting PROC GENMOD' NAS CRTgeeDR
Causal inference-based methods"
AU-GEE NA NA CRTgeeDR
Doubly robust AU-GEE NA NA CRTgeeDR

Note. AU-GEE = augmented GEE; GEE = generalized estimating equations; NA = not applicable; QIF = quadratic in-
ference function; tMLE = targeted maximum likelihood.

°PROC GEE is another option, but it is in the experimental phase and has limited usefulness for GRTs over and above

PROC GENMOD.

BIn R, tmle is available for tMLE; at the time of writing, however, it did not allow for clustering.

“At the time of writing, we were unable to load the package, and it allows only equal cluster sizes; however, Westgate
modified the code for GRTs with variable cluster sizes in the appendix of his article.®?

90nly useful for continuous outcomes.

€In R, mice is available for multiple imputation; at the time of writing, however, it did not account for clustering.

fCannot account for imprecision in weights.
9xtgee cannot accommodate individual-level weights but, rather, only group-specific weights.

PThe 2 listed methods are related: AU-GEE accounts for baseline covariate imbalance, and doubly robust AU-GEE, an
extension of AU-GEE, accounts for both baseline covariate imbalance and missing data.
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GRTs; however, the R pro-
gram offers the most ready-to-
use functionality given its broad
applicability to the methods we
have described.

REPORTING OF
RESULTS

The CONSORT guidelines
for individually randomized
trials were extended to GRTs
in 2004, and most journals
now require authors to conform
to these guidelines. Ivers et al.
reviewed 300 GRTs published
between 2000 and 2008 and
reported that 60% and 70%,
respectively, accounted for
clustering in sample size calcu-
lation and in the analysis; 56%
involved restricted randomiza-
tion, and most (86%) allocated
more than 4 groups per arm.'”
A more recent review of 86
trials published in 2013 and
2014 showed that 77% and 78%
accounted for clustering in
sample size calculation and in
the analysis, respectively, and
51% involved some form of
restricted randomization.®

Recent work on conduct
and reporting has focused on the
ethics of GRTs given concerns

. - 116,117
regarding this issue.” " F

or
example, Sim and Dawson dis-
cussed the challenges associated
with obtaining informed con-
sent in GRTs.""® The Ottawa
statement on ethical design and
conduct of GRTs was published
in 2012,'"” with a reevaluation
in 2015."%"

CONCLUSIONS

In this review, we have sum-
marized many of the most im-
portant advances in the analysis of
GRTs during the 13 years since
the publication of the earlier re-
view by Murray et al.” Much of
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our discussion has focused on
marginal model parameter esti-
mation (e.g., AU-GEE, QIF,
tMLE) and missing data methods.
Some topics that could not

be included owing to space
limitations are survival out-

2,121-125
comes,

126,127

measurement
128,129
validity, =

Bayesian methods,

bias,
4,130-132

. 4,133-136
cost-effectiveness analyses,

mediation analyses seeking to
uncover mechanisms of ac-

. 137-140
tion,

alyze alternative GRT designs
T 1417144

and methods to an-

such as crossover GR’
Our aim here has been to
remind readers of the value of
well-thought-out analyses of
GRTs and of keeping up to
date with the many recent de-
velopments in this area. We
hope that this review, paired
with our companion review of
developments in GRT design,®
will lead to continued im-
provements in the design and
analysis of GRTs. AJPH
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