
Evaluating Public Health Interventions:
6. Modeling Ratios or Differences? Let the
Data Tell Us

We provide an overview of the

relative merits of ratio measures

(relative risks, risk ratios, and rate

ratios) compared with difference

measures (risk and rate differ-

ences). We discuss evidence that

the multiplicative model often

fits the data well, so that rarely

are interactions with other risk

factors for theoutcomeobserved

when one uses a logistic, relative

risk, or Cox regression model to

estimate the intervention effect.

As a consequence, additive

models, which estimate the risk or

rate difference, will often exhibit

interactions. Under these circum-

stances, absolute measures of ef-

fect, such as years of life lost,

disability- or quality-adjusted years

of life lost, and number needed

to treat, will not be externally

generalizable to populations

other than those with similar risk

factor distributions as the pop-

ulation in which the intervention

effect was estimated. Neverthe-

less, these absolutemeasures are

often of the greatest importance

in public health decision-making.

When studies of high-risk

study populations are used to

more efficiently estimate effects,

these populations will not be

representative of the general

population’s risk factor distribu-

tion. The relative homogeneity of

ratio versus absolute measures

will thus have important implica-

tions for the generalizability of

results across populations. (Am J

Public Health. 2017;107:1087–1091.

doi:10.2105/AJPH.2017.303810)

Donna Spiegelman, MS, ScD, and Tyler J. VanderWeele, PhD

In part one of this two-part
commentary, the sixth in this

series, we provide an overview of
the considerations involved in
the choice of the intervention
effect estimator, primarily but not
exclusively focusing on the rel-
ative merits of ratio measures
(relative risks, risk ratios, or rate
ratios), compared with difference
measures (risk or rate differences).
These terms are defined in the
box on the next page.

Nearly all studies we are aware
of in population health, including
public health evaluations, are
designed to obtain accurate and
precise measures of the primary
measure of effect, which may
sometimes mean forfeiting gen-
eralizability. By design, the dis-
tribution of the covariates will
not be representative of any
general population of interest, as
it is through these distributions
that a high-risk population is
obtained. This principle has been
exploited in epidemiology to
often favor cohort and case–
control studies in high-risk
populations because of either
high exposure levels or high
background risk—for example,
uranium miners in the study
of the health effects of radon
progeny3—or in populations in
which loss to follow-up and
misclassification can be expected
to be minimized, such as the
Nurses’ Health Study.4 Both
of these strategies provide cost-
and time-efficient means for
obtaining high-quality effect
estimates. This foundational

epidemiological design principle
has made it possible for an
enormous amount of in-
formation about risk factors for
most common diseases to have
been obtained over the past 35
years.

The logistic regression model
became quite popular in pop-
ulation sciences because it is very
stable numerically and may give
odds ratio parameter estimates
that quite closely approximate
the risk ratio when expo-
nentiated. As is well established,
the odds ratio is not a parameter
of interest in public health re-
search.5 However, in cohort
studies aimed at estimating the
cumulative incidence of disease
by the end of follow-up and in
cumulative-incidence-sampled
case–control studies, if the disease
risk is less than 10%, unless the
intervention has a very strong
effect, the odds ratio will well
approximate the risk ratio; oth-
erwise, it tends to overestimate it.
When the intervention effect is
weak or moderate, the logistic
approximation to the risk ratio
will often provide sufficient ac-
curacy for disease risks even
greater than 10%.6,7 However,

important examples in which the
logistic approximation has led us
astray have been given.8,9 The
rare disease assumption is obvi-
ated when rates are the measure
of disease frequency in cohort
studies and in incidence-density,
or risk-set-sampled case–control
studies. The appendix (available
as a supplement to the online
version of this article at http://
www.ajph.org) contains a more
in-depth overview of these
points.

THE DOMINANCE OF
THE MULTIPLICATIVE
MODEL

Expressions for the additive
and multiplicative models are
provided in the box on the next
page. Althoughmodels 1 and 2 in
the box on the next page are
interchangeable, this is not the
case when one needs to adjust
for confounding, as in models 3
and 4, located in the box on the
next page. In fact, if model 3, the
multiplicative model, fits the data
and the risk difference is of in-
terest, there will be modification
of the risk difference by each of
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the confounders, except in the
absence of an effect of the con-
founders or in the absence of an
effect of the exposure itself. This

is quite an undesirable situation
because, as is well known, when
effect modification is present, it is
desirable to report effects by each

level of the jointly cross-classified
modifiers, or some sort of aver-
aging or standardization pro-
cedure must be used to obtain an

externally generalizable effect
estimate.2

With these basic principles
established and further elaborated in

DEFINITIONS AND MODELS
The risk ratio, also known as the relative risk (RR), is the ratio of the risk, probability, or cumulative incidenceof a health outcomeof interest

in the exposed, treated, or intervention group, r1, divided by the same in the unexposed or control group, r0.The risk difference (RD) subtracts

the health outcome risk in the control group from the health outcome risk in the intervention group. That is,

RR ¼ r1=r0 and RD ¼ r1 � r0:

As a relative measure of effect, the RR is most directly estimated by themultiplicative model when it fits the data. The risk difference is an

absolutemeasure of effect, most directly estimated by the additive model when it fits the data. Cumulative incidences, risks, and proportions

are synonyms. Rates, such asmortality rates or disease incidence rates, are used as outcomemeasureswhen censoring, staggered enrollment,

or competing risks are in play. The interpretation of a risk depends critically upon the duration of follow-up over which it is calculated. Their

primarydisadvantage ismoredifficulty in interpretability, as they requireunits of person-time,which canbedifficult toexplain tonontechnical

audiences.

In an individually randomized interventionof sufficient sample size, straightforwardmethods for a single 2·2 table canbeused toestimate

RRsandRDs, as there is noneed toadjust for confounding. Alternatively, in an individually randomized interventiondesign, the risk ratio canbe

modeled on the multiplicative scale as

ð1Þ log E Yi ¼ 1jXiÞð � ¼ log Pr Yi ¼ 1jXiÞð � ¼ b0 þ b1Xi;½½
where Yi is the binary outcome upon which the intervention is focused, Xi is 1 if the participant was randomized to the intervention and

0 otherwise, eb1 is the relative risk and greater than 1 otherwise, eb0 is the risk in the control group, and E[$] denotes the expected value,

which for binary data are equivalent to the outcome model probability. If the difference measure is of interest, the risk difference can be

modeled on the additive scale as

ð2Þ E Yi ¼ 1jXið Þ ¼ Pr Yi ¼ 1jXið Þ ¼ a0 þ a1Xi;

where the risk difference isa1.The parameters ofmodels 1 and 2 have a one-to-one correspondence; thus, from the point of viewof validity, in

individually randomized studies with no loss to follow-up, staggered entry, or competing risks, the choice between the ratio or difference

measure—that is, the choice between model 1 and 2, does not matter, and a0 ¼ eb0 and a1 = eb0þb1 � eb0 .

Things change when confounding needs to be considered. As discussed in a previous column in this series,1 in cluster-randomized studies,

unless there is a large number of clusters or outcome rates between clusters are relatively constant, residual between-cluster confounding is

likely. Then, to validly estimate the intervention effects, models 1 and 2 need to be expanded:

ð3Þ log E Yij ¼ 1jXi;C1ij; � � � ;Cpij
� �� � ¼ b0 þ b1Xi þ b2C1ij þ � � � þ bpþ1Cpij;

where C1ij, . . . , Cpij are the p covariatesmeasured in the study that are needed to validly estimate the intervention effect, the relative risk, eb1 ,

for the ith participant in cluster j. A similar model could be fit if the risk difference were the parameter of interest:

ð4Þ E Yij ¼ 1jXi;C1ij; � � � ;Cpij
� � ¼ a0 þ a1Xi þ a2C1ij þ � � � þ apþ1Cpij:

Further details on definitions and models are given in the appendix, available as a supplement to the online version of this article at

http://www.ajph.org.

Althoughmodels 1 and 2 are interchangeable in the sense that a simple algebraic transformation of one leads to the other as shown here,

this is not the casewhen confounding needs to be adjusted for, as inmodels 3 and 4. In fact, if model 3fits the data and the risk difference is of

interest, except under the null, there will be modification of the risk difference by each of C1ij, . . . , Cpij, not just individually but jointly by all of

their higher order interactions. This is quite an undesirable situation because, as is well-known, when effect modification is present, it is

desirable to report effects by each level of the jointly cross-classifiedmodifiers, or some sort of averaging or standardization proceduremust

beused toobtain amarginal effect estimate.2Otherwise, ifmodel 3fits thedata, but a differencemeasure is of primary interest,model 2 could

be fit to the data and the average risk difference obtained would be applicable only to the study population at hand in a randomized trial and

those with identical, or at least similar, joint distributions of the covariates, C1ij, . . . , Cpij.
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the appendix (available as a supple-
ment to the online version of this
article at http://www.ajph.org) we
can now move to considerations
driving the choice of the model
within which the intervention ef-
fect is to be estimated. Our rec-
ommendation is simple—let the
data tell us on which scale to fit the
model. If the data fit the multipli-
cativemodel best—that is, by using
the log or logistic link function—
then that is whatmust be done, and
similarly if the additive model
provides the better fit. Methods for
formal statistical determination of
relative goodness of fit between
nonnested models such as these are
underdeveloped. An informal
comparison of log-likelihoods of
the fits of models 3 and 4 will in-
dicate that the model associated
with the largest log-likelihood is the
one with the best fit.

Parsimony is an additional
source of information: if the
log-link function provides
a model with no interaction
terms, particularly none with the
intervention variable, and the
identity link function provides
a model that needs many in-
teraction terms, finite sample
statistical stability will be ob-
tained by choosing the former.
Also of importance, the poor fit

of additivemodels tomost studies
of binary health outcomes is
underscored by the common
experience that such models
often fail to converge.

Although more formal quan-
titative work is needed, there is
extensive anecdotal evidence that
suggests that often in public
health the multiplicative models
fit the data well. The first author
has published nearly 650 peer-
reviewed scientific publications
in a diverse range of substantive
areas including chronic disease
epidemiology, HIV/AIDS, and
environmental health, and, for
nearly all of these, her primary
contribution to the research was
that of the study statistician. In
almost all of these, the multipli-
cative model fit the data consis-
tently and extraordinarily well.
The second author, who has
devoted much of his methodo-
logical work to interaction,
has numerous examples of in-
teraction on additive scales but,
in more than 230 articles, can
think of only two examples
of multiplicative interaction
that replicated across studies
(e.g., VanderWeele et al.10).

These impressions are further
confirmed by other senior re-
searchers: our department chair,

Albert Hofman, has informed us
that he cannot think of a single
important multiplicative modi-
fier uncovered during his long
research career among his more
than 2000 scientific articles.
Similarly, Walter Willett, former
chair of Harvard’s nutrition de-
partment, could think of four
multiplicative modifiers among
more than 1700 scientific
publications.

Despite an enormous amount
of research on gene–environment
interactions on the multiplica-
tive scale, very few have yet
been found and replicated.11,12

Recent careful modeling of po-
tential gene–environment in-
teraction in breast cancer research
likewise indicated little evidence
of multiplicative interaction.13

This is, of course, anecdotal ev-
idence that could be confirmed
with a more systematic and
far-reaching study, but the an-
ecdotal evidence comes from
very many studies.

Summaries of meta-analyses
have also reported higher re-
jection rates for risk difference
homogeneity than risk-ratio
homogeneity,14,15 although it is
unclear whether statistical power
favors the heterogeneity test on
one scale versus the other.16,17

There may also be mathematical
reasons for greater homogeneity
of risk ratios than risk differ-
ences.17 Although further and
more formal quantitative work
evaluating the relative degree of
heterogeneity for risk ratio versus
risk differences may be impor-
tant, the previously mentioned
considerations do seem to pro-
vide some indication that, for
whatever reason, risk ratio
modification is uncommon.
Importantly, this implies that risk
difference modification is nearly
universal, a point to which we
will return, mostly in part two of
this commentary, to appear in
a future edition of this journal.

Air Pollution Exposure
and All-Cause Mortality

To illustrate these points, we
analyzed data from the Nurses’
Health Study looking at the re-
lationship over time betweenfine
particulate matter of 2.5 mi-
crometers or less (PM2.5) expo-
sure, a constituent of air pollution
that has been found to be par-
ticularly toxic, and all-cause
mortality.18 Among 628 186
person-years between 2000 and
2006, 8617 deaths occurred
among 108 767 nurses. A Poisson

TABLE 1—Exposure to Fine Particulate Matter Air Pollution in Relation to All-Cause Mortality in the Nurses’ Health Study: United States,
2000–2006

Model % of Person-Years Rate Ratio (95% CI)/10 mg/m3 P, Test for Multiplicative Interaction
Rate Difference (95% CI)/
10 mg/m3/Person-Months P, Test for Additive Interaction

Main effect only 1.13 (1.05, 1.22) 0.0044 (–0.0084, 0.0173)

Interaction by age, y .34 < .001
< 60 13 1.35 (0.84, 2.16) –0.0008 (–0.0291, 0.0275)

60 to < 70 42 1.02 (0.86, 1.21) 0.0007 (–0.0197, 0.0211)

‡ 70 45 1.16 (1.06, 1.26) 0.0079 (–0.0100, 0.0258)

Interaction by race .76 < .001
White 94 1.12 (1.04, 1.22) 0.0037 (–0.0096, 0.0169)

Black 2 1.25 (0.94, 1.66) 0.0149 (–0.0326, 0.0624)

Other 4 1.26 (0.94, 1.68) 0.0129 (–0.0357, 0.0615)

Note.CI = confidence interval. Adjusted for age (months), calendar year, race, region, season, smoking status, pack-years, family history ofmyocardial infarction,
body mass index, hypercholesterolemia, median family income in census tract of residence, median house value in census tract of residence, physical activity,
alternate healthy eating index, nurses’ education, occupation of both parents, marital status, and husbands’ education.
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regression model with the iden-
tity link function, with adjust-
ment for five-year age groups,
was used to fit the additive
model, and the Cox model was
used to fit the multiplicative
model, with age in months as the
time scale. As is our typical ex-
perience fitting additive models,
the model gave a warning mes-
sage and it is uncertain if the
results provided are indeed the
maximum likelihood estimates,
although they may be. Table 1
provides the results on the mul-
tiplicative and additive scales. A
significant association is observed
on the multiplicative scale, but
not on the additive scale, con-
sistent with an overall poor
model fit on this scale. As is often
the case, there is no evidence for
any modification of the effect of
PM2.5 by either age or race on the
multiplicative scale. As expected,
therefore, there are substantial
and significant additive inter-
actions of the PM2.5 by both
age and race. To the extent that
they are interpretable, the strong
additive interactions will have
important implications for the
quantification and interpretation
of absolute effects, which will be
discussed in the next column
in this series.

It has proven difficult to find
examples in the literature in
which the additive model fit the
data and (negative) interaction
was evident on the multiplicative
scale, but examples certainly do
exist; two such recent examples
can be found in Crump et al.19

and Colangelo et al.20

The Search for
Interactions

Best practice in the analysis of
data, including data from ran-
domized studies, involves in-
vestigation of modification of the
effect of primary interest by the
other strong determinants of the
outcome and any other a priori
suspected modifiers. This is rec-
ommended because there is no
a priori reason to assume that the
model chosen to fit to the data
is linear in the chosen link
function—that is, that there is no
effect measure modification. The
term “measure” is inserted here
because effect modification is
scale-dependent. Again, no effect
modification of the risk ratio al-
most certainly suggests effect
modification of the risk differ-
ence, and vice versa.

Nevertheless, a number of
well-known pitfalls associated
with statistical significance tests
and related procedures compli-
cate the implementation of this
best-practice recommendation.
First, there is the multiple com-
parisons problem, in which the
probability of a chance significant
finding increases as the number
of statistical tests performed in-
creases. Many chronic diseases
and other health outcomes
of interest to public health
investigators have 20 or more
known or suspected risk factors.
Under the global null of no effect
modification by any of these, in
any given study, on average, one
should manifest as a statistically
significant modifier at the P less
than or equal to .05 level of
significance. Thus, it is addi-
tionally recommended that for

exploratory investigation of ef-
fect modification among known
and suspected risk factors for the
outcome, any significant findings
should be reported with caution,
as is recommended for explor-
atory analysis in general.

Correcting for multiple
comparisons can also often offset
any optimism that an interaction
has been detected. Often signif-
icant effect modification discov-
ered through exploratory analysis
will fail to be replicated. This
phenomenon has been well-
documented in the gene-by-
environment interaction literature
in which many such disappoint-
ments have occurred.11 Some-
times, it appears that interactions
associated with P values less than
.05 occur less than 5%of the time.
For example, in the Pooling
Project of Diet and Cancer in
Men and Women,21 we sys-
tematically worked throughmost
of their hypothesized dietary
causes of the major types of
cancer—breast, colon, lung,
ovarian, pancreatic, and renal.
Pooling of initially eight studies
to up to more than 30 presently,
from around the world, we have
diligently checked for effect
modification on the multiplica-
tive scale for each dietary expo-
sure of interest with respect to
the other major risk factors for
the cancer, but Stephanie
Smith-Warner, the leader of this
project, recalls two among hun-
dreds of diet–cancer endpoint as-
sociations investigated. What we
mostly showed was that the effect
modification reported in a small
number of publications by indi-
vidual studies was most likely

attributable to random variation
and failed to replicate in the pooled
analysis, illustrative of the multiple
comparison problem.

Next, there is the problem, in
large studies and inpooled analyses,
meta-analyses, and the analysis of
data from consortia, that the tests
for effect modification can be
“overpowered,” whereby signifi-
cant interactions can be observed
for very small departures from the
null hypothesis of no effect mod-
ification. For example, in a recent
article on the population attribut-
able risk of modifiable post-
menopausal breast cancer risk
factors among 8421 cases and
2 400000 person-years of
follow-up in the Nurses’ Health
Study, among scores of possible
two-way interactions among 13
well-established breast cancer risk
factors, three were significant at P
less than or equal to .05.22 Among
these, none had any material im-
portance whatsoever—that is,
magnitudes of the differences be-
tween relative risks for one risk
factor among levels of another
were too small to be of any con-
sequence. This is a judgment call
that needs to be made by re-
searchers leading large studies, in-
cluding public health researchers
in the context of evaluation of
large-scale interventions.

Finally, there is the “under-
powering” issue. As most evalu-
ations are not designed with
effect modification in mind, they
are justifiably not powered to
detect it. Given budgetary con-
straints, it is typically a struggle to
design a sufficiently powerful
evaluation aimed at accurate and
reliable estimation of the main

INTERNAL AND EXTERNAL VALIDITY
Internal validity occurs in the absence of bias attributable to confounding, measurement error or misclassification, and selection bias, such

that the “in-sample” effect estimate accurately approximates its underlying true value.

External validity occurswhenanestimate is both internally valid andapplicable toabroaderpopulation towhich it is thought tobe relevant.
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intervention effect. Powering
subgroup analysis is simply pro-
hibitive in most situations.23,24

FUTURE DIRECTIONS
AND CONCLUSIONS

In summary, it is best to esti-
mate intervention effects on the
scale that best fits the data, which
seems very often to be the mul-
tiplicative scale. Importantly,
whenever the results are in-
ternally valid, if effect modifica-
tion is absent across measured and
unmeasured confounders, then
results are externally generaliz-
able as well. The box on page
1090 provides definitions of in-
ternal and external validity. Even
when ratio measures are used
for modeling, various absolute
measures will often be of interest
for public health decision-mak-
ing. In the next commentary in
this series, we will discuss options
for the selection of an absolute
effect measure and methods
for producing externally valid
ones for public health and
policy purposes. Questions of
effect estimation for precision
public health25 also will be
addressed in part two of this
commentary.
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PUBLISHER’S NOTE
Aprevious versionof this paperwas
published online on June 7, 2017,
and contained errors in each of the
equations showcasedon theboxon
page 1088. These errors were the
result of improperly inserted cor-
rections during the production
process, and the authors were not
given the opportunity to verify
the changes. The errors invali-
dated themodels referred to in the
paper. Because of the nature of the
error, AJPH has elected to replace
the paper in its entirety with this
version of the paper, posted online
on June 22, 2017. This paper
corrects and replaces the earlier
posted paper published as a part of

our July 2017 issue (volume 107,
number 7).
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