Skip to main content
. 2017 Jun 7;16:68. doi: 10.1186/s12938-017-0352-9

Table 1.

Summary of the state-of-the-art methods for DME detection

References Diseases Data size Pre-processing Features Representation Classifier Evaluation Results
AMD DME Normal De-noise Flatten Aligning Cropping
Srinivansan et al. [10] 45 HoG Linear-SVM ACC 86.7%,100%,100%
Venhuizen et al. [11] 384 Texton BoW, PCA RF AUC 0.984
Liu et al. [12] 326 Edge, LBP PCA SVM-RBF AUC 0.93
Lemaître et al. [13] 32 LBP, LBP-TOP PCA, BoW, Histogram RF SE, SP 87.5%, 75%
Sankar et al. [15] 32 Pixel-intensities PCA Mahalanobis-distance to GMM SE, SP 80%, 93%
Albarrak et al. [16] 140 LBP-TOP, HoG PCA Bayesian network SE, SP 92.4%, 90.5%