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Abstract

Over the past decade, a tremendous amount of resources have been dedicated to the pursuit of 

developing genomic signatures that effectively match patients with targeted therapies. Although 

dozens of therapies that target DNA mutations have been developed, the practice of studying 

single candidate genes has limited our understanding of cancer. Moreover, many studies of 

multiple-gene signatures have been conducted for the purpose of identifying prognostic risk 

cohorts, and thus are limited for selecting personalized treatments. Existing statistical methods for 

treatment selection often model treatment-by-covariate interactions that are difficult to specify, and 

require prohibitively large patient cohorts. In this article, we describe a Bayesian predictive failure 

time (BPFT) model for treatment selection that integrates multiple-gene signatures. Our approach 

relies on a heuristic measure of similarity that determines the extent to which historically treated 

patients contribute to the outcome prediction of new patients. The similarity measure, which can 

be obtained from existing clustering methods, imparts robustness to the underlying stochastic data 

structure, which enhances feasibility in the presence of small samples. Performance of the 

proposed method is evaluated in simulation studies, and its application is demonstrated through a 

study of lung squamous cell carcinoma. Our BPFT approach is shown to effectively leverage 

genomic signatures to match patients to the therapies that are most beneficial for prolonging their 

survival.
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1 Introduction

Efforts to develop clinical therapies for cancer patients are transitioning to therapeutic 

strategies devised to target particular molecular and pathogenic features of the patient’s 

tumor in place of more conventional one-agent-fits-all therapies1. Through advances in 

cancer biology that have elucidated the distinct cancer molecular mechanisms exhibited by 

various types of tumors, some targeted therapies have been sufficiently validated for clinical 

use. An example is crizotinib for the treatment of patients with non-small-cell lung cancer 
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(NSCLC) that carries an anaplastic lymphoma kinase (ALK) rearrangement2. However, the 

study of single candidate genes or signaling pathways neglects to capture the extent of 

complexity inherent to neoplastic diseases and thus has limited our understanding of other 

areas of oncology3. Consequently, the number of targeted drugs and actionable biomarkers 

that have been sufficiently validated for clinical use are quite limited when one considers the 

tremendous amount of resources that have been dedicated over the past decade4. Moreover, 

when patients present with multiple actionable mutations, which is not uncommon for many 

cancers5, it becomes difficult to select the “optimal” treatment regime that would yield the 

best clinical outcome for a particular patient, (i.e., prolonged survival) based on the available 

data.

Several analytical approaches have been proposed for using patient/disease characteristics to 

select treatments. Biomarker-driven methods have been devised to match patients with a 

given mutation to the (expected) most effective treatment5,6,7. These approaches assume that 

patients are exchangeable within a few biomarker defined subgroups, which may not be 

adequate to account for the within-subgroup heterogeneity5. This approach is particularly 

challenging in the presence of rare mutations, since acquiring a large number of patients 

with a rare mutation is very challenging in practice6,7. Recently, the 21-gene signature 

developed by Albain et al.8 has demonstrated the clinical utility of adjuvant chemotherapies 

for women with receptor-positive breast tumors. Treatment selection based on this 21-gene 

signature may not be optimal, however, because this signature was originally developed as a 

prognostic biomarker for predicting the risk of disease recurrence or death9,10.

A few advanced statistical methods have been developed for optimal treatment selection 

with multiple gene signatures based on penalized regression models11,12. These approaches 

use generalized linear models to characterize treatment-by-covariate interactions and assume 

that patients are statistically exchangeable within some covariate-defined subgroups. 

However, the performance of these approaches particularly depends on the correct 

specification of the treatment-biomarker interaction terms, the specification of which is non-

trivial in most settings. Moreover, in the presence of a large set of predictive genomic 

features, treatment selection based on these approaches requires the estimation of a 

relatively large number of model parameters, which potentially limits their implementation 

with the relatively small training sets that are commonplace in clinical cancer studies.

In this article, we propose a Bayesian predictive framework for optimal treatment selection 

that differs fundamentally from existing methods in two major aspects13. First, instead of 

assuming full exchangeability, we assume that the extent to which two patients are 

statistically exchangeable depends on the extent to which their tumors exhibit molecular 

similarity. In other words, a historically treated patient whose tumor is (conceptually) “70%” 

molecularly similar to that of the current patient on the basis of the available data contributes 

to the prediction to the extent of 70% of the influence that would be effectuated under the 

assumption of full exchangeability. This can be achieved with a power prior model14,15, 

which is explained in detail in Section 2. Second, pairwise similarity measures based on 

multi-gene signatures can be derived from any unsupervised clustering method. We assume 

that this heuristic measure of similarity can fully capture the underlying data structure, 
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which facilitates feasibility for many cancer clinical trials that observe only a limited sample 

size.

We consider time-to-failure endpoints with treatment allocation strategies that endeavor to 

prolong the patient’s duration from treatment to disease progression/recurrence or death. We 

illustrate our approach using a publicly available dataset of lung squamous cell carcinoma 

(LUSC) from The Cancer Genome Atlas (TCGA) Data Portal. Figure 1 displays the 

corresponding Kaplan-Meier plots of progression free survival (PFS) durations. For this 

study, patients treated with the targeted therapy tended to experience prolonged PFS times. 

Using the proposed method for personalized treatment selection, however, we can identify 

the set of patients who would benefit from the targeted therapy, and importantly those who 

would also benefit from the non-targeted treatment strategies.

The remainder of this article is organized as follows. We first present our Bayesian 

predictive failure time (BPFT) models for treatment selection. We then evaluate the 

performances of the proposed method via simulation studies. Thereafter, we present our 

results from analysis of the TCGA data of LUSC patients. Finally, we close with discussion 

of potential limitations as well as provide guidance for implementing the method in practice.

2 Bayesian predictive approach for personalized treatment selection

Our proposed approach for personalized treatment selection involves the three sequential 

components that are depicted in Figure 2. These components are identifying genomic 

signatures, quantifying tumor similarity and integrating the similarity measure into a 

Bayesian predictive model for personalized treatment selection. We discuss the details of 

each component of our modeling procedures in this section.

2.1 Predictive genomic signatures

Recent awareness of the general inadequacy of single molecular biomarkers to characterize 

tumor complexity and heterogeneity, thereby limiting their use to inform treatment selection, 

has led to an increasing focus on efforts to discover multi-gene signatures that can be used to 

construct predictive biomarkers. A few examples include the 21-gene signature in breast 

cancer for adjuvant chemotherapy8,9, the 62-gene signature in pancreatic ductal 

adenocarcinoma for gemcitabine and erlotinib16, and the 15-gene signature in NSCLC for 

adjuvant cisplatin/vinorelbine17. In accordance with the aforementioned studies, our 

approach is founded on the assumption that multi-gene signatures capture enough 

information to identify distinct actionable cancer molecular features for the specific 

therapies under consideration. We do not, however, intend to develop such multi-gene 

signatures, but rather to utilize them to develop personalized treatment selection rules. Our 

case study demonstrates the approach using multi-gene signatures previously reported in the 

literature for NSCLC.

2.2 Quantifying tumor similarity with unsupervised clustering

In essence, our approach to personalized treatment selection is based on the assumption that 

the similarity measure determines the extent to which each historical patient is exchangeable 

with the current patient. We define the pairwise similarities between the current and the 
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historically treated patients as continuous variables with values in [0, 1], and record these 

quantities in the matrix of S. A value of Si,k = 0 implies that treated patient i does not 

contribute to the prediction for the current patient k, while Si,k = 1 implies that patient i 
contributes to the prediction to an extent that would be achieved under the assumption of 

statistical exchangeability. Although any clustering method can be used to quantify the 

similarities, we predominately explore a resampling method based on the consensus 

clustering (CC) algorithm18. This approach implements an existing clustering algorithm 

(e.g., k-means) multiple times and resamples both patients and covariates for each run. 

Results are recorded in the so-called “consensus matrix,” which represents the proportion of 

times every pair of patients are clustered in the same group. The “consensus matrix” 

(denoted as S) is what we use to measure the pairwise similarities. For instance, if two 

patients were clustered in the same group 70 times out of 100 runs, the proportion recorded 

in the “consensus matrix” would be 0.7. Their molecular similarity would therefore be 

quantified as 0.7, which is used in the Bayesian statistical model for predicting the 

probability of prolonging treatment failure beyond time T.

There is a large body of literature pertaining to clustering methods19 that can be used within 

our framework; however, clustering methods are intrinsically data-driven and their selection 

depends on the data at hand as well as the investigator’s preference. For example, consensus 

clustering algorithms have been widely employed in cancer studies of lung adenocarcinoma 

and glioblastoma20. Another widely utilized clustering method is the nonnegative matrix 

factorization (NMF) algorithm21, which has been applied to cluster patients with pancreatic 

ductal adenocarcinoma16. In developing personalized medicine for patients with colon 

cancer, for example, we may utilize both the NMF and the CC algorithms to quantify the 

similarities22,23. When such prior knowledge is not available, we may explore existing 

clustering methods and select the one that yields the best performance, in terms of some pre-

specified statistical measures (e.g., log-rank test) obtained from leave-one-out cross-

validation analysis; see also Section 4.3 and 4.4.

2.3 Bayesian predictive model for nonexchangeable data

We assume that patients’ tumors are nonexchangeable in the statistical model, such that the 

extent to which a patient contributes to the prediction of another is determined by their 

molecular similarity. The approach avoids the need to conduct inference with respect to a 

complex and potentially misspecified model for which the functional form of the treatment-

covariate interactions needs to be determined. In contrast, we propose a Bayesian predictive 

framework for failure time data that uses power priors to characterize inter-patient similarity 

based on their genomic profiles.

Let us assume that there are J treatments under investigation. Let δi and ti denote the failure 

status and duration from treatment to failure or loss to follow-up, respectively, for patient i = 

1, … , N. Let nj be the number of patients under the treatment j = 1, … , J such that N = Σjnj. 

Let 1 – F(ti) and f ti =
dF ti

dt  represent survival and density functions for subject i, 

respectively. For treatment j, the likelihood can be written as 
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L θ j ∣ D0 = ∏i = 1
n j f ti ∣ θ j

δi 1 − F ti ∣ θ j

1 − δi
, where θj represents the model parameters 

for treatment j, and D0 represents the observed data (failure times, censoring indicators, and 

genomic signatures). Let Si,k denote the molecular similarity measure between the 

historically treated patient i and the current patient k, and Dk represent the genomic data for 

patient k and the historical data for all patients observed before patient k. Given an initial 

prior distribution, g(θj), for θj, the posterior distribution can be written as

p θ j ∣ Dk, tk, δk

∝ f tk ∣ θ j

δk 1 − F tk ∣ θ j

1 − δk ∏
i = 1

n j
f ti ∣ θ j

δi 1 − F ti ∣ θ j

1 − δi
Si, k

g θ j ,

(1)

which is achieved with the concept of a power prior model14,15. The theoretical properties of 

power priors have been well described24,25. The power prior in (1) is 

∏i = 1
n j f ti ∣ θ j

δi 1 − F ti ∣ θ j

1 − δi
Si, k

g θ j . After the new patient k is enrolled, and that 

patient’s genomic profile is measured, we can predict the probability of prolonging 

treatment failure beyond time T under each treatment. The predictive probability under 

treatment j can be calculated as

p tk > T , δk = 0 ∣ Dk, j = ∫ 1 − F T ∣ θ j ∏
i = 1

n j
f ti ∣ θ j

δi 1 − F ti ∣ θ j

1 − δi
Si, k

g θ j

dθ j,

(2)

where the similarity measure Si,k controls the extent of the ith patient’s contribution to the 

predictive probability of prolonging treatment failure beyond time T for new patient k. As a 

special case, assuming that Si,k = 1 for all patients is equivalent to assuming that all patients 

are exchangeable; see Appendix A for more details. The treatment with the highest predicted 

probability, p(tk > T, δk = 0|Dk, j), will be recommended. A sensible choice for the duration 

target, T, is the longest observed follow-up duration26, which was used in our case study of 

LUSC. To avoid computationally expensive and unnecessarily complex models15, in our 

implementation we assume that the random patient failure times arise from an exponential 

distribution. We further assume gamma priors on the model parameters, which results in a 

closed form of expression for the predictive probability (2). More details of the derivations 
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are provided in Appendix B, along with a brief discussion on how to implement our 

framework for densities that do not admit a closed form expression of equation (2).

3 Simulation Study

In this section, we evaluate the performance of the proposed BPFT method in comparison 

with competing approaches. In the interest of maintaining a realistic correlation structure 

among gene expressions, our simulation studies are based on gene expression data from an 

actual leukemia trial27. The outcome variables were simulated from a set of survival 

distributions. We further considered three clustering methods, hierarchical (HC), k-means 

(KM) and partitioning around medoids (PAM), to measure tumour similarities, and 

implemented the CC algorithm using the R package ConsensusCluster Plus28,29. For 

simplicity, we set the duration target time T = 5 for all methods across all scenarios.

For the purpose of comparison, we evaluate the performance of a simplified version of our 

Bayesian predictive modeling approach where all observations are considered exchangeable, 

without consideration of the similarity measures. We refer to this approach as the naive 

method. Another simplified version of our approach assumes exchangeability for all patients 

within identical clusters obtained from the aforementioned clustering algorithms. We also 

compare to this approach using a single implementation of the clustering method (unlike CC 

algorithms which are run multiple times) to yield a similarity matrix which consists of only 

1s and 0s. We refer to these methods as BPFT-e in general, or specifically BPFT-eHC, 

BPFT-eKM and BPFT-ePAM for the clustering methods of HC, KM and PAM, respectively. 

In addition, we compare our approach with accelerated failure time regression models 

(RAFT). Specifically, we fit a regression model with treatment, genes and gene-by-treatment 

interactions as covariates. Thereafter, we utilize this model to calculate the predicted 

probabilities in (2) under each treatment regime. Again, the optimal treatment regime is the 

one that attains the highest predicted probability given T . Due to the limited sample size, the 

RAFT approach is applicable only when the number of genes is relatively small (e.g., ≤ 15). 

Performance was additionally compared to an adaptive-LASSO penalized regression method 

recently developed for treatment selection using AFT models. Our simulation study 

implements this approach (referred to hereafter as OTR) using the R package OT Rselect11. 

Performance for all methods (BPFT, naive, OTR and RAFT approaches) was compared 

using various sampling models for the outcomes, as well as differing sets of genes.

3.1 Simulation design

We simulated the data based on actual genomic features (covariate) from a well-known data 

set of leukemia (http://www.pnas.org/content/101/12/4164.full?tab=ds). This data set 

contained gene expressions for a total of 5,000 genes among 11 patients diagnosed with 

acute myelogenous leukemia (AML) and 27 patients diagnosed with acute lymphoblastic 

leukemia (ALL; 19 ALL-B and 8 ALL-T)21,27. In order to evaluate the properties of the 

method using a sample size that was comparable to the 116 patients included in our case 

study (see Section 4), we expanded our leukemia data set to 38×3=114 patients. Specifically, 

we first clustered the top 700 varied genes (the maximum minus the minimum level of 

observed gene expression), and selected 95 gene clusters that contained at least three genes. 
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We then calculated gene correlations within each gene group. Assuming that the first three 

highly correlated genes (referred to as features hereafter) are exchangeable, each patient was 

duplicated into three. Alternatively, we could have considered generating gene expression 

data with some well-studied algorithms30. Our approach maintains the complex and 

heterogeneous structure exhibited in the original leukemia data set, however, which is 

critical to effectuating meaningful evaluations of performance in the considered cancer 

genomics settings. Our gene expression data matrix consists of 114 subjects and 95 genes.

We considered two treatments in the simulation study, and used piecewise constant 

exponential distributions to generate survival outcomes. For each patient, we determined the 

true hazard function as λ0(t)exp{−(β0 + β1Zi + β2Ai + β3AiZi)}, where (β0, β1, β2) = (1.7, 

−0.5, −0.1, 1) were fixed in all scenarios; Ai = {0, 1} represents the treatment and Zi is the 

second principal component obtained from principal component analysis (PCA) of the 95 

selected genes. The Zis were power transformed to avoid unrealistic realizations of the 

hazard function as well maintain similar hazard function for patients with similar tumour 

characteristics. For this simulation design, the optimal treatments were A = 0 for the first 24 

patients (ALL-T), and A = 1 for all other patients. We considered four piecewise (12 equally 

spaced time intervals) constant exponential distributions (Figure 5 in Appendix C). These 

scenarios represent a broad range of hazard functions commonly observed in medical 

research. Scenario 1 reflects the special case where λ0(t) = 1 for all time intervals 

(exponential distribution). Scenarios 2-4 were designed to evaluate the performances of the 

proposed methods in the situation when the model assumptions are violated, i.e., the 

generated survival outcomes were not exponentially distributed. For each scenario, we 

generated 100 duplicated data sets for model evaluation.

3.2 Analyzing the simulated data

Selecting genomic signatures—We considered two genomic signatures. First, we 

considered the signature we used to simulate the outcome variables, i.e., the 95-gene 

signature. Second, we defined a signature that included the 15 genes with the highest 

marginal association with the clinical outcome. Specifically, we fitted an AFT regression 

model with Weibull error terms31 for each gene, including treatment and gene-by-treatment 

interactions as covariates. Genes were ranked by the p-values of their interaction terms, and 

the top 15 genes were selected (referred as the 15i-gene signature).

Leave-one-out cross-validation analysis—To avoid overly optimistic results, we 

conducted leave-one-out cross-validation (LOOCV) analyses. With LOOCV, the patient 

cohort that is used to train the statistical model and select an optimal treatment excludes the 

patient for which the prediction is taking place. Therefore, this patient effectively contributes 

no information to his/her own prediction, which reflects actual clinical practice. For 

implementation of the RAFT and OTR methods, we used the LOOCV procedure that is 

similar to that described by Derubeis at al.32. We implemented the proposed BPFT approach 

by first selecting the optimal number of clusters (rank) via evaluating the 5-year restricted 

mean survival times (RMSTs) on the training data with one patient excluded. We then 

predicted the optimal treatment for that patient with the selected rank, and repeated this 

procedure n = 114 times until all patients were matched to their recommended treatments. 
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Note that all analyses for the BPFT method were based on the exponential survival model 

presented in Section 2.3.

Simulation results—Since the true optimal treatment is known for each patient in the 

simulation study, we evaluated the performance of competing methods by comparing the 

number of patients who were recommended to their corresponding non-optimal/optimal 

treatment. We observed that in general the proposed methods perform better than the RAFT, 

OTR and the naive method, where on average, substantially less patients were assigned the 

non-optimal treatments; see Tables 1 and 2. We also found that the advantages of the 

proposed methods varied for different similarity measures, i.e., assuming that patients are 

nonexchangeable generally resulted in fewer non-optimal assignments when compared to 

methods that assume exchangeability within clusters. Note that, while the OTR method uses 

penalized estimation to handle high-dimensional data, we encountered numerical issues 

when all 95 features were included in the prediction model (n=114). We therefore only 

report results for the OTR methods using the 15i-gene signature. Secondly, we observed 

comparable results for each method across the four scenarios, which indicates the robustness 

of our proposed method under various failure time distributions. For example, the average 

count (CT) of patients who would be wrongly assigned the non-optimal treatments was 1.09 

for BPFT (with KM) in scenario 1, while the corresponding numbers were (0.78, 1.45, 1.28) 

for scenarios 2-4, respectively (Tables 1). Third, results obtained with 95-gene signature 

were marginally better than those using 15i-gene signature. This is not surprising as both the 

95-gene and the 15i-gene signature are highly correlated with the outcomes. These results 

are also summarized via box plots, see Figures 6 and 7 in Appendix D, which are consistent 

with the results presented in Tables 1 and 2.

4 A case study for patients with lung squamous cell carcinoma

4.1 The LUSC data

We applied the proposed methods to the publicly available data of LUSC from The Cancer 

Genome Atlas Data Portal. We downloaded both the clinical and level 3 RNASeqV2 mRNA 

data from https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. The RNASeqV2 data are read 

counts, and therefore were transformed by subtracting the mean and dividing by the standard 

deviation. We focused on a subset of patients who received two therapeutic regimes of 

targeted (n=60) and non-targeted (n=188) treatments. Since TCGA data are generally 

observational, to avoid potentially biased estimates of the treatment effects, we matched the 

data with the baseline covariates of gender, age, tumor stage and initial year of pathological 

diagnosis (IYPD)33. Specifically, we matched 58 pairs of patients with the 30-day landmark 

using the R package of MatchIt (with the default settings)34; the resultant standardized 

differences were −0.037, 0.212, 0.000, and 0.028 for gender, age, tumor stage and IYPD, 

respectively. All standardized mean differences were less than 0.25, thereby satisfying 

general standards for effectuating quality matches35. Note that two patients who were 

administered the targeted drug were excluded due to their short survival time ( ≤ 30 days) 

after enrollment. The total number of treatment failures was 50 for the matched dataset, with 

32 failures occurring in the non-targeted treatment group. The longest follow-up time was 11 
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years; and the estimated 3-year RMSTs were 2.39 and 1.93 years for patients who received 

targeted and non-targeted treatments, respectively.

4.2 Selecting genomic signatures

We consider three types of genomic signatures. First, we considered several genomic 

signatures previously reported in the literature. These signatures were often cross-validated 

and hence might be viewed as widely robust. However, many of them were developed as 

prognostic biomarkers that may separate patients into different risk subgroups, and thus may 

not be optimal for treatment selection9,10. Second, we follow the same procedure as 

described in Section 3.3 and include the genes with the highest marginal association with the 

clinical outcome as a signature for data analysis. Third, we considered gene signatures 

defined by the top varied genes, selected on the basis of the difference in expression/

sequencing levels between the maximum and minimum values.

Genomic signatures from existing articles were labeled with the first author’s last name plus 

the number of the reported genes. Similarly, we used Topi15 and Topi50 to indicate genes 

that are within the top 15 and 50 statistically significant gene-treatment interactions, 

respectively, and Topv100, Topv200 and Topv500 to respectively denote the top 100, 200 

and 500 varied genes. We investigated a total of 10 signatures, including Topv100, Topv200, 

Topv500, Topi15, Topi50, Zun15, Sun50A (adenocarcinoma), Sun50S (squamous cell 

carcinoma), Kaufman13 (squamous cell carcinoma) and Kaufman16 

(adenocarcinoma)17,36,37. For BPFT, we explored all signatures with all clustering methods 

with ranks of 2-15. However, since we only included 116 patients, we only implemented 

regression methods using the signatures that consist of only a small number of genes ( ≤ 20).

4.3 Model evaluation and comparison

In this section, we describe how to evaluate the predictive performance of BFPT and its 

competing approaches. This can be done by comparing treatment effects among the stratified 

subgroups defined by each method38. Specifically, after patients are assigned to their 

corresponding recommended treatments, they can be stratified into different groups, as 

shown in the Table 3. Here, a and d represent the patients who actually received the 

predicted optimal treatments A0 and A1, respectively; whereas b and c represent those who 

did not receive the predicted optimal treatments. Two levels of comparisons can be 

conducted, namely the overall comparison of a + d versus b + c and the treatment-level 

comparison of a versus b and c versus d. The former measures the overall benefit from this 

model (these results are reported in Section 4.4), and the later identifies patients who may or 

may not benefit from a certain treatment (these results are reported in Appendix E).

There are at least three statistical measures that can be used to compare between-group 

differences in time-to-failure analysis, namely, the log-rank test, simple nonparametric 

hazard estimation (Kaplan-Meier) and RMST26. The RMST can be evaluated as the 

integration of the survival function up to a restricted, clinically relevant follow-up duration 

τ, which is often pre-specified in the trial protocol or selected to be near the last observed 

event time26,39. For the case study of LUSC, we set the restricted time τ at 3 years. Note that 

the restricted time τ is chosen for the purpose of evaluating a treatment selection method, 
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while failure time target T is used within the treatment selection method to compute the 

“failure time probability”. In other words, we calculate the τ-time RMST using the Kaplan-

Meier estimates after we apply the treatment selection methods (with time T ) to stratify 

patients into treatment-sensitive subgroups. Unlike the τ-time RMST, the T-time survival 

probabilities may not be directly compared among different approaches (e.g., RAFT versus 

BPFT) since they are based on different modeling assumptions. It should be noted that these 

are still valid for comparing among treatments within the same method).

For RAFT, we selected the Weibull AFT models for the sake of simplicity. We used the R 
package of survival to implement these analyses, and used the package survRM2 to obtain 

the resulting 95% confidence intervals (CIs)31,40. Aware of conducting multiple tests, we 

adjusted for multiple comparisons using the conservative Bonferroni method41. Specifically, 

for a given gene signature, we explored three cluster-based models and therefore conducted 

3 hypothesis tests. The significance threshold was set to 0.0167 (0.05/3). We also report the 

median survival times for the sake of completeness.

4.4 Results

All results are based on LOOCV analyses. The main results of our analyses are summarized 

in Table 4. For a given gene signature, we only report the results for the clustering method 

that generated the longest estimated 3-year RMST. On the basis of the results displayed in 

Table 4, we have several observations. First, we found that some gene signatures worked 

better than others. For example, the best result of the 3-year RMST was 2.58 (95% CI, 2.36 

– 2.80) years, which was obtained from Topi50 using the Bayesian predictive method with 

PAM. This represents, on average, a 19% prolonged 3-year RMST compared to those 

obtained from the alternative treatment assignment strategy (2.16 years) of “randomly” 

allocating both the targeted and non-targeted treatments. We also observed similar results for 

the signatures of Topi15 and Kaufman13 (using BPFT approaches), and to a lesser extent 

effectuated improved results for other signatures (Table 4). However, the signatures of 

Topv100, Topv200, Topv500 and Sun50A failed to effectively identify treatment-sensitive 

subgroups (results not shown). Second, we found that the BPFT approaches generally 

performed better than the RAFT methods, which failed to effectively utilize some of the 

selected gene signatures, such as Kaufman13. For this signature, the RAFT generated results 

similar to those obtained by the simple “randomization” method. The results are also 

depicted in the Kaplan-Meier plots in Figure 3 and Figure 4 for BPFT and RAFT, 

respectively. Due to the lack of model convergence of RAFT in the presence of a large 

number of genes, Figure 4 does not include the KM plots for the Sun50S and Topi50 

signatures. The survival curves for the signatures of Topi15 and Topi50 are well 

differentiated, indicating substantially improved clinical benefits for patients who received 

their recommended treatment when compared to those who did not. We also observed that p-

values for the BPFT with the two signatures are less than the conservative Bonferroni 

significant threshold value of 0.0167. Note that results from the OTR and the BPFT-e are 

presented in Table 5 of Appendix E. We observed that the proposed methods of BPFT and 

BPFT-e provided close/comparable result; while the OTR method failed to distinguish 

subgroups of patients on the basis of their optimal treatments. Additional comparisons are 

presented in Appendix E.
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We have a few remarks on these results. In our analyses, we set the hyperparameters to α = 

β = 0.01. We also conducted sensitivity analysis for α = β = {0.5, 0.1, 0.05, 0.005} using the 

topi50 signature, and found that our approach is robust to that specification, as the prediction 

results were almost identical. In addition, in assessing the performance of these methods, we 

recommend evaluating all of the summary measures of the log-rank test, Kaplan-Meier plot 

and RMST. For example, the BPFT method with the signature of Topi15 generated results 

for the 3-year RMST that were close to those obtained from Kaufman13, whereas the 

Topi15 performed better when using the p-values and Kaplan-Meier plots as the criteria 

(Figure 3). Moreover, the number of genes included in a signature should also be considered 

carefully. By the principle of Occam’s razor, the signature of Topi15 should be preferred 

over that of Topi50 as BPFT methods generated very close results with the two signatures 

yet Topi15 involved fewer genes. Additionally, one must select a clustering algorithm before 

using the BPFT method to predict the optimal treatment for a future patient. This can be 

done using the procedure that was discussed in Section 3.2, where we use the training 

dataset to select the best rank for each patient. Alternatively, we can use the most frequently 

selected rank in the previously conducted LOOCV analyses, which was rank 10 in our case 

study using the genomic feature of topi15 (which was chosen as best 72 out of 116 runs).

5 Discussion

We proposed a Bayesian predictive modeling framework for treatment selection with time-

to-failure endpoints and a large set of genomic features. To account for cancer tumor 

heterogeneities and obtain results that have direct clinical interpretations, we derived a 

strategy for personalized treatment selection that is based on a power prior failure time 

model14,15,26, wherein the extent to which a patient contributes to the outcome prediction of 

another is determined by the extent to which their tumors exhibit molecular similarity. We 

conducted empirical studies to evaluate the performance of our proposed approaches, and 

applied these methods to a study of LUSC to illustrate their clinical utility for treatment 

selection. We also described a procedure to select potentially promising genomic signatures 

for treatment selection. The combination of our Bayesian approach with these genomic 

signatures and those reported by Kaufman et al.37 revealed the presence of treatment-by-

gene interaction effects that elucidate subgroups of patient who might benefit from the 

targeted/non-targeted regimes. We explored other genomic signatures from the existing 

literature and applied conventional regression-based approaches, which were less effective at 

identifying subgroups of patients who might benefit from non-targeted treatments. These 

results demonstrate the utility of our proposed framework in developing optimal treatment 

selection rules.

Following advances in high-throughput technology, tremendous resources have been 

allocated to the development of predictive genomic signatures. There have been additional 

efforts to establish criteria and guidance for discovery and translation of genomic signatures. 

For example, a checklist of criteria developed by the US National Cancer Institute covers 

important issues pertaining to data quality, clinical trial design, and statistical inference42. 

Our investigation used TCGA data of patients with LUSC, which were obtained from 

observational studies. We urge researchers to match the observational data, as illustrated in 

the previous section, and encourage the use of training data from randomized clinical trials. 
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We implemented cross-validation analyses to take into account sample variations of future 

patients, and demonstrated the extent to which a patient would benefit from the 

recommended treatments. The clinical utilities of these predictive genomic signatures need 

to be further validated prior to their use in clinical practice, however.

In this paper we focused on AFT models. Note that for time-to-failure endpoints, statistical 

methods for personalized treatment selection based on penalized likelihoods have been 

proposed for Cox models as well12. Although this approach works well with a limited 

number of covariates12, it is not designed, at least in the current implementation, to handle 

the large number of genomics covariates we were interested in. We therefore did not 

compare this method with the other approaches we analyzed in this manuscript.

In this article, we endeavored to develop a statistically sound and computationally efficient 

method that provides easily interpretable results for personalized treatment selection. There 

are a few limitations to using the proposed approach, which we intend to resolve in future 

research. For example, the method’s effectiveness might be impacted by the chosen 

clustering algorithm, the selection of which is intrinsically data-driven. For a small set of 

clustering methods, as we considered in this study, the clustering method and ranks may be 

treated as random factors and modeled simultaneously, which might be useful to overcome 

their pre-specification. While accommodating all levels of uncertainty is attractive in theory, 

we expect that implementation of this approach would be challenging and computationally 

burdensome in practice as model-based clustering does not usually lead to closed form 

posterior distributions. In addition, the proposed method may not work when applied to a 

gene signature that includes too many noisy genes. We used regression models (with 

covariate-by-treatment interactions) to obtain an initial set of candidate signatures using 

those that showed promise in prior studies. In future work, we intend to explore additional 

gene signatures, including those that are more biologically oriented37,43. Finally, our current 

modeling framework does not incorporate clinical prognostic covariates. We are now 

investigating a more advanced statistical model that simultaneously incorporates both 

clinical and genomic data.
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Appendix A Power priors, non-exchageable data, and treatment selection

Endeavors to establish effective treatment strategies for many cancer subtypes are 

compounded by the inherent complexity of the disease, whereby collections of cells within 

the same tumor may exhibit distinct phenotypic and morphological profiles44. Thus, 

quantitative approaches for applications of precision medicine in oncology are limited by 

methods that attempt to identify discrete, homogeneous subtypes using models that rely on 

assumptions of statistical exchangeability which fail to reflect the personalized nature of 

tumor heterogeneity. By way of contrast, the methodology proposed in this article facilitates 
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personalized treatment selection on the basis of measures of similarity computed from the 

essential components of tumor heterogeneity. The methodology is founded on a power prior 

modeling framework that effectively relaxes assumptions of interpatient exchangeability, but 

rather assumes that the patients represent a nonexchangeable cohort such that their influence 

or contributions to the outcome prediction of other patients is determined by the similarity 

measure. Concepts of non- and partial exchangeability have been described by several 

authors (i.e. see45,46,47 and the references therein). Additionally, several formal definitions 

of partial exchangeability are available in the Bayesian methodology literature45,48. 

Moreover, the concept has been considered in the context of Bayesian accelerated failure 

time models49.

For power prior approaches a power parameter, denoted as a0, is used to quantify the extent 

to which a historical data cohort D0 influences the estimation of model parameters (θ) on the 

basis of a current or primary data source D. Ibrahim and Chen referred to a0 as a measure of 

intercohort heterogeneity14. The power prior is defined as p(θj|D0, a0) ∞ L(θj|D0)a0g(θj) 

where θj represents model parameters for treatment j, 0 ≤ a0 ≤ 1 is the scalar power 

parameter and g(θj) is the initial prior for θj. The hyperparameter a0 can be assumed known 

and thereby fixed on the basis of sensitivity analyses (e.g., a0 = 0, 1), or modeled as random 

component. The latter approach presents additional complexities for most likelihoods, 

however, including computational costs25. When multiple M sources of historical data exist 

D0 = (D01, … , D0M), one can define a vector of power parameters to reflect the contribution 

of each specific historical source, a0 = (a01, … a0M), resulting in the following prior 

distribution given the historical data cohorts p θ j ∣ D0, a0 ∝ ∏m = 1
M L θ j ∣ D0m

a0M g θ j . 

The posterior distribution is written as 

p θ j ∣ D, D0, a0 ∝ L θ j ∣ D ∏m = 1
L0 L θ j ∣ D0m

a0m g θ j , where L(θj|D) is the likelihood of 

the current data14. In this article, we consider a special case of M = nj such that each 

historically treated patient is considered to be an individual “data source” for selecting a 

treatment strategy for a new patient D = (tk, δk). Replacing a0m with the molecular similarity 

measure ofSi,k, we can write the power prior as 

∏i = 1
n j f ti ∣ θ j

δi 1 − F ti ∣ θ j

1 − δi
Si, k

g θ j . Let Dk represent the genomic data for patient 

k and the historical data of D0, the posterior distribution can be written as 

p θ j ∣ Dk, tk, δk ∝ f tk ∣ θ j

δk 1 − F tk ∣ θ j

1 − δk∏i = 1
n j f ti ∣ θ j

δi 1 − F ti ∣ θ j

1 − δi
Si, k

g

θ j

(1).

As we can see from equation (1), the nonexchangeable data structure is taken into account 

via the power function such that the likelihood of each of the historically treated patients 
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with exponent Si,k, a heuristic similarity measure obtained from existing clustering methods. 

If Si,k = 0, the posterior is updated via the initial prior g(θj). Thus, historically treated 

patients do not contribute to the prediction for the current patient k. On the other hand, if Si,k 

= 1, each historically treated contributes to the prediction to an extent that would be obtained 

from assuming that all patients are statistically exchangeable (naive method). Another 

special case can be accommodated whereby Si,k = 1 or 0 for a distinct subsets of patients. 

This is equivalent to assuming partial exchangeability defined by Diaconis (1988) as well by 

Walker and Mallick (1999)45,49; see Section 3 for the method of BPFT-e with this 

assumption.

Appendix B Predictive T-failure time probability derivation

The predicted probability of prolonging treatment failure beyond time T using the power 

prior framework follows as, is written as

p tk > T , δk = 0 ∣ Dk, j = ∫ 1 − F T ∣ θ j ∏
i = 1

n j
f ti ∣ θ j

δi 1 − F ti ∣ θ j

1 − δi
Si, k

g θ j dθ j .

For exponential models, the density and survival function for subject i are f(ti) = λexp(−λti) 
and 1 − F(ti) = exp(−λti), respectively. The above equation becomes

p tk > T , δk = 1 ∣ Dk, j = ∫ exp − λT ∏
i = 1

n j
λexp − λti

δi exp − λti
1 − δi

Si, k
g θ j dθ j .

With the initial prior of Gamma(α, β) ∞ λα−1exp(−λβ), the power prior predicted survival 

probability is given as

p tk > T , δk = 0 ∣ Dk, j

= C∫ exp − λT ∏
i = 1

n
λ
δiexp − λti

Si, k
g θ j λα − 1exp − λβ dθ j

= C∫ exp − λT λ
∑i = 1

n j Si, kδi + α − 1
exp − λ ∑

i = 1

n
Si, kti + β dθ j,

where C =
β1

α1

Γ α1
 for α1 = ∑i = 1

n j Si, kδi + α and β1 = ∑i = 1
n j Si, kti + β. The kernel for the 

integrand is Gamma(α = ∑i = 1
n j Si, kδi + α, β = ∑i = 1

n j Si, kti + β + T), with a normal constant 

factor of C =
β1

α1

Γ α1
. With a little algebra, we can show that
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p tk > T , δk = 0 ∣ Dk, j = C
C

=
∑i = 1

n j Si, kti + β

∑i = 1
n j Si, kti + β + T

∑i = 1
n j Si, kδi + α

.

In contrast, assuming exchangeability is equivalent to assuming that Si,k = 1 for all patients, 

and thus the predictive probability is reduced to 
∑i = 1

n j ti + β

∑i = 1
n j ti + β + T

∑i = 1
n j δi + α

, represents the 

prediction attained for the naive method that we implemented in our simulation study.

For exponential densities with the conjugate Gamma priors, we showed how to obtain a 

closed form for the calculation of the predictive failure time probability. This analytical 

expression greatly eases the implementation of our approaches for treatment selection. At 

the same time, any proper time-to-failure densities that may better fit/describe the data at 

hand can be implemented within our framework. Unfortunately, many robust and flexible 

survival models will not yield closed form expression of the predictive probabilities; 

moreover, complex survival models require a larger sample size, which makes them not the 

ideal approach for the applications we are interested in.

When survival models alternative to the exponential distribution are preferred, the predictive 

distribution can be calculated via Markov chain Monte Carlo (MCMC), or alternative 

approaches. Note that the quantity in (2) is indeed the power prior predictive probability of 

prolonging treatment failure beyond time T , whose calculation requires one to integrate out 

the model parameters θjs from the power prior 

∏i = 1
n j f ti ∣ θ j

δi 1 − F ti ∣ θ j

1 − δi
Si, k

g θ j . In our framework, exchangeability is 

determined by the similarity measures and incorporated into the prediction using power 

prior, which consists of the product of an initial prior and power functions that utilize 

historical data likelihoods as bases and similarity measures as exponents. From this point of 

view, the model parameters can be sampled from the power prior by means of standard 

sampling approaches which are described elsewhere15. Given a desired number of samples 

from the power prior distribution, we can approximate the quantity in (2) with its Monte 

Carlo estimate, and then assign patients their optimal treatment accordingly.

Ma et al. Page 15

Stat Methods Med Res. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix C Plots describing the simulation scenarios

Figure 5. 
Plots of the baseline hazard rates for our simulation studies. Scenario 1 is a special case 

where λ0(t) = 1 for all time intervals. In scenario 2, the hazard rates were set to 

monotonically decreasing. In contrast, we set the hazard rates to be monotonically 

increasing in scenario 3. Last in scenario 4, we set the hazard rates first monotonically 

increasing and then monotonically decreasing after time 7.

Ma et al. Page 16

Stat Methods Med Res. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix D Boxplots for the average number of patients who were 

assigned to non-optimal treatments

Figure 6. 
Box plots of the simulation results for four scenarios based on the 95-gene signature. CT 

represents the average number of patients who were assigned to non-optimal treatments. We 

analyzed the data with the naive method and the proposed Bayesian predictive failure time 

(BPFT) methods with unsupervised clustering based on the consensus clustering approach 
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using hierarchical (HC), k-means (KM) and partitioning around medoids (PAM) algorithms. 

Clustering approaches were implemented with the LOOCV algorithm described in Section 

3.2

Figure 7. 
Box plots of the simulation results for four scenarios based on the signature of 15-feature. 

CT represents the average number of patients who were assigned to non-optimal treatments. 

We analyzed the data with the RAFT and the proposed Bayesian predictive failure time 
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(BPFT) methods with unsupervised clustering based on the consensus clustering approach 

using hierarchical (HC), k-means (KM) and partitioning around medoids (PAM) algorithms. 

ALL approaches were implemented with the LOOCV algorithm described in Section 3.2

Appendix E Treatment-stratified results for estimation of 3-year RMST

Results from the methods of OTR and BPFT-e are presented in Table 5. We found that 

results obtained from BPFT-e are generally comparable with those obtained from BPFT. 

These results are not surprising since model comparisons for the real data analyses are based 

on the summary measures of RMST whose calculation is determined by the observed 

survival times. Although in the simulation studies the BPFT-e methods generally assigned 

several more patients to the non-optimal treatment (with relatively large standard 

deviations), the summary measure of RMST may not be significantly affected. On the other 

hand, we found that the OTR methods performed worse than the RAFT method, in that it 

often failed to select the optimal treatments for all signatures. It has been reported that the 

OTR method performed worse when the censoring rate is high (e.g.,40%)11. To investigate 

this, we simulated two additional datasets using the same settings as for scenario 3 with the 

censoring rates of 15% and 40%, respectively. Note that we set the censoring rate as 0 for 

the simulation studies in Section 3. The average numbers of patients assigned to the non-

optimal treatments were 37.4 (SD=27) and 59.1 (SD=24.8) for the method of OTR with the 

censoring rates of 15% and 40%, respectively; while the corresponding numbers were 23.0 

(SD=8.2) and 27.5 (SD=9) for the method of RAFT, respectively. The reader should note 

that the original study of OTR utilized a much large patient cohort (n=2137)11, and thus the 

poor performance of the OTR methods may be due to the relatively small sample size in our 

study (n=116).

We also evaluated the 3-year restricted mean survival time (RMST) for the targeted therapies 

based on the subgroup of patients who received the predicted optimal treatment as targeted 

therapies; and in the same manner calculated the 3-year RMST for the non-targeted 

therapies. Results obtained using BPFT and RAFT are displayed in Table 6 and Table 7, 

respectively. Note that results for signatures of Sun50S and Topi50 are not available with the 

method of RAFT because of their relatively large number of selected genes.

We observed that each method identified a subgroup of patients who might be sensitive to 

the targeted treatment, i.e., longer 3-year RMSTs for those who received the targeted drugs 

compared to those who did not. However, for the subgroup of patients who might benefit 

from the non-targeted treatment, these methods performed substantially different with the 

combination of different gene signatures. For BPFT with the gene signature of Topi15, the 

3-year RMST was estimated as 2.59 years (95% CI, 2.17 – 3.01) for patients for whom the 

non-targeted therapy was recommended and who received the non-targeted therapy, and 1.9 

years (95% CI, 1.40 – 2.39) for those for whom the targeted therapy was recommended, but 

who received the non-targeted therapy. The corresponding quantities for the RAFT method 

were estimated as 2.13 years (95% CI, 1.69 – 2.58) and 2.04 years (95% CI, 1.59 – 2.49), 

respectively. Thus, when compared with the RAFT method, the BPFT method was more 

efficient at using these data to identify the subgroup of patients who might be sensitive to the 

non-targeted drugs. We observed similar results for the signatures of Topi50, Kaufman13 
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and Kaufman16 (Table 6). More importantly, these results demonstrate that the method 

better leverages the interaction effects between the treatment and the gene signatures, which 

are the basis for personalized treatment selection.

Table 5

Results of the estimated 3-year restricted mean survival time (RMST) using the proposed 

Bayesian predictive failure time methods (assuming exchangeability within estimated 

clusters, BPFT-e), and the penalized regression based approach (OTR). All results were 

obtained from Leave-one-out cross-validation analyses.

Signature Method Received
Recommended
Treatment

Patient
No.(event)

Median RMST 0.95CI

Zhu15

BPFT-eKM
† YES

‡
63 (22) 4.53 2.33 2.09 – 2.58

NO
§

53 (28) 2.30 1.97 1.66 – 2.27

OTR
YES 60 (25) 3.15 2.11 1.82 – 2.39

NO 56 (25) 4.53 2.22 1.95 – 2.49

Sun50S
§§

BPFT-eHC
YES 59 (22) 4.53 2.34 2.10 – 2.59

NO 57 (28) 2.30 1.96 1.65 – 2.27

OTR
– – – – –

– – – – –

Kaufman13*

BPFT-eKM
YES 54 (16) 4.53 2.54 2.30 – 2.78

NO 62 (34) 1.73 1.85 1.57 – 2.13

OTR
YES 58 (27) 2.30 1.97 1.67 – 2.27

NO 58 (23) 4.53 2.34 2.09 – 2.59

Kaufman16**

BPFT-eHC
YES 49 (15) 4.53 2.52 2.27 – 2.77

NO 67 (35) 1.76 1.90 1.62 – 2.17

OTR
YES 57 (28) 2.04 1.93 1.63 – 2.23

NO 59 (22) 4.53 2.39 2.14 – 2.63

Topi15

BPFT-eKM
YES 57 (15) 8.91 2.47 2.22 – 2.72

NO 59 (35) 1.73 1.87 1.59 – 2.15

OTR
YES 64 (26) 3.99 2.15 1.89 – 2.41

NO 52 (24) 3.15 2.17 1.87 – 2.47

Topi50

BPFT-ePAM
YES 48 (10) 8.91 2.71 2.49 – 2.93

NO 68 (40) 1.65 1.80 1.54 – 2.06

OTR
– – – – –

– – – – –

†
Results with the longest 3-year RMST using the partitioning around medoids (PAM); k-means (KM) and hierarchical 

(HC) algorithms;
‡
Received the suggested treatment;
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§
Did not receive the suggested treatment;

§§
43 out of 50 genes were matched;

*
12 out of 13 genes were matched;

**
15 out of 16 genes were matched.

Table 6

Treatment-stratified results of the estimated 3-year restricted mean survival time (RMST) for 

patients with lung squamous cell carcinoma. Leave-one-out cross-validation analyses were 

conducted for the proposed Bayesian predictive failure time (BPFT) models. Results 

represent the one with the longest 3-year RMST of hierarchical, k-means and partitioning 

around medoids.

Signature Method Received
Recommended
Treatment

Patient
No.(event)

Median RMST 0.95CI

Overall – –
Targeted 58 (18) 4.53 2.39 2.15 – 2.64

Non-targeted 58 (32) 2.04 1.93 1.64 – 2.23

Zhu15 BPFT

Targeted (Y
†
) 43 (8) NA 2.61 2.34 – 2.87

Targeted (N
‡
) 41 (22) 2.04 1.90 1.55 – 2.24

Non-targeted (Y1) 17 (10) 3.26 2.00 1.43 – 2.57

Non-targeted (N2) 15 (10) 1.76 1.86 1.43 – 2.29

Sun50S
§

BPFT

Targeted (Y) 53 (15) 4.53 2.43 2.17 – 2.70

Targeted (N) 53 (29) 2.30 1.95 1.64 – 2.26

Non-targeted (Y) 5 (3) 2.04 1.77 0.85 – 2.69

Non-targeted (N) 5 (3) 2.12 2.21 1.58 – 2.83

Kaufman13
§§

BPFT

Targeted (Y) 49 (13) NA 2.48 2.22 – 2.75

Targeted (N) 51 (28) 1.76 1.84 1.52 – 2.15

Non-targeted (Y) 7 (4) 3.26 2.66 2.05 – 3.27

Non-targeted (N) 9 (5) 2.12 2.05 1.49 – 2.61

Kaufman16* BPFT

Targeted (Y) 44 (11) NA 2.53 2.25 – 2.80

Targeted (N) 54 (28) 2.04 1.87 1.56 – 2.18

Non-targeted (Y) 4 (4) 3.20 2.69 2.17 – 3.22

Non-targeted (N) 14 (7) 1.94 2.04 1.55 – 2.54

Topi15 BPFT

Targeted (Y) 48 (11) NA 2.53 2.26 – 2.79

Targeted (N) 40 (28) 1.13 1.63 1.29 – 1.98

Non-targeted (Y) 18 (4) NA 2.59 2.17 – 3.01

Non-targeted (N) 10 (7) 1.76 1.90 1.40 – 2.39

Topi50 BPFT

Targeted (Y) 45 (10) NA 2.56 2.31 – 2.82

Targeted (N) 40 (26) 1.13 1.61 1.27 – 1.95

Non-targeted (Y) 18 (6) 8.91 2.62 2.21 – 3.03
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Signature Method Received
Recommended
Treatment

Patient
No.(event)

Median RMST 0.95CI

Non-targeted (N) 13 (8) 1.50 1.85 1.32 – 2.37

†
Received the suggested treatment;

‡
Did not receive the suggested treatment;

§
43 out of 50 genes were matched;

§§
12 out of 13 genes were matched;

*
15 out of 16 genes were matched.

Table 7

Treatment-stratified results of the estimated 3-year restricted mean survival time (RMST) for 

patients with lung squamous cell carcinoma. Leave-one-out cross-validation analyses were 

conducted for regression (RAFT)-based approaches.

Signature Method Treatment Patient
No.(event)

Median RMST 0.95CI

Overall – –
Targeted 58 (18) 4.53 2.39 2.15 – 2.64

Non-targeted 58 (32) 2.04 1.93 1.64 – 2.23

Zhu15 RAFT

Targeted (Y
†
) 42 (12) 4.53 2.45 2.15 – 2.74

Targeted (N
‡
) 41 (21) 3.15 2.10 1.74 – 2.46

Non-targeted 20 (14) 1.21 1.63 1.13 – 2.12

Non-targeted 16 (6) NA 2.28 1.84 – 2.72

Kaufman13
§

RAFT

Targeted (Y) 35 (12) 4.53 2.38 2.07 – 2.70

Targeted (N) 32 (17) 2.04 1.97 1.57 – 2.37

Non-targeted (Y) 26 (15) 1.73 1.89 1.46 – 2.32

Non-targeted (N) 23 (6) NA 2.42 2.03 – 2.80

Kaufman16
§§

RAFT

Targeted (Y) 42 (10) NA 2.47 2.19 – 2.75

Targeted (N) 44 (26) 1.73 1.80 1.47 – 2.14

Non-targeted (Y) 14 (6) 3.26 2.37 1.83 – 2.91

Non-targeted (N) 16 (8) 4.53 2.22 1.73 – 2.70

Topi15 RAFT

Targeted (Y) 42 (10) NA 2.56 2.28 – 2.83

Targeted (N) 35 (20) 1.76 1.77 1.39 – 2.16

Non-targeted (Y) 23 (12) 3.99 2.13 1.69 – 2.58

Non-targeted (N) 16 (8) 2.12 2.04 1.59 – 2.49

†
Received the suggested treatment;

‡
Did not receive the suggested treatment;

§
12 out of 13 genes were matched;

§§
15 out of 16 genes were matched.
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Figure 1. 
Kaplan-Meier plots of progression-free survival durations for patients with lung squamous 

cell carcinoma; the p-value was calculated using the logrank test. Numbers of events and 

patients treated with each therapy are provided in the legend as ratios.
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Figure 2. 
Selecting an optimal treatment for a new patient based on genomic signatures and treatment 

histories of treated patients using our Bayesian approach involves the three components 

depicted below. Left panel: identify genomic signatures of expression/sequencing data; 

middle panel: quantify the extent to which the new patient’s tumor exhibits similarity to 

those previously treated; right panel: integrate the pairwise similarities into the statistical 

model to predict the probability of prolonging treatment failure beyond time T . The 

treatment with the highest probability will be recommended for the new patient.
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Figure 3. 
Kaplan-Meier plots of results obtained from treatment allocation strategies developed using 

the proposed Bayesian predictive failure time (BPFT) methods with different gene 

signatures. Top: Zhu15, Sun50S; Middle: Kaufman13, Kaufman16; and Bottom: Topi15, 

Topi50. These results were based on leave-one-out cross-validation and correspond to the 

results presented in Table 4.
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Figure 4. 
Kaplan-Meier plots of results obtained from treatment allocation strategies developed using 

the AFT regression (RAFT) based approaches with different gene signatures. Top: Zhu15, 

Kaufman13; Bottom: Kaufman16, Topi15. These results were based on leave-one-out cross-

validation and correspond to models displayed in Table 4.
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Table 1

The average number of patients who were recommended to the non-optimal treatments via various treatment 

selection methods, where small values indicate better results. The outcome variables were simulated with the 

95-gene signature, and the data were analyzed using the same set of features. Naive: assumes all patients are 

exchangeable (similarity measures not used). BPFT: the proposed treatment selection approaches when 

implemented with clustering methods of HC, PAM and KM. CT: the average counts; and sd: the standard 

deviation.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Method CT (sd) CT (sd) CT (sd) CT (sd)

Naive 24.74 (6.6) 25.40 (9.4) 26.02 (11.5) 26.13 (11.7)

BPFT-eHC 6.38 (2.2) 7.36 (4.7) 6.90 (3.3) 7.31 (3.5)

BPFT-ePAM 5.84 (6.0) 3.82 (3.7) 5.69 (6.6) 5.27 (6.5)

BPFT-eKM 6.52 (6.0) 5.48 (5.1) 6.59 (6.2) 6.80 (5.8)

BPFT-HC 4.52 (1.7) 4.75 (3.8) 4.75 (3.9) 4.57 (3.0)

BPFT-PAM 2.66 (3.3) 2.09 (2.1) 2.84 (4.7) 2.96 (4.1)

BPFT-KM 1.09 (2.8) 0.78 (3.2) 1.45 (4.6) 1.28 (2.9)
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Table 2

The average number of patients who were recommended to non-optimal treatments, where small values 

indicate better results. The outcome variables were simulated with 95-gene signature, and the data were 

analyzed using the 15i-gene signature. RAFT: regression based approach with accelerated failure time models. 

OTR: the adaptive-LASSO penalized regression method. BPFT: the proposed treatment selection approaches 

when implemented with clustering methods of HC, PAM and KM. CT: the average counts; and sd: the 

standard deviation.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Method CT (sd) CT (sd) CT (sd) CT (sd)

RAFT 21.25 (7.2) 21.28 (7.2) 21.79 (7.6) 21.12 (7.8)

OTR 14.66 (12.2) 15.98 (16.2) 12.73 (8.8) 13.86 (8.2)

BPFT-eHC 6.94 (2.9) 7.10 (3.7) 7.50 (4.5) 7.14 (3.4)

BPFT-ePAM 7.25 (7.2) 5.40 (5.8) 6.48 (6.9) 6.57 (6.6)

BPFT-eKM 7.33 (6.1) 6.29 (5.4) 7.00 (6.6) 6.21 (5.1)

BPFT-HC 5.04 (2.7) 5.06 (2.0) 5.17 (4.4) 4.94 (3.0)

BPFT-PAM 3.35 (3.4) 2.89 (3.9) 4.01 (5.0) 3.57 (3.8)

BPFT-KM 1.25 (3.0) 1.04 (3.6) 1.83 (4.7) 1.30 (3.1)
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Table 3

Stratified patient subgroups with the recommended optimal treatments actually received. A0 and A1 represent 

treatment 1 and 2 respectively; Rec and pred denote the predicted and received treatments, respectively.

Received

Predicted A0 A1

A0 a= (Rec A0/pred A0) b= (Rec A1/pred A0)

A1 c= (Rec A0/pred A1) d= (Rec A1/pred A1)
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Table 4

Estimated 3-year restricted mean survival time (RMST) for patients with lung squamous cell carcinoma. 

Leave-one-out cross-validation analyses were conducted for both the proposed Bayesian predictive failure 

time (BPFT) methods and the AFT regression (RAFT)-based approaches.

Signature Method Received
Recommended
Treatment

Patient
No.(event)

Median RMST 0.95CI

Zhu15

BPFT
†

YES
‡ 60 (18) 8.91 2.43 2.15 – 2.68

NO
§ 56 (32) 1.76 1.89 1.63 – 2.19

RAFT
YES 62 (26) 4.53 2.17 1.90 – 2.45

NO 54 (24) 3.26 2.15 1.86 – 2.43

Sun50S
§§

BPFT
YES 58 (18) 4.53 2.37 2.12 – 2.63

NO 58 (32) 2.12 1.96 1.67 – 2.25

RAFT
– – – – –

– – – – –

Kaufman13*

BPFT
YES 56 (17) 4.53 2.51 2.26 – 2.75

NO 60 (33) 1.76 1.86 1.58 – 2.15

RAFT
YES 61 (26) 3.99 2.17 1.90 – 2.44

NO 55 (24) 3.26 2.15 1.85 – 2.44

Kaufman16**

BPFT
YES 48 (15) 4.53 2.54 2.29 – 2.79

NO 68 (35) 1.76 1.90 1.67 – 2.19

RAFT
YES 56 (16) 5.84 2.45 2.20 – 2.70

NO 60 (34) 1.76 1.91 1.63 – 2.17

Topi15

BPFT
YES 66 (15) 8.91 2.54 2.32 – 2.77

NO 50 (35) 1.46 1.68 1.38 – 1.97

RAFT
YES 65 (22) 8.91 2.40 2.16 – 2.64

NO 51 (28) 1.76 1.85 1.54 – 2.15

Topi50

BPFT
YES 63 (16) 8.91 2.58 2.36 – 2.80

NO 53 (34) 1.34 1.66 1.37 – 1.95

RAFT
– – – – –

– – – – –

†
Results with the longest 3-year RMST using the partitioning around medoids (PAM); k-means (KM) and hierarchical (HC) algorithms;

‡
Received the suggested treatment;

§
Did not receive the suggested treatment;

§§
43 out of 50 genes were matched;
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*
12 out of 13 genes were matched;

**
15 out of 16 genes were matched.
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